1
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
2
|
Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, Wang J, Kaur H, Shao J, Ayers GD, Wang Y, Glass SE, Tasneem N, Chen Z, Qin Y, Kim W, Rolong A, Chen B, Vega PN, Drewes JL, Markham NO, Saleh N, Nikolos F, Vandekar S, Jones AL, Washington MK, Roland JT, Chan KS, Schürpf T, Sears CL, Liu Q, Shrubsole MJ, Coffey RJ, Lau KS. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 2023; 186:5620-5637.e16. [PMID: 38065082 PMCID: PMC10756562 DOI: 10.1016/j.cell.2023.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Collapse
Affiliation(s)
- Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jiawei Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin Shao
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Gregory D Ayers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah E Glass
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Qin
- Incendia Therapeutics, Inc., Boston, MA 02135, USA
| | - William Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fotis Nikolos
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith S Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Tucker JB, Bonema SC, García-Varela R, Denu RA, Hu Y, McGregor SM, Burkard ME, Weaver BA. Misaligned Chromosomes are a Major Source of Chromosomal Instability in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:54-65. [PMID: 36968230 PMCID: PMC10035514 DOI: 10.1158/2767-9764.crc-22-0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Chromosomal instability (CIN), the persistent reshuffling of chromosomes during mitosis, is a hallmark of human cancers that contributes to tumor heterogeneity and has been implicated in driving metastasis and altering responses to therapy. Though multiple mechanisms can produce CIN, lagging chromosomes generated from abnormal merotelic attachments are the major cause of CIN in a variety of cell lines, and are expected to predominate in cancer. Here, we quantify CIN in breast cancer using a tumor microarray, matched primary and metastatic samples, and patient-derived organoids from primary breast cancer. Surprisingly, misaligned chromosomes are more common than lagging chromosomes and represent a major source of CIN in primary and metastatic tumors. This feature of breast cancers is conserved in a majority of breast cancer cell lines. Importantly, though a portion of misaligned chromosomes align before anaphase onset, the fraction that remain represents the largest source of CIN in these cells. Metastatic breast cancers exhibit higher rates of CIN than matched primary cancers, primarily due to increases in misaligned chromosomes. Whether CIN causes immune activation or evasion is controversial. We find that misaligned chromosomes result in immune-activating micronuclei substantially less frequently than lagging and bridge chromosomes and that breast cancers with greater frequencies of lagging chromosomes and chromosome bridges recruit more stromal tumor-infiltrating lymphocytes. These data indicate misaligned chromosomes represent a major mechanism of CIN in breast cancer and provide support for differential immunostimulatory effects of specific types of CIN. Significance We surveyed the single-cell landscape of mitotic defects that generate CIN in primary and metastatic breast cancer and relevant models. Misaligned chromosomes predominate, and are less immunostimulatory than other chromosome segregation errors.
Collapse
Affiliation(s)
- John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Sarah C. Bonema
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Yang Hu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Mark E. Burkard
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Abstract
Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.
Collapse
|
7
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
8
|
Freitas MO, Gartner J, Rangel-Pozzo A, Mai S. Genomic Instability in Circulating Tumor Cells. Cancers (Basel) 2020; 12:cancers12103001. [PMID: 33081135 PMCID: PMC7602879 DOI: 10.3390/cancers12103001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we focus on recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability of CTCs and the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level. Abstract Circulating tumor cells (CTCs) can promote distant metastases and can be obtained through minimally invasive liquid biopsy for clinical assessment in cancer patients. Having both genomic heterogeneity and instability as common features, the genetic characterization of CTCs can serve as a powerful tool for a better understanding of the molecular changes occurring at tumor initiation and during tumor progression/metastasis. In this review, we will highlight recent advances in the detection and quantification of tumor cell heterogeneity and genomic instability in CTCs. We will focus on the contribution of chromosome instability studies to genetic heterogeneity in CTCs at the single-CTC level by discussing data from different cancer subtypes and their impact on diagnosis and precision medicine.
Collapse
Affiliation(s)
- Monique Oliveira Freitas
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Genetic Service, Institute of Paediatrics and Puericulture Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
- Clinical Medicine Postgraduate Programme, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-913, Brazil
| | - John Gartner
- Departments of Pathology and Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB R3C 2B7, Canada;
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-204-787-4125 (S.M.)
| |
Collapse
|
9
|
Separase-triggered apoptosis enforces minimal length of mitosis. Nature 2020; 580:542-547. [PMID: 32322059 DOI: 10.1038/s41586-020-2187-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Abstract
Prolonged mitosis often results in apoptosis1. Shortened mitosis causes tumorigenic aneuploidy, but it is unclear whether it also activates the apoptotic machinery2. Separase, a cysteine protease and trigger of all eukaryotic anaphases, has a caspase-like catalytic domain but has not previously been associated with cell death3,4. Here we show that human cells that enter mitosis with already active separase rapidly undergo death in mitosis owing to direct cleavage of anti-apoptotic MCL1 and BCL-XL by separase. Cleavage not only prevents MCL1 and BCL-XL from sequestering pro-apoptotic BAK, but also converts them into active promoters of death in mitosis. Our data strongly suggest that the deadliest cleavage fragment, the C-terminal half of MCL1, forms BAK/BAX-like pores in the mitochondrial outer membrane. MCL1 and BCL-XL are turned into separase substrates only upon phosphorylation by NEK2A. Early mitotic degradation of this kinase is therefore crucial for preventing apoptosis upon scheduled activation of separase in metaphase. Speeding up mitosis by abrogation of the spindle assembly checkpoint results in a temporal overlap of the enzymatic activities of NEK2A and separase and consequently in cell death. We propose that NEK2A and separase jointly check on spindle assembly checkpoint integrity and eliminate cells that are prone to chromosome missegregation owing to accelerated progression through early mitosis.
