1
|
Yadegar S, Mohammadi F, Yadegar A, Mohammadi Naeini A, Ayati A, Milan N, Tayebi A, Seyedi SA, Nabipoorashrafi SA, Rabizadeh S, Esteghamati A, Nakhjavani M. Effects and safety of resveratrol supplementation in older adults: A comprehensive systematic review. Phytother Res 2024; 38:2448-2461. [PMID: 38433010 DOI: 10.1002/ptr.8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RSV) has garnered significant attention in recent years due to its potential benefits against chronic diseases. However, its effects and safety in older adults have not been comprehensively studied. This study aimed to determine the effects and safety of RSV supplementation in older adults. MEDLINE/PubMed, Scopus, and Web of Science databases were comprehensively searched for eligible studies. Studies were enrolled if they were randomized clinical trials and had incorporated RSV supplementation for older adults. Two independent authors conducted the literature search, and eligibility was determined according to the PICOS framework. Study details, intervention specifics, and relevant outcomes were collected during the data collection. The Cochrane RoB-2 tool was used to evaluate the risk of bias. This review included 10 studies. The combination of RSV and exercise improved exercise adaptation and muscle function in healthy older adults and physical performance and mobility measures in individuals with functional limitations. RSV showed potential neuroprotective effects in patients with Alzheimer's disease. In overweight individuals, RSV demonstrated a positive impact on cognitive function, but it increased some biomarkers of cardiovascular disease risk at high doses. In older adults with diabetes and those with peripheral artery disease (PAD), RSV was not more effective than placebo. No study reported significant adverse events following RSV treatment. RSV can improve various health parameters in age-related health conditions. However, the optimal dosage, long-term effects, and potential interactions with medications still need to be investigated through well-designed RCTs.
Collapse
Affiliation(s)
- Sepideh Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi Naeini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nesa Milan
- Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Shariaty Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lucerón-Lucas-Torres M, Saz-Lara A, Díez-Fernández A, Martínez-García I, Martínez-Vizcaíno V, Cavero-Redondo I, Álvarez-Bueno C. Association between Wine Consumption with Cardiovascular Disease and Cardiovascular Mortality: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:2785. [PMID: 37375690 DOI: 10.3390/nu15122785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The objective of this systematic review and meta-analysis was: (i) to examine the association between wine consumption and cardiovascular mortality, cardiovascular disease (CVD), and coronary heart disease (CHD) and (ii) to analyse whether this association could be influenced by personal and study factors, including the participants' mean age, the percentage of female subjects, follow-up time and percentage of current smokers. Methods: In order to conduct this systematic review and meta-analysis, we searched several databases for longitudinal studies from their inception to March 2023. This study was previously registered with PROSPERO (CRD42021293568). Results: This systematic review included 25 studies, of which the meta-analysis included 22 studies. The pooled RR for the association of wine consumption and the risk of CHD using the DerSimonian and Laird approach was 0.76 (95% CIs: 0.69, 0.84), for the risk of CVD was 0.83 (95% CIs: 0.70, 0.98), and for the risk of cardiovascular mortality was 0.73 (95% CIs: 0.59, 0.90). Conclusions: This research revealed that wine consumption has an inverse relationship to cardiovascular mortality, CVD, and CHD. Age, the proportion of women in the samples, and follow-up time did not influence this association. Interpreting these findings with prudence was necessary because increasing wine intake might be harmful to individuals who are vulnerable to alcohol because of age, medication, or their pathologies.
