1
|
Ononye O, Surendran S, Battapadi T, VanderVere-Carozza P, Howald OK, Kantartzis-Petrides A, Jordan MR, Ainembabazi D, Wold MS, Turchi JJ, Balakrishnan L. Biochemical Impact of p300-Mediated Acetylation of Replication Protein A: Implications for DNA Metabolic Pathway Choice. J Biol Chem 2025:110250. [PMID: 40389081 DOI: 10.1016/j.jbc.2025.110250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
Replication Protein A (RPA), a single-stranded DNA (ssDNA) binding protein, is vital for various aspects of genome maintenance such as replication, recombination, repair and cell cycle checkpoint activation. Binding of RPA to ssDNA protects it from degradation by cellular nucleases, prevents secondary structure formation and suppresses illegitimate recombination. In our current study, we identified the acetyltransferase p300 to be capable of acetylating the 70kDa subunit of RPA in vitro and within cells. The acetylation status of RPA changes throughout the cell cycle, increasing during the S and G2/M phases, and after UV-induced damage. Furthermore, we were able to specifically identify RPA directly associated with the replication fork during the S phase and UV damage to be acetylated. Based on these observations, we evaluated the impact of lysine acetylation on the biochemical properties of RPA. Investigation of binding properties of RPA revealed that acetylation of RPA increased its binding affinity to ssDNA compared to unmodified RPA. The improvement in binding efficiency was a function of DNA length with the greatest increases observed on shorter length ssDNA oligomers. Enzymatic assays further revealed that upon acetylation RPA governs the switch between the short and long flap pathway for Okazaki fragment processing. Our findings demonstrate that p300-dependent, site-specific acetylation enhances RPA's DNA binding properties, potentially regulating its function during various DNA transactions.
Collapse
Affiliation(s)
- Onyekachi Ononye
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | - Sneha Surendran
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | - Tripthi Battapadi
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | | | - Olivia K Howald
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202
| | | | - Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Diana Ainembabazi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Marc S Wold
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Indianapolis, Indianapolis, IN, 46202,.
| |
Collapse
|
2
|
Lin H, Feng Y, Liu H, Zhang J, Zhang X, Ying X, Shi Y, Tan H, Tu W. Whole Transcriptome-Based ceRNA Regulatory Network Analysis of Radiation-Induced Esophageal Epithelial Cell Injury. Biologics 2025; 19:231-249. [PMID: 40296868 PMCID: PMC12034488 DOI: 10.2147/btt.s496064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Introduction Esophageal epithelial cells are essential for esophageal homeostasis and defense against harmful stimuli, but the mechanisms of radiation-induced injury in these cells are poorly understood. The competitive endogenous RNA (ceRNA) network, involved in various physiological processes and diseases, may also play a role in radiation-induced injury, although its mechanism remains unclear. This study aimed to investigate the effects of ionizing radiation on human esophageal epithelial cells and explore the role of the ceRNA network in this injury. Methods Cellular phenotype experiments assessed the effects of ionizing radiation on human esophageal epithelial cells. Whole transcriptome sequencing (lncRNA, circRNA, miRNA, and mRNA) was performed on cells exposed to 0, 2, and 4 Gy radiation. Differentially expressed RNAs (dd-DERs) were identified through differential expression analysis and dose-dependent screening. A ceRNA network was constructed using co-expression analysis and binding site prediction. Real-time quantitative PCR validated the expression levels of selected dd-DERs, and gene set enrichment analysis explored affected pathways. Results We identified 41 lncRNAs, 18 miRNAs, and 192 mRNAs as dose-dependent differentially expressed RNAs. A ceRNA network comprising 10 lncRNAs, 5 miRNAs, and 55 mRNAs was established. Real-time PCR confirmed the expression levels of 8 dd-DERs within the network. Gene set enrichment analysis showed that radiation disrupted channel activity, cell replication, repair, and immune response. Functional enrichment analysis revealed modulation of metabolic pathways, particularly involving UGT1A family members. Discussion This study established a ceRNA network related to radiation-induced esophageal epithelial cell injury, advancing our understanding of its pathophysiology. The ceRNA network may mediate injury through metabolic pathway modulation. Future work should focus on elucidating specific ceRNA interactions and exploring therapeutic potential for mitigating radiation-induced esophageal injury.