Collapse
|
10
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
11
|
Pagotto S, Veronese A, Soranno A, Balatti V, Ramassone A, Guanciali-Franchi PE, Palka G, Innocenti I, Autore F, Rassenti LZ, Kipps TJ, Mariani-Costantini R, Laurenti L, Croce CM, Visone R. HNRNPL Restrains miR-155 Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:cancers11040575. [PMID: 31018621 PMCID: PMC6520824 DOI: 10.3390/cancers11040575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022] Open
Abstract
Aneuploidy and overexpression of hsa-miR-155-5p (miR-155) characterize most solid and hematological malignancies. We recently demonstrated that miR-155 sustains aneuploidy at early stages of in vitro cellular transformation. During in vitro transformation of normal human fibroblast, upregulation of miR-155 downregulates spindle checkpoint proteins as the mitotic checkpoint serine/threonine kinase budding uninhibited by benzimidazoles 1 (BUB1), the centromere protein F (CENPF) and the zw10 kinetochore protein (ZW10), compromising the chromosome alignment at the metaphase plate and leading to aneuploidy in daughter cells. Here we show that the heterogeneous nuclear ribonucleoprotein L (HNRNPL) binds to the polymorphic marker D2S1888 at the 3′UTR of BUB1 gene, impairs the miR-155 targeting, and restores BUB1 expression in chronic lymphocytic leukemia. This mechanism occurs at advanced passages of cell transformation and allows the expansion of more favorable clones. Our findings have revealed, at least in part, the molecular mechanisms behind the chromosomal stabilization of cell lines and the concept that, to survive, tumor cells cannot continuously change their genetic heritage but need to stabilize the most suitable karyotype.
Collapse
Affiliation(s)
- Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alessandra Soranno
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Paolo E Guanciali-Franchi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Giandomenico Palka
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Idanna Innocenti
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Francesco Autore
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Laura Z Rassenti
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Thomas J Kipps
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Renato Mariani-Costantini
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Luca Laurenti
- Institute of Hematology, Catholic University of the Sacred Heart, 00168 Rome, Italy.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
- Chronic Lymphocytic Leukemia Research Consortium, San Diego, CA 92093, USA.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
12
|
Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol 2019; 29:865-873.e3. [PMID: 30773364 DOI: 10.1016/j.cub.2018.12.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
Collapse
|
13
|
Brown A, Geiger H. Chromosome integrity checkpoints in stem and progenitor cells: transitions upon differentiation, pathogenesis, and aging. Cell Mol Life Sci 2018; 75:3771-3779. [PMID: 30066086 PMCID: PMC6154040 DOI: 10.1007/s00018-018-2891-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023]
Abstract
Loss of chromosome integrity is a major contributor to cancer. Checkpoints within the cell division cycle that facilitate the accuracy and outcome of chromosome segregation are thus critical pathways for preserving chromosome integrity and preventing chromosomal instability. The spindle assembly checkpoint, the decatenation checkpoint and the post-mitotic tetraploidy checkpoint ensure the appropriate establishment of the spindle apparatus, block mitotic entry upon entanglement of chromosomes or prevent further progression of post-mitotic cells that display massive spindle defects. Most of our knowledge on these mechanisms originates from studies conducted in yeast, cancer cell lines and differentiated cells. Considering that in many instances cancer derives from transformed stem and progenitor cells, our knowledge on these checkpoints in these cells just started to emerge. With this review, we provide a general overview of the current knowledge of these checkpoints in embryonic as well as in adult stem and progenitor cells with a focus on the hematopoietic system and outline common mis-regulations of their function associated with cancer and leukemia. Most cancers are aging-associated diseases. We will thus also discuss changes in the function and outcome of these checkpoints upon aging of stem and progenitor cells.
Collapse
Affiliation(s)
- Andreas Brown
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Life Science Building N27, James Franck-Ring/Meyerhofstrasse, 89081, Ulm, Germany.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
14
|
Knouse KA, Lopez KE, Bachofner M, Amon A. Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture. Cell 2018; 175:200-211.e13. [PMID: 30146160 PMCID: PMC6151153 DOI: 10.1016/j.cell.2018.07.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.
Collapse
Affiliation(s)
- Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.
| | - Kristina E Lopez
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marc Bachofner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Marks DH, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep 2018; 19:1832-1845. [PMID: 28564602 DOI: 10.1016/j.celrep.2017.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mitotic checkpoint ensures proper segregation of chromosomes by delaying anaphase until all kinetochores are bound to microtubules. This inhibitory signal is composed of a complex containing Mad2, which inhibits anaphase progression. The complex can be disassembled by p31comet and TRIP13; however, TRIP13 knockdown has been shown to cause only a mild mitotic delay. Overexpression of checkpoint genes, as well as TRIP13, is correlated with chromosomal instability (CIN) in cancer, but the initial effects of Mad2 overexpression are prolonged mitosis and decreased proliferation. Here, we show that TRIP13 overexpression significantly reduced, and TRIP13 reduction significantly exacerbated, the mitotic delay associated with Mad2 overexpression, but not that induced by microtubule depolymerization. The combination of Mad2 overexpression and TRIP13 loss reduced the ability of checkpoint complexes to disassemble and significantly inhibited the proliferation of cells in culture and tumor xenografts. These results identify an unexpected dependency on TRIP13 in cells overexpressing Mad2.
