1
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
2
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
3
|
Kondo K, Izumi M, Inabe K, Yoshida K, Imashimizu M, Suzuki T, Hisabori T. The phototroph-specific β-hairpin structure of the γ subunit of F oF 1-ATP synthase is important for efficient ATP synthesis of cyanobacteria. J Biol Chem 2021; 297:101027. [PMID: 34339736 PMCID: PMC8390522 DOI: 10.1016/j.jbc.2021.101027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.
Collapse
Affiliation(s)
- Kumiko Kondo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Masayuki Izumi
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Kosuke Inabe
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Mari Imashimizu
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.
| |
Collapse
|
4
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
5
|
Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Biochem Soc Trans 2021; 49:541-550. [PMID: 33890627 PMCID: PMC8106487 DOI: 10.1042/bst20190936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Driven by transmembrane electrochemical ion gradients, F-type ATP synthases are the primary source of the universal energy currency, adenosine triphosphate (ATP), throughout all domains of life. The ATP synthase found in the thylakoid membranes of photosynthetic organisms has some unique features not present in other bacterial or mitochondrial systems. Among these is a larger-than-average transmembrane rotor ring and a redox-regulated switch capable of inhibiting ATP hydrolysis activity in the dark by uniquely adapted rotor subunit modifications. Here, we review recent insights into the structure and mechanism of ATP synthases specifically involved in photosynthesis and explore the cellular physiological consequences of these adaptations at short and long time scales.
Collapse
|
6
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
7
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
9
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δ erm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017; 7:602-615. [PMID: 28396843 PMCID: PMC5377389 DOI: 10.1002/2211-5463.12208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.
Collapse
Affiliation(s)
- Henning Dannheim
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Sabine E Will
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dietmar Schomburg
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
11
|
Mitome N, Sato H, Tomiyama T, Shimabukuro K, Matsunishi T, Hamada K, Suzuki T. Identification of aqueous access residues of the sodium half channel in transmembrane helix 5 of the F o- a subunit of Propionigenium modestum ATP synthase. Biophys Physicobiol 2017; 14:41-47. [PMID: 28560128 PMCID: PMC5448315 DOI: 10.2142/biophysico.14.0_41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/11/2017] [Indexed: 12/01/2022] Open
Abstract
The Fo-a subunit of the Na+-transporting FoF1 ATP synthase from Propionigenium modestum plays a key role in Na+ transport. It forms half channels that allow Na+ to enter and leave the buried carboxyl group on Fo-c subunits. The essential Arg residue R226, which faces the carboxyl group of Fo-c subunits in the middle of transmembrane helix 5 of the Fo-a subunit, separates the cytoplasmic side and periplasmic half-channels. To elucidate contributions of other amino acid residues of transmembrane helix 5 using hybrid FoF1 (Fo from P. modestum and F1 from thermophilic Bacillus PS3), 25 residues were individually mutated to Cys, and effects of modification with the SH-modifying agent N-ethylmaleimide (NEM) on ATP synthesis and hydrolysis activity were analyzed. NEM significantly inhibited ATP synthesis and hydrolysis as well as proton pumping activities of A214C, G215C, A218C, I223C (cytoplasmic side from R226), and N230C (periplasmic side from R226) mutants and inhibited ATP synthesis activity of the K219C mutant (cytoplasmic side from R226). Thus, these residues contribute to the integrity of the Na+ half channel, and both half channels are present in the Fo-a subunit.