Collapse
Affiliation(s)
- Hongyu Lin
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yahui Feng
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, People’s Republic of China
| | - Hangfeng Liu
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Jinkang Zhang
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Xiaolin Zhang
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Xue Ying
- Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, People’s Republic of China
| | - Yuhong Shi
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
| | - Hao Tan
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Wenling Tu
- The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, 610051, People’s Republic of China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, People’s Republic of China
| |
Collapse
|
3
|
Yang C, Du J, Qiu X, Jia C, Ding C, Wu Y, Gao C, Wang W, Wang X, Liu SB. ERCC3 serves as a prognostic biomarker for hepatocellular carcinoma and positively regulates cell proliferation and migration. Discov Oncol 2025; 16:419. [PMID: 40155569 PMCID: PMC11953519 DOI: 10.1007/s12672-025-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND ERCC3, a crucial component of the nucleotide excision repair pathway, is implicated in the development and progression of various cancers and is a potential indicator of poor prognosis. However, the expression and function of ERCC3 in hepatocellular carcinoma (HCC) remain unclear. This study aimed to investigate the expression of ERCC3 in HCC tissues and its clinical significance, focusing on elucidating its potential mechanisms and therapeutic value in immunotherapy. METHODS The differential expression and genetic variation characteristics of ERCC3 across various cancers were evaluated using the TCGA database. The expression and prognostic value of ERCC3 in HCC were analyzed by integrating TCGA, GEO, and ICGC datasets. Independent prognostic value of ERCC3 expression levels in HCC was assessed using Cox regression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curves, and nomograms. Pathway association scores were determined using ssGSEA to reveal the biological functions of ERCC3 in HCC and its potential clinical efficacy in immunotherapy. Stable transient cell lines were established by infecting HepG2 cells with lentivirus overexpressing ERCC3. The effects of ERCC3 on HCC cell biological phenotypes were evaluated using RTCA, wound healing, and Transwell assays. Cell cycle distribution and apoptosis were detected by flow cytometry. Transcriptome sequencing was performed to explore the impact of ERCC3 overexpression on the expression of signaling pathway-related genes in HCC. RESULTS The study revealed that ERCC3 is aberrantly expressed in various tumors, with significantly higher mRNA and protein levels in HCC tissues compared to normal tissues. High ERCC3 expression was significantly correlated with poor survival outcomes in HCC patients. Multivariate Cox regression analysis revealed that ERCC3 expression level is an independent prognostic factor for overall survival (P = 0.014). Gene sets associated with the high ERCC3 group were significantly involved in multiple immune pathways and tumor progression-related pathways, and ERCC3 expression was significantly correlated with immune checkpoints in HCC. Overexpression of ERCC3 promoted the proliferation and migration of HCC cells and influenced cell cycle progression. Transcriptome sequencing analysis indicated that ERCC3 overexpression regulated the proliferation of HCC cells, participated in multiple pro-inflammatory pathways, induced the formation of an inflammatory tumor microenvironment, and promoted HCC progression. CONCLUSION This study is the first to reveal the association between high ERCC3 expression and poor prognosis in HCC and to elucidate its immunomodulatory role in HCC. Unlike previous studies, we found that ERCC3 promotes HCC progression by regulating the inflammatory microenvironment and immune checkpoints. These findings establish a novel theoretical foundation for the development of targeted immunotherapies for HCC and provide new insights into the molecular mechanisms underlying ERCC3's role in HCC.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Xiuqin Qiu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Changhong Jia
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Cunbao Ding
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Chaoxu Gao
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China.
| | - Xiaojun Wang
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, 215128, Jiangsu, China.
| | - Song-Bai Liu
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China.