Collapse
Affiliation(s)
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Ana Díez-Fernández
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Irene Martínez-García
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 4810101, Chile
| | - Iván Cavero-Redondo
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 4810101, Chile
| | - Celia Álvarez-Bueno
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Universidad Politécnica y Artística del Paraguay, Asunción 2024, Paraguay
| |
Collapse
|
3
|
Otręba M, Kośmider L, Rzepecka-Stojko A. Polyphenols' Cardioprotective Potential: Review of Rat Fibroblasts as Well as Rat and Human Cardiomyocyte Cell Lines Research. Molecules 2021; 26:molecules26040774. [PMID: 33546142 PMCID: PMC7913231 DOI: 10.3390/molecules26040774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
According to the World Health Organization, cardiovascular diseases are responsible for 31% of global deaths. A reduction in mortality can be achieved by promoting a healthy lifestyle, developing prevention strategies, and developing new therapies. Polyphenols are present in food and drinks such as tea, cocoa, fruits, berries, and vegetables. These compounds have strong antioxidative properties, which might have a cardioprotective effect. The aim of this paper is to examine the potential of polyphenols in cardioprotective use based on in vitro human and rat cardiomyocytes as well as fibroblast research. Based on the papers discussed in this review, polyphenols have the potential for cardioprotective use due to their multilevel points of action which include, among others, anti-inflammatory, antioxidant, antithrombotic, and vasodilatory. Polyphenols may have potential use in new and effective preventions or therapies for cardiovascular diseases, yet more clinical studies are needed.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland;
- Correspondence: ; Tel.: +48-32-364-11-80
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland;
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland;
| |
Collapse
|
4
|
Mankowski RT, You L, Buford TW, Leeuwenburgh C, Manini TM, Schneider S, Qiu P, Anton SD. Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults - A pilot study. Exp Gerontol 2019; 131:110821. [PMID: 31891746 DOI: 10.1016/j.exger.2019.110821] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 02/05/2023]
Abstract
Older adults are at high risk of developing cardiovascular disease (CVD). Pre-clinical studies indicate that resveratrol (RSV), a polyphenol commonly found in grapes and red wine, may help prevent development of CVD. Based on our previous reports where the 300 mg and 1000 mg doses appeared safe and improved psychomotor function in a dose-dependent manner, our hypothesis was that RSV would reduce biomarkers of CVD risk in overweight, but otherwise healthy older adults and that 1000 mg would lower CVD biomarkers >300 mg. This analysis was performed on samples from older participants (65 years and older) who were randomized to a 90 day RSV treatment with 300 mg (n = 10), 1000 mg (n = 9) or placebo (n = 10). We measured levels of CVD risk biomarkers i.e. oxidized low-density lipoprotein (oxLDL), soluble E-selectin-1 (sE-selectin), soluble Intercellular Adhesion Molecule-1 (sICAM-1), Soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), total plasminogen activator inhibitor (tPAI-1). Statistical significance was set at p < 0.05. Both sVCAM-1 and tPAI increased significantly more in the 1000 mg vs. 300 mg and placebo groups. Other biomarkers (300 mg vs. 1000 mg vs. placebo: oxLDL, sEselectin-1 and sICAM-1) followed the same trend toward higher levels in the 1000 mg group compared to the 300 mg and placebo groups, without reaching statistical significance. This pilot project suggests that a higher dose of RSV may increase the levels of CVD risk biomarkers in overweight older adults. Given no change in the CVD risk biomarkers in response to a lower dose, future studies should test the effects of different doses of RSV to evaluate potential detrimental effects of higher doses on CVD biomarkers and measures of cardiovascular function in older adults at risk for CVD.
Collapse
Affiliation(s)
- R T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| | - L You
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - T W Buford
- Department of Medicine, UAB School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - T M Manini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - S Schneider
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - P Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - S D Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Tetrahydroxystilbene Glucoside (TSG) Restores the Effect of Transient Hypoxia on Reperfusion Injury in Senescent H9c2 Cells by Regulating Mitochondrial Energy Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2545024. [PMID: 30643527 PMCID: PMC6311246 DOI: 10.1155/2018/2545024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022]
Abstract
Tetrahydroxystilbene glucoside (TSG) is extracted from a famous Chinese herbal medicine which is widely used as an antiaging agent in history. Lots of studies gave evidence that TSG exhibited benefits to brain, like improvement of learning and memory and synaptic plasticity. Moreover, the polyphenolic structure of TSG enables its capability to prevent cerebral ischemia/reperfusion injury (IRI) by reducing apoptosis and ROS/RNS generation. Due to its antioxidant profile, TSG had been demonstrated to alleviate cardiac toxicity by regulating biochemical indexes and ROS. However, whether TSG exhibited cardioprotective effects via mitochondrial energy metabolic functions, which played crucial role in IRI, remained unclear. Here, we used an in vitro aging model of cardiomyocytes to evaluate the effects of TSG on transient hypoxia-pretreated hypoxia/reoxygenation (H/R) injury and mitochondrial energy metaolism. Our results showed that TSG enhanced cardioprotective effect of transient hypoxia on H/R by reducing excessive ROS production and calcium overloading. Significant improvements of mitochondrial respiratory functions and ketone body metabolism elucidated that TSG restored the effect of transient hypoxia on H/R injury in aging cardiomyocytes via upregulating mitochondrial energy metabolism.