Collapse
Affiliation(s)
- Noriyo Mitome
- Department Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Hiroki Sato
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Taishi Tomiyama
- Department Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Katsuya Shimabukuro
- Department Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Takuya Matsunishi
- Department Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Kohei Hamada
- Department Chemical and Biological Engineering, National Institute of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Toshiharu Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2016; 85:17.7.1-17.7.21. [PMID: 27479503 DOI: 10.1002/cpps.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
13
|
Colina-Tenorio L, Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Cardol P, Remacle C, González-Halphen D. Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:359-69. [DOI: 10.1016/j.bbabio.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/26/2022]
|
14
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
15
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
Collapse
Affiliation(s)
- Wolfgang Junge
- Department of Biophysics, Universität Osnabrück, DE-49069 Osnabrück, Germany;
| | | |
Collapse
|
16
|
Rühle T, Leister D. Assembly of F1F0-ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:849-60. [PMID: 25667968 DOI: 10.1016/j.bbabio.2015.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
17
|
Bosshart PD, Engel A, Fotiadis D. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes. Methods Mol Biol 2015; 1271:189-203. [PMID: 25697525 DOI: 10.1007/978-1-4939-2330-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland
| | | | | |
Collapse
|
18
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Thiol oxidation of mitochondrial F0-c subunits: a way to switch off antimicrobial drug targets of the mitochondrial ATP synthase. Med Hypotheses 2014; 83:160-165. [PMID: 24932580 DOI: 10.1016/j.mehy.2014.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/10/2014] [Indexed: 12/30/2022]
Abstract
A primary goal in antimicrobial drug design is to find molecules which inhibit key proteins in bacteria without affecting mammalian homologues. To this aim, structural differences between eukaryotic and prokaryotic enzyme proteins involved in life processes are widely exploited. The membrane-bound enzyme complex ATP synthase synthesizes the energy currency molecule of the cell. Due to its bioenergetic role, it represents "the enzyme of life" of all living beings. The enzyme complex has the unique bi-functional property of exploiting either the electrochemical transmembrane gradient to make ATP or, conversely, the free energy of ATP hydrolysis to build an electrochemical gradient across the membrane. The catalytic mechanism of ATP synthesis/hydrolysis, based on the coupling between the two rotary sectors FO and F1 is shared by eukaryotes and prokaryotes. However slight structural differences distinguish prokaryotic ATP synthases, embedded in cell membrane, from eukaryotic ones localized in the mitochondrial inner membrane. In spite of its fundamental task in living organisms, up to now the ATP synthase has been poorly exploited as target in antibacterial therapy, mainly due to harmful effects on patients. Recent advances shoulder the use of drugs targeting the ATP synthase to fight mycobacteria and treat human tuberculosis. Macrolide antibiotics and other antimicrobial drugs specifically bind to the c-ring of the membrane-embedded FO domain, thus blocking ion translocation through FO which is essential for both ATP synthesis and ATP hydrolysis. Our findings show that, once bound to the ATP synthase, probably through different binding sites on a common binding region on FO, the macrolide antibiotics oligomycin, venturicidin and bafilomycin behave as enzyme inhibitors. Interestingly, the c subunits of mitochondrial ATP synthase contain conserved cysteine residues which are absent in bacteria. We pointed out that when these crucial cysteine thiols are oxidized, the common drug binding site of the enzyme is somehow destabilized, thus weakening the enzyme-drug interactions and making the ATP synthase insensitive to drug inhibition. On these bases we hypothesize that the selective oxidation of these cysteine thiols can be exploited to desensitize the mitochondrial ATP synthase to drugs which target FO and maintain their inhibitory potency on bacterial ATP synthases. According to our hypothesis, this strategy could represent an intriguing tool to prevent adverse effects of antimicrobial drugs in mammals, thus enhancing the number of natural and synthetic compounds which can be used in therapy. To this aim studies should be addressed to the identification and formulation of compounds and/or treatments able to selectively oxidize the crucial cysteine thiols of c-subunits without affecting the overall functionality of the mitochondrial ATP synthase and other thiol containing proteins.
Collapse
Affiliation(s)
- S Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy
| | - V Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy
| | - F Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy
| | - M Pirini
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy
| | - A Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50 - 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
19
|
Czub J, Grubmüller H. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase. J Am Chem Soc 2014; 136:6960-8. [PMID: 24798048 DOI: 10.1021/ja500120m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
F1-ATPase (F1) is the catalytic portion of ATP synthase, a rotary motor protein that couples proton gradients to ATP synthesis. Driven by a proton flux, the F1 asymmetric γ subunit undergoes a stepwise rotation inside the α3β3 headpiece and causes the β subunits' binding sites to cycle between states of different affinity for nucleotides. These concerted transitions drive the synthesis of ATP from ADP and phosphate. Here, we study the coupling between the mechanical progression of γ and the conformations of α3β3. Using molecular dynamics simulations, we show that the nucleotide-free β subunit, initially in the open, low-affinity state, undergoes a spontaneous closing transition to the half-open state in response to the γ rotation in the synthesis direction. We estimate the kinetics of this spontaneous conformational change and analyze its mechanism and driving forces. By computing free energy profiles, we find that the isolated empty β subunit preferentially adopts the half-open conformation and that the transition to this conformation from the fully open state is accompanied by well-defined changes in the structure and interactions of the active site region. These results suggest that ADP binding to F1 occurs via conformational selection and is preceded by the transition of the active site to the half-open conformation, driven by the intrinsic elasticity of β. Our results also indicate that opening of the nucleotide-free β during hydrolysis is not spontaneous, as previously assumed. Rather, the fully open conformation observed in the F1 X-ray structure is enforced sterically by the γ subunit whose orientation is stabilized by interactions with the two other β subunits in the completely closed state. This finding supports the notion that γ acts by coupling the extreme conformational states of β subunits within the α3β3 hexamer and therefore is responsible for high efficiency of the coordinated catalysis.