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Guo Y, Li P, Zhang J, Hao S, Zhou X, Di C, Long F, Zhang H, Si J. Carbon ion irradiation conquers the radioresistance by inducing complex DNA damage and apoptosis in U251 human glioblastomas cells. Med Oncol 2025; 42:64. [PMID: 39903402 DOI: 10.1007/s12032-025-02616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, with radiotherapy frequently employed following surgical resection. However, conventional radiation therapies often yield suboptimal results. This study investigated the effects of X-ray and carbon ion irradiation on the glioblastoma cell line U251 to assess the distinctive advantages of carbon ion treatment and explore mechanisms for overcoming radiation resistance. The findings indicated that carbon ion irradiation more effectively inhibited colony formation and induced more severe apoptosis and cell cycle disorder in U251 cells. Immunofluorescence assays revealed larger and more abundant ϒ-H2AX and 53BP1 foci in the carbon ion irradiation group. Western blot analysis demonstrated that carbon ion-induced DNA damage repair involved a complex array of pathways, with the RAD51-mediated homologous recombination (HR) pathway being predominant, while the Rad23B-mediated nucleotide excision repair (NER) pathway and XRCC1-mediated base excision repair (BER) were more relevant in response to X-ray irradiation. These results suggest that carbon ion irradiation may overcome radioresistance by inducing more complex DNA damage and apoptosis, thus providing insights for targeting new strategies in combining gene therapy with radiotherapy.
Collapse
Affiliation(s)
- Yulu Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Hao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhou
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
| | - Feng Long
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Liu Y, Han T, Guo D, Chen D, Li Y. Exploring potential treatment opportunities in a head and neck tumor patient with AdCC: A novel germline ERCC2 mutation case report. Medicine (Baltimore) 2025; 104:e41233. [PMID: 40184085 PMCID: PMC11709156 DOI: 10.1097/md.0000000000041233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
RATIONALE Adenoid cystic carcinoma (AdCC) is an invasive head and neck malignancy characterized by unpredictable growth, extensive perineural invasion, a high rates of metastasis, and poor survival rates. Genetic alterations, including MYB-NFIB and MYBL1-NFIB fusions, and mutations within the Notch signaling and DNA damage repair pathways, have been identified. PATIENT CONCERNS A 58-year-old female presented with a space-occupying lesion of the anterior cranial fossa floor during a physical examination and sought further consultation in July 2022.In our case, a 58-year-old woman was incidentally found to have an anterior cranial fossa lesion during a routine physical examination, which was subsequently confirmed as AdCC following postoperative immunohistochemistry. DIAGNOSES Based on these imaging and histopathological findings, a diagnosis of AdCC was established. Integrating the genetic test results, the case was diagnosed as MYB or MYBL1 fusion-negative AdCC. This case report highlights a rare molecular signature of ERCC2 and BRCA2 inactivation in AdCC, in the absence of MYB or MYBL1 fusions. INTERVENTIONS The patient underwent postoperative radiotherapy (RT) to the primary site approximately 2.5 months postsurgery. The concurrent presence of germline ERCC2 and somatic BRCA2 mutations offers novel insights into potential treatment strategies for this rare malignancy. OUTCOMES To date, no recurrence has been observed during follow-up. LESSONS We found a novel germline ERCC2 mutation and somatic BRCA2 mutation in a patient with AdCC. Our findings expand the molecular landscape of rare MYB or MYBL1 fusion-negative AdCC patients and provide a potential therapeutic strategy for this rare head and neck tumor.
Collapse
Affiliation(s)
- Yuanhao Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tiantian Han
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Didi Guo
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Choi S, Shin M, Kim WY. Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants. J Ginseng Res 2025; 49:1-11. [PMID: 39872282 PMCID: PMC11764321 DOI: 10.1016/j.jgr.2024.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 01/30/2025] Open
Abstract
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations-both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.