Collapse
Affiliation(s)
- Daniel Henry Marks
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Rozario Thomas
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Christine Khoo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Benezra
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
16
|
Thangavelu PU, Lin CY, Vaidyanathan S, Nguyen THM, Dray E, Duijf PHG. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer. Oncotarget 2017; 8:62167-62182. [PMID: 28977935 PMCID: PMC5617495 DOI: 10.18632/oncotarget.19131] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 06/03/2017] [Indexed: 12/21/2022] Open
Abstract
During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1-deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.
Collapse
Affiliation(s)
- Pulari U Thangavelu
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Srividya Vaidyanathan
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Thu H M Nguyen
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Rickardson L, Kutvonen E, Orasniemi S, Högberg M, Kallio MJ, Rehnmark S. Evaluation of the antitumor activity of NOV202, a novel microtubule targeting and vascular disrupting agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1335-1351. [PMID: 28496304 PMCID: PMC5417661 DOI: 10.2147/dddt.s133189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Overall, ~65% of patients diagnosed with advanced ovarian cancer (OC) will relapse after primary surgery and adjuvant first-line platinum- and taxane-based chemotherapy. Significant improvements in the treatment of OC are expected from the development of novel compounds having combined cytotoxic and antiangiogenic properties that make them effective on refractory tumors. Methods Permeability of NOV202 was determined with Caco-2 monolayer assay. The compound’s pharmacokinetic profile and plasma:brain distribution were assessed in male C57Bl/6 mice. The compound’s impacts on tubulin, microtubules and cell cycle were investigated by using in vitro tubulin polymerization assay, cell-based immunofluorescence and live cell microscopy. The IC50 concentrations of NOV202 were assessed in a panel of eight cancer cell lines. Impact of the compound on vascular tube formation was determined using the StemKit and Chick chorioallantoic membrane assays. The in vivo efficacy of the compound was analyzed with an OC xenograft mouse model. Results NOV202 was found to suppress cancer cell proliferation at low nanomolar concentrations (IC50 2.3–12.0 nM) and showed equal efficacy between OC cell line A2780 (IC50 2.4 nM) and its multidrug-resistant subline A2780/Adr (IC50 2.3 nM). Mechanistically, NOV202 targeted tubulin polymerization in vitro in a dose-dependent manner and in cells induced an M phase arrest. In vivo, NOV202 caused a dose-dependent reduction of tumor mass in an A2780 xenograft model, which at the highest dose (40 mg/kg) was comparable to the effect of paclitaxel (24 mg/kg). Interestingly, NOV202 exhibited vascular disrupting properties that were similar to the effects of Combretastatin A4. Conclusion NOV202 is a novel tubulin and vascular targeting agent that shows strong anticancer efficacy in cells and OC xenograft models. The finding that the compound induced significantly more cell death in Pgp/MDR1 overexpressing OC cells compared to vincristine and paclitaxel warrants further development of the compound as a new therapy for OC patients with treatment refractory tumors and/or relapsing disease.
Collapse
Affiliation(s)
| | - Emma Kutvonen
- Department of Physiology, Institute of Biomedicine, University of Turku
| | - Satu Orasniemi
- Department of Physiology, Institute of Biomedicine, University of Turku
| | | | - Marko J Kallio
- Department of Physiology, Institute of Biomedicine, University of Turku.,Centre for Biotechnology, University of Turku, Turku, Finland
| | | |
Collapse
|
18
|
Knouse KA, Davoli T, Elledge SJ, Amon A. Aneuploidy in Cancer: Seq-ing Answers to Old Questions. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-042616-072231] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristin A. Knouse
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115
| | - Teresa Davoli
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Angelika Amon
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
19
|
de Wolf B, Kops GJPL. Kinetochore Malfunction in Human Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:69-91. [DOI: 10.1007/978-3-319-57127-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Joglekar AP. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. BIOLOGY 2016; 5:biology5040044. [PMID: 27869759 PMCID: PMC5192424 DOI: 10.3390/biology5040044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022]
Abstract
The spindle assembly checkpoint (SAC) is a quality control mechanism that ensures accurate chromosome segregation during cell division. It consists of a mechanochemical signal transduction mechanism that senses the attachment of chromosomes to the spindle, and a signaling cascade that inhibits cell division if one or more chromosomes are not attached. Extensive investigations of both these component systems of the SAC have synthesized a comprehensive understanding of the underlying molecular mechanisms. This review recounts the milestone results that elucidated the SAC, compiles a simple model of the complex molecular machinery underlying the SAC, and highlights poorly understood facets of the biochemical design and cell biological operation of the SAC that will drive research forward in the near future.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
23
|
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:283-312. [PMID: 26907526 DOI: 10.1146/annurev-pathol-012615-044446] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage.
Collapse
Affiliation(s)
- June-Koo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea;
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul 06351, South Korea;
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115;
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
24
|
Lui C, Ashton C, Sharma M, Brocardo MG, Henderson BR. APC functions at the centrosome to stimulate microtubule growth. Int J Biochem Cell Biol 2015; 70:39-47. [PMID: 26556314 DOI: 10.1016/j.biocel.2015.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor γ-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to γ-tubulin through APC amino acids 1-453. While binding to γ-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth.
Collapse
Affiliation(s)
- Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Cahora Ashton
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Manisha Sharma
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mariana G Brocardo
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
25
|
Abstract
The majority of human cancer cells are highly aneuploid harboring chromosome numbers deviating from the modal number of 46. In cancer, aneuploidy is a consequence of an increased rate of whole chromosome missegregation during mitosis, a process known as chromosomal instability (CIN). In fact, CIN is a hallmark of human cancer and is thought to contribute to tumorigenesis, tumor progression, and the development of therapy resistance by providing a high genetic variability that might foster rapid adaptation processes. However, the molecular mechanisms that cause chromosome missegregation in cancer cells are still poorly understood. So far, several mechanisms underlying CIN have been proposed and some of them are indeed detectable in human cancer cells exhibiting CIN. Examples include, for instance, weakened spindle checkpoint signaling, supernumerary centrosomes, defects in chromatid cohesion, abnormal kinetochore-microtubule attachments and increased spindle microtubule dynamics. Here, the mechanisms leading to CIN in human cancer cells are summarized.