Collapse
|
6
|
Resveratrol Ameliorates Mitochondrial Elongation via Drp1/Parkin/PINK1 Signaling in Senescent-Like Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4175353. [PMID: 29201272 PMCID: PMC5671746 DOI: 10.1155/2017/4175353] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 09/05/2017] [Indexed: 01/26/2023]
Abstract
Resveratrol is widely known for its antiaging properties and exerts cardiovascular protective effects in different experimental models. The role of resveratrol in regulating mitochondrial functions and dynamics during the cardiac aging process remains poorly understood. In this study, the effects of resveratrol on mitochondrial morphology and mitochondrial depolarization and on expressions of Drp1, parkin, PINK1, and LC3 were investigated in H9c2 cells after D-galactose treatment that induced senescent-like cardiomyocytes. The results show that downregulation of Drp1 markedly increased mitochondrial elongation. Senescent-like cardiomyocytes were more resistant to CCCP-induced mitochondrial depolarization, which was accompanied by suppressed expression of parkin, PINK1, and LC3-II. Resveratrol treatment significantly increased Drp1 expression, ameliorated mitochondrial elongation, and increased the mitochondrial translocations of parkin and PINK1. In addition, resveratrol significantly enhanced LC3-II expression and decreased TOM20-labeled mitochondrial content. Resveratrol also suppressed the phosphorylation of parkin and PINK1, which may relate to its abilities to degrade the impaired mitochondria in senescent-like cardiomyocytes. These findings show that suppressing mitochondrial elongation in a Drp1-dependent manner is involved in the effect of resveratrol on attenuating the development of aging cardiomyocytes. Activation of parkin and PINK1 may be a potential mechanism of resveratrol for treating cardiovascular complications related to aging.
Collapse
|
7
|
Guo H, Zheng H, Wu J, Ma HP, Yu J, Yiliyaer M. The key role of microtubules in hypoxia preconditioning-induced nuclear translocation of HIF-1α in rat cardiomyocytes. PeerJ 2017; 5:e3662. [PMID: 28828258 PMCID: PMC5560226 DOI: 10.7717/peerj.3662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Background Hypoxia-inducible factor (HIF)-1 is involved in the regulation of hypoxic preconditioning in cardiomyocytes. Under hypoxic conditions, HIF-1α accumulates and is translocated to the nucleus, where it forms an active complex with HIF-1β and activates transcription of approximately 60 kinds of hypoxia-adaptive genes. Microtubules are hollow tubular structures in the cell that maintain cellular morphology and that transport substances. This study attempted to clarify the role of microtubule structure in the endonuclear aggregation of HIF-1α following hypoxic preconditioning of cardiomyocytes. Methods Primary rat cardiomyocytes were isolated and cultured. The cardiomyocyte culture system was used to establish a hypoxia model and a hypoxic preconditioning model. Interventions were performed on primary cardiomyocytes using a microtubule-depolymerizing agent and different concentrations of a microtubule stabilizer. The microtubule structure and the degree of HIF-1α nuclear aggregation were observed by confocal laser scanning microscopy. The expression of HIF-1α in the cytoplasm and nucleus was detected using Western blotting. Cardiomyocyte energy content, reflected by adenosine triphosphate/adenosine diphosphate (ATP/ADP), and key glycolytic enzymes were monitored by colorimetry and high-performance liquid chromatography (HPLC). Reactive oxygen species (ROS) production was also used to comprehensively assess whether microtubule stabilization can enhance the myocardial protective effect of hypoxic preconditioning. Results During prolonged hypoxia, it was found that the destruction of the microtubule network structure of cardiomyocytes was gradually aggravated. After this preconditioning, an abundance of HIF-1α was clustered in the nucleus. When the microtubules were depolymerized and hypoxia pretreatment was performed, HIF-1α clustering occurred around the nucleus, and HIF-1α nuclear expression was low. The levels of key glycolytic enzymes were significantly higher in the microtubule stabilizer group than in the hypoxia group. Additionally, the levels of lactate dehydrogenase and ROS were significantly lower in the microtubule stabilizer group than in the hypoxia group. Conclusion The microtubules of cardiomyocytes may be involved in the process of HIF-1α endonuclear aggregation, helping to enhance the anti-hypoxic ability of cardiomyocytes.