Collapse
Affiliation(s)
- Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
20
|
Schulz S, Iglesias-Cans M, Krah A, Yildiz Ö, Leone V, Matthies D, Cook GM, Faraldo-Gómez JD, Meier T. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol 2013; 11:e1001596. [PMID: 23824040 PMCID: PMC3692424 DOI: 10.1371/journal.pbio.1001596] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marina Iglesias-Cans
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vanessa Leone
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Doreen Matthies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gregory M. Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Cluster of Excellence “Macromolecular Complexes,” Goethe University of Frankfurt, Frankfurt am Main, Germany
- * E-mail: (JDF-G); (TM)
| |
Collapse
|
21
|
The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci U S A 2013; 110:7874-9. [PMID: 23613590 DOI: 10.1073/pnas.1303333110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles.
Collapse
|
22
|
Sapra KT. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 2013; 974:73-110. [PMID: 23404273 DOI: 10.1007/978-1-62703-275-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Ferencz C, Petrovszki P, Kóta Z, Fodor-Ayaydin E, Haracska L, Bóta A, Varga Z, Dér A, Marsh D, Páli T. Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:147-58. [PMID: 23160754 DOI: 10.1007/s00249-012-0871-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022]
Abstract
The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6-32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8-48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.
Collapse
Affiliation(s)
- Csilla Ferencz
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gohlke H, Schlieper D, Groth G. Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J Biol Chem 2012; 287:36536-43. [PMID: 22942277 DOI: 10.1074/jbc.m112.398396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The rotation of F(1)F(o)-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane F(o) domain, which is coupled to the ATP-producing F(1) domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the "locked" and "open" conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F(1)F(o)-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.
Collapse
Affiliation(s)
- Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40204 Düsseldorf, Germany
| | | | | |
Collapse
|
25
|
Structural study on the architecture of the bacterial ATP synthase Fo motor. Proc Natl Acad Sci U S A 2012; 109:E2050-6. [PMID: 22736796 DOI: 10.1073/pnas.1203971109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We purified the F(o) complex from the Ilyobacter tartaricus Na(+)-translocating F(1)F(o)-ATP synthase and performed a biochemical and structural study. Laser-induced liquid bead ion desorption MS analysis demonstrates that all three subunits of the isolated F(o) complex were present and in native stoichiometry (ab(2)c(11)). Cryoelectron microscopy of 2D crystals yielded a projection map at a resolution of 7.0 Å showing electron densities from the c(11) rotor ring and up to seven adjacent helices. A bundle of four helices belongs to the stator a-subunit and is in contact with c(11). A fifth helix adjacent to the four-helix bundle interacts very closely with a c-subunit helix, which slightly shifts its position toward the ring center. Atomic force microscopy confirms the presence of the F(o) stator, and a height profile reveals that it protrudes less from the membrane than c(11). The data limit the dimensions of the subunit a/c-ring interface: Three helices from the stator region are in contact with three c(11) helices. The location and distances of the stator helices impose spatial restrictions on the bacterial F(o) complex.
Collapse
|
26
|
Abstract
ATP synthase membrane rotors consist of a ring of c-subunits whose stoichiometry is constant for a given species but variable across different ones. We investigated the importance of c/c-subunit contacts by site-directed mutagenesis of a conserved stretch of glycines (GxGxGxGxG) in a bacterial c(11) ring. Structural and biochemical studies show a direct, specific influence on the c-subunit stoichiometry, revealing c(<11), c(12), c(13), c(14), and c(>14) rings. Molecular dynamics simulations rationalize this effect in terms of the energetics and geometry of the c-subunit interfaces. Quantitative data from a spectroscopic interaction study demonstrate that the complex assembly is independent of the c-ring size. Real-time ATP synthesis experiments in proteoliposomes show the mutant enzyme, harboring the larger c(12) instead of c(11), is functional at lower ion motive force. The high degree of compliance in the architecture of the ATP synthase rotor offers a rationale for the natural diversity of c-ring stoichiometries, which likely reflect adaptations to specific bioenergetic demands. These results provide the basis for bioengineering ATP synthases with customized ion-to-ATP ratios, by sequence modifications.