Collapse
Affiliation(s)
- Holger Bastians
- Goettingen Center for Molecular Biosciences (GZMB), University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany.
| |
Collapse
|
26
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
27
|
Varetti G, Pellman D, Gordon DJ. Aurea mediocritas: the importance of a balanced genome. Cold Spring Harb Perspect Biol 2014; 6:a015842. [PMID: 25237130 DOI: 10.1101/cshperspect.a015842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts. Finally, we also discuss how aneuploidy might be a target for anticancer therapies.
Collapse
Affiliation(s)
- Gianluca Varetti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789
| | - David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Janbandhu VC, Moik D, Fässler R. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle 2013; 13:462-70. [PMID: 24280829 DOI: 10.4161/cc.27271] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The spatiotemporal manipulations of gene expression by the Cre recombinase (Cre) of bacteriophage P1 has become an essential asset to understanding mammalian genetics. Accumulating evidence suggests that Cre activity can, in addition to excising targeted loxP sites, induce cytotoxic effects, including abnormal cell cycle progression, genomic instability, and apoptosis, which can accelerate cancer progression. It is speculated that these defects are caused by Cre-induced DNA damage at off-target sites. Here we report the formation of tetraploid keratinocytes in the epidermis of keratin 5 and/or keratin 14 promoter-driven Cre (KRT5- and KRT14-Cre) expressing mouse skin. Biochemical analyses and flow cytometry demonstrated that Cre expression also induces DNA damage, genomic instability, and tetraploidy in HCT116 cells, and live-cell imaging revealed an extension of the G 2 cell cycle phase followed by defective or skipping of mitosis as cause for the tetraploidy. Since tetraploidy eventually leads to aneuploidy, a hallmark of cancer, our findings highlight the importance of distinguishing non-specific cytopathic effects from specific Cre/loxP-driven genetic manipulations when using Cre-mediated gene deletions.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Daniel Moik
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| | - Reinhard Fässler
- Max-Planck-Institute of Biochemistry; Department of Molecular Medicine; Martinsried, Germany
| |
Collapse
|
29
|
Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front Oncol 2013; 3:164. [PMID: 23825799 PMCID: PMC3695391 DOI: 10.3389/fonc.2013.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022] Open
Abstract
Most solid tumors are characterized by abnormal chromosome numbers (aneuploidy) and karyotypic profiling has shown that the majority of these tumors are heterogeneous and chromosomally unstable. Chromosomal instability (CIN) is defined as persistent mis-segregation of whole chromosomes and is caused by defects during mitosis. Large-scale genome sequencing has failed to reveal frequent mutations of genes encoding proteins involved in mitosis. On the contrary, sequencing has revealed that most mutated genes in cancer fall into a limited number of core oncogenic signaling pathways that regulate the cell cycle, cell growth, and apoptosis. This led to the notion that the induction of oncogenic signaling is a separate event from the loss of mitotic fidelity, but a growing body of evidence suggests that oncogenic signaling can deregulate cell cycle progression, growth, and differentiation as well as cause CIN. These new results indicate that the induction of CIN can no longer be considered separately from the cancer-associated driver mutations. Here we review the primary causes of CIN in mitosis and discuss how the oncogenic activation of key signal transduction pathways contributes to the induction of CIN.
Collapse
Affiliation(s)
- Bernardo Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth , Hanover, NH , USA ; The Norris-Cotton Cancer Center, Geisel School of Medicine at Dartmouth , Hanover, NH , USA
| | | |
Collapse
|
30
|
Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol 2013; 3:148. [PMID: 23760367 PMCID: PMC3675379 DOI: 10.3389/fonc.2013.00148] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
Collapse
|
31
|
Janssen A, Beerling E, Medema R, van Rheenen J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS One 2013; 8:e64029. [PMID: 23691140 PMCID: PMC3654962 DOI: 10.1371/journal.pone.0064029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Taxanes, such as docetaxel, are microtubule-targeting chemotherapeutics that have been successfully used in the treatment of cancer. Based on data obtained from cell cultures, it is believed that taxanes induce tumor cell death by specifically perturbing mitotic progression. Here, we report on data that suggest that this generally accepted view may be too simplified. We describe a high-resolution intravital imaging method to simultaneously visualize mitotic progression and the onset of apoptosis. To directly compare in vitro and in vivo data, we have visualized the effect of docetaxel on mitotic progression in mouse and human colorectal tumor cell lines both in vitro and in isogenic tumors in mice. We show that docetaxel-induced apoptosis in vitro occurs via mitotic cell death, whereas the vast majority of tumor cells in their natural environment die independent of mitotic defects. This demonstrates that docetaxel exerts its anti-tumor effects in vivo through means other than mitotic perturbation. The differences between in vitro and in vivo mechanisms of action of chemotherapeutics may explain the limited response to many of the anti-mitotic agents that are currently validated in clinical trials. Our data illustrate the requirement and power of our intravital imaging technique to study and validate the mode of action of chemotherapeutic agents in vivo, which will be essential to understand and improve their clinical efficacy.