Collapse
Affiliation(s)
- Hai Guo
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Ping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maimaitili Yiliyaer
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Chen Y, Hsu H, Baskaran R, Wen S, Shen C, Day C, Ho T, Vijaya Padma V, Kuo W, Huang C. Short‐Term Hypoxia Reverses Ox‐LDL‐Induced CD36 and GLUT4 Switching Metabolic Pathways in H9c2 Cardiomyoblast Cells. J Cell Biochem 2017; 118:3785-3795. [DOI: 10.1002/jcb.26027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yeh‐Peng Chen
- Ph.D. Program for Aging, China Medical UniversityTaichungTaiwan
- Division of CardiologyDepartment of Internal MedicineChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Hsi‐Hsien Hsu
- Division of Colorectal SurgeryMackay Memorial HospitalTaipeiTaiwan
- Mackay Medicine, Nursing and Management CollegeTaipeiTaiwan
| | - Rathinasamy Baskaran
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Su‐Ying Wen
- Mackay Medicine, Nursing and Management CollegeTaipeiTaiwan
- Department of DermatologyTaipei City HospitalRenai BranchTaipeiTaiwan
| | - Chia‐Yao Shen
- Department of NursingMei Ho UniversityPingguang RoadPingtungTaiwan
| | | | - Tsung‐Jung Ho
- Chinese Medicine DepartmentChina Medical University Beigang HospitalTaichungTaiwan
| | | | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan
| |
Collapse
|
9
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
10
|
Du G, Sun L, Zhao R, Du L, Song J, Zhang L, He G, Zhang Y, Zhang J. Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacol Ther 2016; 162:23-34. [PMID: 27113411 DOI: 10.1016/j.pharmthera.2016.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/05/2016] [Indexed: 12/09/2022]
Abstract
Polyphenols, which are naturally present in plants, have been studied for their chemical and pharmacological properties. Polyphenols have been found to exhibit various bioactivities such as antioxidant, free radical scavenging and anti-inflammatory effects, in addition to regulating the intracellular free calcium levels. These bioactivities are related to the underlying mechanisms of ischaemic heart diseases. Pharmacological studies have proven polyphenols to be effective in treating cardiovascular diseases in various ways, particularly ischaemic heart diseases. Based on their mode of action, we propose that some polyphenols can be developed as drugs to treat ischaemic heart diseases. For this purpose, a strategy to evaluate the therapeutic value of drugs for ischaemic heart diseases is needed. Despite several advances in percutaneous coronary intervention (PCI), the incidence of myocardial infarction and deaths due to cardiovascular diseases has not decreased markedly in China. Due to their pleiotropic properties and structural diversity, polyphenols have been of great interest in pharmacology. In the present review, we summarize the pharmacological effects and mechanisms of polyphenols reported after 2000, and we analyse the benefits or druggability of these compounds for ischaemic heart diseases.
Collapse
Affiliation(s)
- Guanhua Du
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Lan Sun
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rui Zhao
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lida Du
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guorong He
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yongxiang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Juntian Zhang
- Beijing Key Laboratory of Drug Target Research and Drug Screening, State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Natural Compounds Modulating Mitochondrial Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:527209. [PMID: 26167193 PMCID: PMC4489008 DOI: 10.1155/2015/527209] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.
Collapse
|