Collapse
|
27
|
Regulatory design in a simple system integrating membrane potential generation and metabolic ATP consumption. Robustness and the role of energy dissipating processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1634-46. [PMID: 21945502 DOI: 10.1016/j.bbabio.2011.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/03/2011] [Accepted: 09/08/2011] [Indexed: 01/02/2023]
Abstract
Bacterial physiological responses integrate energy-coupling processes at the membrane level with metabolic energy demand. The regulatory design behind these responses remains largely unexplored. Propionigenium modestum is an adequate organism to study these responses because it presents the simplest scheme known integrating membrane potential generation and metabolic ATP consumption. A hypothetical sodium leak is added to the scheme as the sole regulatory site. Allosteric regulation is assumed to be absent. Information of the rate equations is not available. However, relevant features of the patterns of responses may be obtained using Metabolic Control Analysis (MCA) and Metabolic Control Design (MCD). With these tools, we show that membrane potential disturbances can be compensated by adjusting the leak flux, without significant perturbations of ATP consumption. Perturbations of membrane potential by ATP demand are inevitable and also require compensatory changes in the leak. Numerical simulations were performed with a kinetic model exhibiting the responses for small changes obtained with MCA and MCD. A modest leak (10% of input) was assumed for the reference state. We found that disturbances in membrane potential and ATP consumption, produced by environmental perturbations of the cation concentration, may be reverted to the reference state adjusting the leak. Leak changes can also compensate for undesirable effects on membrane potential produced by changes in nutrient availability or ATP demand, in a wide range of values. The system is highly robust to parameter fluctuations. The regulatory role of energy dissipating processes and the trade-off between energetic efficiency and regulatory capacity are discussed.
Collapse
|
28
|
Qian J, Liang J. Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism. Biosystems 2011; 105:233-7. [PMID: 21664229 DOI: 10.1016/j.biosystems.2011.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 03/04/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022]
Abstract
ATP synthase couples proton flow to ATP synthesis, but is leaky to protons at very low nucleotide concentration. Based on the bi-site mechanism, we simulated the proton conduction from proton slip to "coupled" proton flow in ATP synthase using the Monte Carlo method. Good agreement is obtained between the simulated and available experimental results. Our model provides deeper insight into the nucleotide dependence of ATP catalysis, and the kinetic cooperativity in three catalysis subunits. The results of simulation support the bi-site mechanism in ATP synthesis.
Collapse
Affiliation(s)
- Jun Qian
- School of Physics, Nankai University, No. 94 Weijing Road, Nankai District, Tianjin, China.
| | | |
Collapse
|
29
|
Thauer RK. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 2011; 14:292-9. [DOI: 10.1016/j.mib.2011.03.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/13/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
|
30
|
Abstract
F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.
Collapse
Affiliation(s)
- Daichi Okuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
31
|
Abstract
F(o)F(1)-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded F(o) generates the rotary torque that drives the rotation of the asymmetric shaft of F(1). Mechanical energy of the rotating shaft is used by the F(1) catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant part of the shaft is required for the observed high turnover rate. We used atomistic simulations to study the spatial distribution and structural determinants of the F(1) torsional elasticity at the molecular level and to comprehensively characterize the elastic properties of F(1)-ATPase. Our fluctuation analysis revealed an unexpected heterogeneity of the F(1) shaft elasticity. Further, we found that the measured overall torsional moduli of the shaft arise from two distinct contributions, the intrinsic elasticity and the effective potential imposed on the shaft by the catalytic subunit. Separation of these two contributions provided a quantitative description of the coupling between the rotor and the catalytic subunit. This description enabled us to propose a minimal quantitative model of the F(1) energetics along the rotary degrees of freedom near the resting state observed in the crystal structures. As opposed to the usually employed models where the motor mechanical progression is described by a single angular variable, our multidimensional treatment incorporates the spatially inhomogeneous nature of the shaft and its interactions with the stator and offers new insight into the mechanoenzymatics of F(1)-ATPase.