Collapse
Affiliation(s)
- Aniek Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evelyne Beerling
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| | - Jacco van Rheenen
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| |
Collapse
|
32
|
Kaneta Y, Ullrich A. NEK9 depletion induces catastrophic mitosis by impairment of mitotic checkpoint control and spindle dynamics. Biochem Biophys Res Commun 2013; 442:139-46. [PMID: 23665325 DOI: 10.1016/j.bbrc.2013.04.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023]
Abstract
NEK9 is known to play a role in spindle assembly and in the control of centrosome separation, but the consequences of NEK9 targeting in cancer cells remain to be elucidated. In this study, we used siRNA to investigate the consequences of targeting NEK9 in glioblastoma and kidney cancer cells as a first step in assessing its potential as an anti-cancer therapeutic target. Live cell imaging revealed that NEK9 depletion of U1242 glioblastoma and Caki2 kidney carcinoma cells resulted in failure of cytokinesis. Interestingly, NEK9-depleted Caki2 cells overrode mitosis under incorrect chromosome alignment and were converted to a micronucleated phenotype, leading to cell death. Whereas, the RPE1 normal epithelium cell line was refractory to abnormal mitosis upon NEK9 knockdown. Nocodazole-induced mitotic arrest was compromised after NEK9 depletion, indicating that NEK9 has an important role in mitotic checkpoint system. Taken together, we propose that NEK9 inhibition represents a novel anti-cancer strategy by induction of mitotic catastrophe via impairment of spindle dynamics, cytokinesis and mitotic checkpoint control.
Collapse
Affiliation(s)
- Yasuyuki Kaneta
- Max-Planck-Institute of Biochemistry, Department of Molecular Biology, Martinsried, Germany; Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo, Japan.
| | | |
Collapse
|
33
|
Ahmadi Ghezeldasht S, Shirdel A, Assarehzadegan MA, Hassannia T, Rahimi H, Miri R, Rezaee SAR. Human T Lymphotropic Virus Type I (HTLV-I) Oncogenesis: Molecular Aspects of Virus and Host Interactions in Pathogenesis of Adult T cell Leukemia/Lymphoma (ATL). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:179-95. [PMID: 24470860 PMCID: PMC3881257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022]
Abstract
The study of tumor viruses paves the way for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host tumor affecting immune-compromised patients. The processes ranging from viral infection to progressing malignancy are slow and usually insufficient for establishment of transformed cells that develop cancer in only a minority of infected subjects. Therefore, viral infection is usually not the only cause of cancer, and further environmental and host factors, may be implicated. HTLV-I, in particular, is considered as an oncovirus cause of lymphoproliferative disease such as adult T cell leukemia/lymphoma (ATL) and disturbs the immune responses which results in HTLV-I associated meylopathy/tropical spastic parapresis (HAM/TSP). HTLV-I infection causes ATL in a small proportion of infected subjects (2-5%) following a prolonged incubation period (15-30 years) despite a strong adaptive immune response against the virus. Overall, these conditions offer a prospect to study the molecular basis of tumorgenicity in mammalian cells. In this review, the oncogencity of HTLV-I is being considered as an oncovirus in context of ATL.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Abbas Shirdel
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Ali Assarehzadegan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Hassannia
- Internal Medicine Dept, Medical School, Arak University of Medical Sciences, Arak- Iran
| | - Hosian Rahimi
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Rahele Miri
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - S. A. Rahim Rezaee
- Immunology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Rezaee S. AR, Immunology Research Centre, Immunology Dept. Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Tel:+98-511 8436626; E-mail:
| |
Collapse
|
34
|
Janssen A, Medema RH. Genetic instability: tipping the balance. Oncogene 2012; 32:4459-70. [PMID: 23246960 DOI: 10.1038/onc.2012.576] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023]
Abstract
Tumor cells typically contain a genome that is highly divergent from the genome of normal, non-transformed cells. This genetic divergence is caused by a number of distinct changes that the tumor cell acquires during its transformation from a normal cell into a tumorigenic counterpart. Changes to the genome include mutations, deletions, insertions, and also gross chromosomal aberrations, such as chromosome translocations and whole chromosome gains or losses. This genetic disorder of the tumor cell has complicated the identification of crucial driver mutations that cause cancer. Moreover, the large genetic divergence between different tumors causes them to behave very differently, and makes it difficult to predict response to therapy. In addition, tumor cells are genetically unstable and frequently acquire new mutations and/or gross chromosomal aberrations as they divide. This is beneficial for the overall capacity of a tumor to adapt to changes in its environment, but newly acquired genetic alterations can also compromise the genetic dominance of the tumor cell and thus affect tumor cell viability. Here, we review the mechanisms that can cause gross chromosomal aberrations, and discuss how these affect tumor cell viability.