Collapse
Affiliation(s)
- SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minwook Shin
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Yasuda T, Nakajima N, Ogi T, Yanaka T, Tanaka I, Gotoh T, Kagawa W, Sugasawa K, Tajima K. Heavy water inhibits DNA double-strand break repairs and disturbs cellular transcription, presumably via quantum-level mechanisms of kinetic isotope effects on hydrolytic enzyme reactions. PLoS One 2024; 19:e0309689. [PMID: 39361575 PMCID: PMC11449287 DOI: 10.1371/journal.pone.0309689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy water, containing the heavy hydrogen isotope, is toxic to cells, although the underlying mechanism remains incompletely understood. In addition, certain enzymatic proton transfer reactions exhibit kinetic isotope effects attributed to hydrogen isotopes and their temperature dependencies, indicative of quantum tunneling phenomena. However, the correlation between the biological effects of heavy water and the kinetic isotope effects mediated by hydrogen isotopes remains elusive. In this study, we elucidated the kinetic isotope effects arising from hydrogen isotopes of water and their temperature dependencies in vitro, focusing on deacetylation, DNA cleavage, and protein cleavage, which are crucial enzymatic reactions mediated by hydrolysis. Intriguingly, the intracellular isotope effects of heavy water, related to the in vitro kinetic isotope effects, significantly impeded multiple DNA double-strand break repair mechanisms crucial for cell survival. Additionally, heavy water exposure enhanced histone acetylation and associated transcriptional activation in cells, consistent with the in vitro kinetic isotope effects observed in histone deacetylation reactions. Moreover, as observed for the in vitro kinetic isotope effects, the cytotoxic effect on cell proliferation induced by heavy water exhibited temperature-dependency. These findings reveal the substantial impact of heavy water-induced isotope effects on cellular functions governed by hydrolytic enzymatic reactions, potentially mediated by quantum-level mechanisms underlying kinetic isotope effects.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nakako Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Yanaka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Izumi Tanaka
- Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaya Gotoh
- Department of Health Science, Daito Bunka University, Saitama, Japan
| | - Wataru Kagawa
- Department of Interdisciplinary Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Tokyo, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- Department of Hematology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
8
|
D'Souza A, Kim M, Chazin WJ, Schärer OD. Protein-protein interactions in the core nucleotide excision repair pathway. DNA Repair (Amst) 2024; 141:103728. [PMID: 39029374 PMCID: PMC11330345 DOI: 10.1016/j.dnarep.2024.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease xeroderma pigmentosum. In NER, DNA lesions are excised within an oligonucleotide of 25-30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.
Collapse
Affiliation(s)
- Areetha D'Souza
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, the Republic of Korea; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917, USA; Center for Structural Biology, Vandebilt University, Nashville, TN 37232-7917, USA
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, the Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917, USA; Center for Structural Biology, Vandebilt University, Nashville, TN 37232-7917, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232-7917, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, the Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917, USA.
| |
Collapse
|
9
|
Yin H, Wang X, Zhang S, He S, Zhang W, Lu H, Wang Y, He J, Zhou C. Nucleotide excision repair gene polymorphisms and hepatoblastoma susceptibility in Eastern Chinese children: A five-center case-control study. Chin J Cancer Res 2024; 36:298-305. [PMID: 38988482 PMCID: PMC11230887 DOI: 10.21147/j.issn.1000-9604.2024.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Nucleotide excision repair (NER) plays a vital role in maintaining genome stability, and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation. This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children. Methods In this five-center case-control study, we enrolled 966 subjects from East China (193 hepatoblastoma patients and 773 healthy controls). The TaqMan method was used to genotype 19 single nucleotide polymorphisms (SNPs) in NER pathway genes, including ERCC1, XPA, XPC, XPD, XPF, and XPG. Then, multivariate logistic regression analysis was performed, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to assess the strength of associations. Results Three SNPs were related to hepatoblastoma risk. XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model (adjusted OR=1.49, 95% CI=1.07-2.08, P=0.019; adjusted OR=1.66, 95% CI=1.12-2.45, P=0.012, respectively). However, XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model (adjusted OR=0.68, 95% CI=0.49-0.95; P=0.024). Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups. Moreover, there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) analysis. Conclusions In summary, NER pathway gene polymorphisms (XPC rs2229090, XPD rs3810366, and XPD rs238406) are significantly associated with hepatoblastoma risk, and further research is required to verify these findings.