Collapse
|
32
|
Ulbrich MH. Counting Molecules: Toward Quantitative Imaging. SPRINGER SERIES ON FLUORESCENCE 2011. [DOI: 10.1007/4243_2011_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Suzuki Y, Yokokawa M, Yoshimura SH, Takeyasu K. Biological Application of Fast-Scanning Atomic Force Microscopy. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, van Gulik WM. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng 2010; 107:369-81. [PMID: 20506321 DOI: 10.1002/bit.22802] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h(-1)) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 +/- 0.26 mol of ATP/mol of O, K(X) (growth dependent maintenance) of 0.46 +/- 0.27 mol of ATP/C-mol of biomass and m(ATP) (growth independent maintenance) of 0.075 +/- 0.015 mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, micro, as an input in order to accurately predict all other fluxes and yields.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Biotechnology, Delft University of Technology, Julianalaan BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Hicks DB, Liu J, Fujisawa M, Krulwich TA. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1362-77. [PMID: 20193659 PMCID: PMC2890045 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
Affiliation(s)
- David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto Fujisawa
- Faculty of Food Life Sciences, Toyo University, Ora-gun, Gunma 374-0193, Japan
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
36
|
Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M. The mechanism of rotating proton pumping ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1343-52. [PMID: 20170625 DOI: 10.1016/j.bbabio.2010.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
Abstract
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.
| | | | | | | |
Collapse
|
37
|
Feniouk BA, Kato-Yamada Y, Yoshida M, Suzuki T. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3. Biophys J 2010; 98:434-42. [PMID: 20141757 PMCID: PMC2814204 DOI: 10.1016/j.bpj.2009.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022] Open
Abstract
Subunit epsilon of bacterial and chloroplast F(O)F(1)-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit epsilon can adopt two conformations. In the "extended", inhibitory conformation, its two C-terminal alpha-helices are stretched along subunit gamma. In the "contracted", noninhibitory conformation, these helices form a hairpin. The transition of subunit epsilon from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59 degrees C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit epsilon and in the N-terminus of subunit gamma was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 microM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit beta were found to stabilize the extended conformation of epsilon. Binding of ATP directly to epsilon was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 microM) suggests that subunit epsilon probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.
Collapse
Affiliation(s)
- Boris A. Feniouk
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| | | | - Masasuke Yoshida
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiharu Suzuki
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Tokyo, Japan
| |
Collapse
|
38
|
MAEDA M. H +-transporting ATP Synthases: Insights into How Their Electrochemically Driven Motor Might Serve as a Drug Target. YAKUGAKU ZASSHI 2010; 130:191-7. [DOI: 10.1248/yakushi.130.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masatomo MAEDA
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University
| |
Collapse
|
39
|
AFM study of the interaction of cytochrome P450 2C9 with phospholipid bilayers. Chem Phys Lipids 2010; 163:182-9. [DOI: 10.1016/j.chemphyslip.2009.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/07/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022]
|
40
|
Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Goldsbury CS, Scheuring S, Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2009; Chapter 17:17.7.1-17.7.19. [DOI: 10.1002/0471140864.ps1707s58] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Laurent Kreplak
- Dalhousie University, Department of Physics & Atmospheric Science Halifax Canada
| |
Collapse
|
42
|
Sengupta D, Rampioni A, Marrink SJ. Simulations of thec-subunit of ATP-synthase reveal helix rearrangements. Mol Membr Biol 2009; 26:422-34. [DOI: 10.3109/09687680903321073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Konorty M, Brumfeld V, Vermeglio A, Kahana N, Medalia O, Minsky A. Photosynthetic system in Blastochloris viridis revisited. Biochemistry 2009; 48:4753-61. [PMID: 19397367 DOI: 10.1021/bi900267r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterium Blastochloris viridis carries one of the simplest photosynthetic systems, which includes a single light-harvesting complex that surrounds the reaction center, membrane soluble quinones, and a soluble periplasmic protein cytochrome c(2) that shuttle between the reaction center and the bc(1) complex and act as electron carriers, as well as the ATP synthase. The close arrangement of the photosynthetic membranes in Bl. viridis, along with the extremely tight arrangement of the photosystems within these membranes, raises a fundamental question about the diffusion of the electron carriers. To address this issue, we analyzed the structure and response of the Bl. viridis photosynthetic system to various light conditions, by using a combination of electron microscopy, whole-cell cryotomography, and spectroscopic methods. We demonstrate that in response to high light intensities, the ratio of both cytochrome c(2) and bc(1) complexes to the reaction centers is increased. The shorter membrane stacks, along with the notion that the bc(1) complex is located at the highly curved edges of these stacks, result in a smaller average distance between the reaction centers and the bc(1) complexes, leading to shorter pathways of cytochrome c(2) between the two complexes. Under anaerobic conditions, the slow diffusion rate is further mitigated by keeping most of the quinone pool reduced, resulting in a concentration gradient of quinols that allows for a constant supply of theses electron carriers to the bc(1) complex.