Collapse
Affiliation(s)
- A Janssen
- 1] Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands [2] Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
35
|
Herz C, Schlürmann F, Batarello D, Fichter CD, Schöpflin A, Münch C, Hauschke D, Werner M, Lassmann S. Occurrence of Aurora A positive multipolar mitoses in distinct molecular classes of colorectal carcinomas and effect of Aurora A inhibition. Mol Carcinog 2012; 51:696-710. [PMID: 21739483 DOI: 10.1002/mc.20823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 05/24/2011] [Accepted: 06/08/2011] [Indexed: 02/06/2023]
Abstract
Aurora A "over-"expression may induce supernumerary centrosomes, respective multipolar mitoses, and aneuploidy. Here, we examined Aurora A positive multipolar mitoses in aneuploid, microsatellite-stable (MSS, "CIN-type") versus near-diploid, microsatellite-instable (MSI, "MIN-type") colorectal carcinomas (CRC) and CRC cell lines as well as the effect of Aurora A inhibition in CRC cell lines. In situ, three-dimensional immunofluorescence (3D-IF) revealed Aurora A positive multipolar mitoses in both CIN- (n = 8) and MIN- (n = 10) type primary CRCs with similar frequencies (CIN: 27 ± 14%; MIN: 34 ± 14%, P = 0.224). In vitro, Aurora A positive multipolar mitoses were detected in asynchronized or thymidine synchronized CIN-type (HT29, CaCo-2), but not MIN-type (HCT116, DLD-1) CRC cells. Nocodazole treatment arrested mitotic cells with multiple centrosomal Aurora A signals in CIN- and MIN-type CRC cells, albeit to a lower extent in CaCo-2 cells. This was associated with concomitant activation of Aurora A (T288 phosphorylation) and Polo-like kinase 1 (PLK-1, T210 phosphorylation). Aurora A inhibition by siRNA resulted in increased apoptosis (>50%) in all cell lines, but did not abolish PLK-1 expression. Double 3D-IF revealed that Aurora A siRNA treated, still viable CIN-type (HT29, CaCo-2) CRC cells were Aurora A negative and mostly in prophase/(pro)metaphase with maintained phosphorylated PLK-1 T210 expression. Aurora A positive multipolar mitoses occur in both aneuploid, CIN- and near-diploid MIN-type CRCs. This appears to be largely independent of Aurora A expression alone. Although Aurora A inhibition causes apoptosis in both CIN- and MIN-type CRC cells, remaining PLK-1 activation by other factors may affect therapeutic Aurora inhibition.
Collapse
Affiliation(s)
- Corinna Herz
- Institute of Pathology, University Medical Center, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc Natl Acad Sci U S A 2012; 109:E2205-14. [PMID: 22778409 DOI: 10.1073/pnas.1201911109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitotic checkpoint is the major cell cycle checkpoint acting during mitosis to prevent aneuploidy and chromosomal instability, which are hallmarks of tumor cells. Reduced expression of the mitotic checkpoint component Mad1 causes aneuploidy and promotes tumors in mice [Iwanaga Y, et al. (2007) Cancer Res 67:160-166]. However, the prevalence and consequences of Mad1 overexpression are currently unclear. Here we show that Mad1 is frequently overexpressed in human cancers and that Mad1 up-regulation is a marker of poor prognosis. Overexpression of Mad1 causes aneuploidy and chromosomal instability through weakening mitotic checkpoint signaling caused by mislocalization of the Mad1 binding partner Mad2. Cells overexpressing Mad1 are resistant to microtubule poisons, including currently used chemotherapeutic agents. These results suggest that levels of Mad1 must be tightly regulated to prevent aneuploidy and transformation and that Mad1 up-regulation may promote tumors and cause resistance to current therapies.
Collapse
|
37
|
Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 2012; 13:501-14. [PMID: 22565320 DOI: 10.1038/embor.2012.55] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Most solid human tumours are aneuploid, that is, they contain an abnormal number of chromosomes. Paradoxically, however, aneuploidy has been reported to induce a stress response that suppresses cellular proliferation in vitro. Here, we review the progress in our understanding of the causes and effects of aneuploidy in cancer and discuss how, in specific contexts, aneuploidy can provide a growth advantage and facilitate cellular transformation. We also explore the emerging possibilities for targeting the cause or consequences of aneuploidy therapeutically.
Collapse
|
38
|
Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 2012; 22:638-44. [PMID: 22405866 DOI: 10.1016/j.cub.2012.02.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/14/2012] [Accepted: 02/14/2012] [Indexed: 11/24/2022]
Abstract
Faithful chromosome segregation is required for cell and organism viability and relies on both the mitotic checkpoint and the machinery that corrects kinetochore-microtubule (k-MT) attachment errors. Most solid tumors have aneuploid karyotypes and many missegregate chromosomes at high rates in a phenomenon called chromosomal instability (CIN). Mad2 is essential for mitotic checkpoint function and is frequently overexpressed in human tumors that are CIN. For unknown reasons, cells overexpressing Mad2 display high rates of lagging chromosomes. Here, we explore this phenomenon and show that k-MT attachments are hyperstabilized by Mad2 overexpression and that this undermines the efficiency of correction of k-MT attachment errors. Mad2 affects k-MT attachment stability independently of the mitotic checkpoint because k-MT attachments are unaltered upon Mad1 depletion and Mad2 overexpression hyperstabilizes k-MT attachments in Mad1-deficient cells. Mad2 mediates these effects with Cdc20 by altering the centromeric localization and activity of Aurora B kinase, a known regulator of k-MT attachment stability. These data reveal a new function for Mad2 to stabilize k-MT attachments independent of the checkpoint and explain why Mad2 overexpression increases chromosome missegregation to cause chromosomal instability in human tumors.
Collapse
|
39
|
Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13:189-203. [PMID: 22269907 DOI: 10.1038/nrg3123] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic instability, which includes both numerical and structural chromosomal abnormalities, is a hallmark of cancer. Whereas the structural chromosome rearrangements have received substantial attention, the role of whole-chromosome aneuploidy in cancer is much less well-understood. Here we review recent progress in understanding the roles of whole-chromosome aneuploidy in cancer, including the mechanistic causes of aneuploidy, the cellular responses to chromosome gains or losses and how cells might adapt to tolerate these usually detrimental alterations. We also explore the role of aneuploidy in cellular transformation and discuss the possibility of developing aneuploidy-specific therapies.
Collapse
Affiliation(s)
- David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
40
|
Yan H, Zhu S, Song C, Liu N, Kang J. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells. Cell Signal 2011; 24:961-8. [PMID: 22234345 DOI: 10.1016/j.cellsig.2011.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/01/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection.