Collapse
Affiliation(s)
- Marina Konorty
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|
44
|
Vollmar M, Schlieper D, Winn M, Büchner C, Groth G. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 2009; 284:18228-35. [PMID: 19423706 PMCID: PMC2709358 DOI: 10.1074/jbc.m109.006916] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/10/2009] [Indexed: 11/06/2022] Open
Abstract
The structure of the membrane integral rotor ring of the proton translocating F(1)F(0) ATP synthase from spinach chloroplasts was determined to 3.8 A resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c(11) rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6-10.8 A apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu(61) in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu(61) is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu(61) by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.
Collapse
Affiliation(s)
- Melanie Vollmar
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Daniel Schlieper
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Martyn Winn
- the Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
| | - Claudia Büchner
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Georg Groth
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| |
Collapse
|
45
|
Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V. Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 2009; 284:10110-9. [PMID: 19203996 PMCID: PMC2665065 DOI: 10.1074/jbc.m808498200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/09/2009] [Indexed: 11/06/2022] Open
Abstract
The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A(1) part and a transmembrane, ion translocation domain A(0). The A(1)A(0) complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 +/- 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A(1) and A(0) domain, connected by a central stalk and two peripheral stalks, one of which is connected to A(0), and both connected to A(1) via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A(3)B(3)CDE(2)FH(2)ac(10).
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
46
|
Matthies D, Preiss L, Klyszejko AL, Muller DJ, Cook GM, Vonck J, Meier T. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol 2009; 388:611-8. [PMID: 19327366 DOI: 10.1016/j.jmb.2009.03.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 10/21/2022]
Abstract
We have structurally characterized the c-ring from the thermoalkaliphilic Bacillus sp. strain TA2.A1 F(1)F(o)-ATP synthase. Atomic force microscopy imaging and cryo-electron microscopy analyses confirm previous mass spectrometric data indicating that this c-ring contains 13 c-subunits. The cryo-electron microscopy map obtained from two-dimensional crystals shows less closely packed helices in the inner ring compared to those of Na(+)-binding c(11) rings. The inner ring of alpha-helices in c(11) rings harbors a conserved GxGxGxGxG motif, with glycines located at the interface between c-subunits, which is responsible for the close packing of these helices. This glycine motif is altered in the c(13) ring of Bacillus sp. strain TA2.A1 to AxGxSxGxS, leading to a change in c-c subunit contacts and thereby enlarging the c-ring diameter to host a greater number of c-subunits. An altered glycine motif is a typical feature of c-subunit sequences in alkaliphilic Bacillus species. We propose that enlarged c-rings in proton-dependent F-ATP synthases may represent an adaptation to facilitate ATP synthesis at low overall proton-motive force, as occurs in bacteria that grow at alkaline pH.
Collapse
Affiliation(s)
- Doreen Matthies
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Proton Translocation and ATP Synthesis by the FoF1-ATPase of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Nakanishi-Matsui M, Futai M. Stochastic rotational catalysis of proton pumping F-ATPase. Philos Trans R Soc Lond B Biol Sci 2008; 363:2135-42. [PMID: 18339602 DOI: 10.1098/rstb.2008.2266] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.
Collapse
|
49
|
Varco-Merth B, Fromme R, Wang M, Fromme P. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:605-12. [PMID: 18515064 PMCID: PMC3408889 DOI: 10.1016/j.bbabio.2008.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
Abstract
The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10-15 c-subunits is commonly thought to drive rotation of the rotor moiety (c(10-14)gammaepsilon) relative to stator moiety (alpha(3)beta(3)deltaab(2)). Here we report the isolation and crystallization of the c(14)-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 A. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.
Collapse
Affiliation(s)
- Benjamin Varco-Merth
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA 85287, USA
| | | | | | | |
Collapse
|
50
|
Goldsbury C, Scheuring S. Introduction to atomic force microscopy (AFM) in biology. ACTA ACUST UNITED AC 2008; Chapter 17:17.7.1-17.7.17. [PMID: 18429225 DOI: 10.1002/0471140864.ps1707s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic force microscope has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated. Importantly, the measurements are made in buffer solutions, allowing biological samples to stay alive within a physiological-like environment while temporal changes in structure are measured. This overview provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins. The physical principles of the technique and methodological aspects of its practical use and applications are also described.
Collapse
Affiliation(s)
- Claire Goldsbury
- Cytoskeleton Group, Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | |
Collapse
|