Collapse
Affiliation(s)
- Hualong Yan
- Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
41
|
Lui C, Mills K, Brocardo MG, Sharma M, Henderson BR. APC as a mobile scaffold: regulation and function at the nucleus, centrosomes, and mitochondria. IUBMB Life 2011; 64:209-14. [PMID: 22162224 DOI: 10.1002/iub.599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Genetic mutations of adenomatous polyposis coli (APC) predispose to high risk of human colon cancer. APC is a large tumor suppressor protein and truncating mutations disrupt its normal roles in regulating cell migration, DNA replication/repair, mitosis, apoptosis, and turnover of oncogenic β-catenin. APC is targeted to multiple subcellular sites, and here we discuss recent evidence implicating novel protein interactions and functions of APC in the nucleus and at centrosomes and mitochondria. The ability of APC to shuttle between these and other cell locations is hypothesized to be integral to its cellular function.
Collapse
Affiliation(s)
- Christina Lui
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales, Australia
| | | | | | | | | |
Collapse
|
42
|
Silva P, Barbosa J, Nascimento AV, Faria J, Reis R, Bousbaa H. Monitoring the fidelity of mitotic chromosome segregation by the spindle assembly checkpoint. Cell Prolif 2011; 44:391-400. [PMID: 21951282 DOI: 10.1111/j.1365-2184.2011.00767.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurate chromosome segregation relies on activity of the spindle assembly checkpoint, a surveillance mechanism that prevents premature anaphase onset until all chromosomes are properly attached to the mitotic spindle apparatus and aligned at the metaphase plate. Defects in this mechanism contribute to chromosome instability and aneuploidy, a hallmark of malignant cells. Here, we review the molecular mechanisms of activation and silencing of the spindle assembly checkpoint and its relationship to tumourigenesis.
Collapse
Affiliation(s)
- P Silva
- Health Sciences Research Center, Superior Institute of Health Sciences - North, CESPU, Gandra PRD, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Ricke RM, van Deursen JM. Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle 2011; 10:3645-51. [PMID: 22033440 DOI: 10.4161/cc.10.21.18156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High expression of the mitotic kinase Bub1 is associated with a variety of human cancers and correlates with poor clinical prognosis, but whether Bub1 alone can drive tumorigenesis was unknown. We provided conclusive evidence that Bub1 has oncogenic properties by generating transgenic mice that overexpress Bub1 in a wide variety of tissues, resulting in aneuploidization. Consistently, Bub1 transgenic mice developed various kinds of spontaneous tumors as well as accelerated Myc-induced lymphomagenesis. While the mitotic checkpoint was robust in Bub1 overexpressing cells, misaligned and lagging chromosomes were observed. These defects originated from increased Aurora B activity and could be suppressed by inhibition of Aurora B. Taken together, this indicates that Bub1 has oncogenic properties and imply that aneuploidization and tumorigenesis result from Aurora B-dependent missegregation. Here, we focus on the complex relationship between Bub1 and Aurora B and discuss the broader implications of Bub1-dependent Aurora B activation in mediating error correction.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
44
|
Schvartzman JM, Duijf PHG, Sotillo R, Coker C, Benezra R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 2011; 19:701-14. [PMID: 21665145 PMCID: PMC3120099 DOI: 10.1016/j.ccr.2011.04.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/10/2011] [Accepted: 04/25/2011] [Indexed: 11/29/2022]
Abstract
Multiple mechanisms have been proposed to explain how Rb and p53 tumor suppressor loss lead to chromosome instability (CIN). It was recently shown that Rb pathway inhibition causes overexpression of the mitotic checkpoint gene Mad2, but whether Mad2 overexpression is required to generate CIN in this context is unknown. Here, we show that CIN in cultured cells lacking Rb family proteins requires Mad2 upregulation and that this upregulation is also necessary for CIN and tumor progression in vivo. Mad2 is also repressed by p53 and its upregulation is required for CIN in a p53 mutant tumor model. These results demonstrate that Mad2 overexpression is a critical mediator of the CIN observed upon inactivation of two major tumor suppressor pathways.
Collapse
|
45
|
Birk M, Bürkle A, Pekari K, Maier T, Schmidt M. Cell cycle-dependent cytotoxicity and mitotic spindle checkpoint dependency of investigational and approved antimitotic agents. Int J Cancer 2011; 130:798-807. [PMID: 21387302 DOI: 10.1002/ijc.26036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/14/2011] [Indexed: 11/10/2022]
Abstract
The mitotic spindle checkpoint (SPC) is a highly regulated mechanism in eukaryotic cells that ensures the even distribution of the duplicated genome between daughter cells. Malfunction of the SPC or deregulated expression of SPC regulatory proteins is frequently associated with a poor response to chemotherapeutic agents. We investigated various approved and investigational mitosis-specific agents, including spindle poisons, an Eg5 kinesin inhibitor, inhibitors of polo-like kinase 1 (Plk1) or Aurora-B kinase, a benzamide class HDAC inhibitor and compounds identified in a chemical genetics screen for their cell cycle-dependent cytotoxicities and for their activities toward SPC deficient (HT29, Caco-2, T47D) and SPC proficient human cell lines (A2780, HCT116, SW480). Using the RKOp27 cell system that allows inducible cell cycle arrest by the tunable expression of the cdk inhibitor p27Kip1, we found an exquisite proliferation-dependent cytotoxicity for all compounds except the aurora kinase inhibitor VX-680. Cytotoxicity of the antimitotic compounds was in general higher on SPC proficient than on deficient cells. We found two exceptions, a benzamide HDAC inhibitor which was effective on SPC proficient and deficient cells and an investigational compound, BYK72767, with a yet unknown mode of action. The degree of increased mitotic index was no predictor of cytotoxicity of the compounds nor was the phosphorylation of BubR1. However, SPC deficient cell lines were able to tolerate mitotic arrest for far longer times than SPC proficient cells. We conclude that targeting of SPC deficient cancers with novel antimitotic principles remains a challenge but certain drug classes may be equally efficacious regardless of SPC status.
Collapse
Affiliation(s)
- Martina Birk
- Nycomed GmbH, Discovery to Development Research, Byk-Gulden-Str 2, D-78467 Konstanz, Germany
| | | | | | | | | |
Collapse
|
46
|
Correction of microtubule-kinetochore attachment errors: mechanisms and role in tumor suppression. Semin Cell Dev Biol 2011; 22:559-65. [PMID: 21439393 DOI: 10.1016/j.semcdb.2011.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 03/16/2011] [Indexed: 11/23/2022]
Abstract
During mitosis, cells segregate duplicated chromosomes with high fidelity in order to maintain genome stability. Proper attachment of sister kinetochores to spindle microtubules is critical for accurate chromosome segregation and is driven by complex mechanisms that promote the capture of unattached kinetochores and the resolution of erroneously attached kinetochores. Defects in these surveillance systems promote chromosome segregation and aneuploidy and can contribute to neoplastic transformation. Understanding, how, at the molecular level, accurate chromosome segregation is achieved may be crucial for our understanding of how cancer cells develop genome instability.
Collapse
|
47
|
Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans 2011; 38:1704-8. [PMID: 21118151 DOI: 10.1042/bst0381704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CHK2 (checkpoint kinase 2) and BRCA1 (breast cancer early-onset 1) are tumour-suppressor genes that have been implicated previously in the DNA damage response. Recently, we have identified CHK2 and BRCA1 as genes required for the maintenance of chromosomal stability and have shown that a Chk2-mediated phosphorylation of Brca1 is required for the proper and timely assembly of mitotic spindles. Loss of CHK2, BRCA1 or inhibition of its Chk2-mediated phosphorylation inevitably results in the transient formation of abnormal spindles that facilitate the establishment of faulty microtubule-kinetochore attachments associated with the generation of lagging chromosomes. Importantly, both CHK2 and BRCA1 are lost at very high frequency in aneuploid lung adenocarcinomas that are typically induced in knockout mice exhibiting chromosomal instability. Thus these results suggest novel roles for Chk2 and Brca1 in mitosis that might contribute to their tumour-suppressor functions.
Collapse
|
48
|
Abstract
INTRODUCTION Most cancers are characterized by some degree of aneuploidy, although its relevance for tumor initiation or progression and the nature of the initial trigger are still not well understood. It was Theodor Boveri who first suggested a link between aneuploidy and cancer at the beginning of the last century, but it is only recently that the molecular mechanisms involved have started to be uncovered. AREAS COVERED The molecular mechanisms that are at the origin of aneuploidy and their cellular consequences. Based on these new findings molecular targets have emerged which could lead to a specific treatment of at least some types of aneuploid tumors. EXPERT OPINION Therapeutic intervention specifically for aneuploid cells is a very promising approach, however, although new promising targets have been spotted they still need to be tested for proof of concept. Targeting the spindle checkpoint could be an interesting approach for cancer therapy, however, as for other mitotic targets, the open question of the therapeutic window and sensitivity of normal hemopoietic cells has to be considered carefully. Future challenges will not only include identifying and validating druggable targets related to the relevant pathways, but also finding predictive biomarkers to define the responding patient population(s).
Collapse
|
49
|
Merotelic kinetochore attachment: causes and effects. Trends Cell Biol 2011; 21:374-81. [PMID: 21306900 PMCID: PMC3117139 DOI: 10.1016/j.tcb.2011.01.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/13/2010] [Accepted: 01/07/2011] [Indexed: 01/06/2023]
Abstract
Accurate chromosome segregation depends on the proper attachment of sister kinetochores to microtubules emanating from opposite spindle poles. Merotelic kinetochore orientation is an error in which a single kinetochore is attached to microtubules emanating from both spindle poles. Despite correction mechanisms, merotelically attached kinetochores can persist until anaphase, causing chromatids to lag on the mitotic spindle and hindering their timely segregation. Recent studies showing that merotelic kinetochore attachment represents a major mechanism of aneuploidy in mitotic cells and is the primary mechanism of chromosomal instability in cancer cells have underlined the importance of studying merotely. Here, we highlight recent progress in our understanding of how cells prevent and correct merotelic kinetochore attachments.
Collapse
|
50
|
Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P, Perrera C, Depaolini SR, Rusconi L, Cucchi U, Avanzi N, Bertrand JA, Bossi RT, Pesenti E, Galvani A, Isacchi A, Colotta F, Donati D, Moll J. Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res 2011; 70:10255-64. [PMID: 21159646 DOI: 10.1158/0008-5472.can-10-2101] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MPS1 kinase is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. It has been found aberrantly overexpressed in a wide range of human tumors and is necessary for tumoral cell proliferation. Here we report the identification and characterization of NMS-P715, a selective and orally bioavailable MPS1 small-molecule inhibitor, which selectively reduces cancer cell proliferation, leaving normal cells almost unaffected. NMS-P715 accelerates mitosis and affects kinetochore components localization causing massive aneuploidy and cell death in a variety of tumoral cell lines and inhibits tumor growth in preclinical cancer models. Inhibiting the SAC could represent a promising new approach to selectively target cancer cells.
Collapse
Affiliation(s)
- Riccardo Colombo
- Department of Cell Biology-Oncology, Nerviano Medical Sciences, Viale Pasteur 10, Nerviano 20014, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|