Collapse
Affiliation(s)
- Huimin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xianqiang Wang
- Department of Pediatric Surgery, Senior Department of Pediatrics, the Seventh Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing 100000, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Shaohua He
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Wenli Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Hongting Lu
- Department of Pediatric Surgery, Qingdao Women and Children's Hospital, Qingdao 266000, China
| | - Yizhen Wang
- Department of Pathology, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
10
|
Luo XC, Yu L, Xu SY, Ying SH, Feng MG. Photoreactivation Activities of Rad5, Rad16A and Rad16B Help Beauveria bassiana to Recover from Solar Ultraviolet Damage. J Fungi (Basel) 2024; 10:420. [PMID: 38921406 PMCID: PMC11205155 DOI: 10.3390/jof10060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (X.-C.L.); (L.Y.); (S.-Y.X.); (S.-H.Y.)
| |
Collapse
|
11
|
Feng MG. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:59-82. [PMID: 39389708 DOI: 10.1016/bs.aambs.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.
Collapse
Affiliation(s)
- Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
12
|
Kose C, Lindsey-Boltz LA, Sancar A, Jiang Y. Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562083. [PMID: 37904932 PMCID: PMC10614815 DOI: 10.1101/2023.10.12.562083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5'-capping or 3'-polyadenylation). Here, we have performed the eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps from a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), or one that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yuchao Jiang
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, College of Arts and Sciences, Texas A&M University, College Station, TX 77843
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
13
|
Kokic G, Yakoub G, van den Heuvel D, Wondergem AP, van der Meer PJ, van der Weegen Y, Chernev A, Fianu I, Fokkens TJ, Lorenz S, Urlaub H, Cramer P, Luijsterburg MS. Structural basis for RNA polymerase II ubiquitylation and inactivation in transcription-coupled repair. Nat Struct Mol Biol 2024; 31:536-547. [PMID: 38316879 PMCID: PMC10948364 DOI: 10.1038/s41594-023-01207-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024]
Abstract
During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR.
Collapse
Affiliation(s)
- Goran Kokic
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Division of Structural Biology and Protein Therapeutics, Odyssey Therapeutics GmbH, Frankfurt am Main, Germany
| | - George Yakoub
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paula J van der Meer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Ubiquitin Signaling Specificity, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Ubiquitin Signaling Specificity, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Institute of Clinical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Peng H, Zhang YL, Ying SH, Feng MG. Rad2, Rad14 and Rad26 recover Metarhizium robertsii from solar UV damage through photoreactivation in vivo. Microbiol Res 2024; 280:127589. [PMID: 38154444 DOI: 10.1016/j.micres.2023.127589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Rad2, Rad14 and Rad26 recover ultraviolet (UV) damage by nucleotide excision repair (NER) in budding yeast but their functions in filamentous fungi have not been elucidated. Here, we report mechanistically different anti-UV effects of nucleus-specific Rad2, Rad14 and Rad26 orthologs in Metarhizium robertsii, an insect-pathogenic fungus. The null mutants of rad2, rad14 and rad26 showed a decrease of ∼90% in conidial resistance to UVB irradiation. When conidia were impaired at a UVB dose of 0.15 J/cm2, they were photoreactivated (germinated) by only 6-13% through a 5-h light plus 19-h dark incubation, whereas 100%, 80% and 70% of the wild-type conidia were photoreactivated at 0.15, 0.3 and 0.4 J/cm2, respectively. The dose-dependent photoreactivation rates were far greater than the corresponding 24-h dark reactivation rates and were largely enhanced by the overexpression (OE) of rad2, rad14 or rad26 in the wild-type strain. The OE strains exhibited markedly greater activities in photoreactivation of conidia inactivated at 0.5-0.7 J/cm2 than did the wild-type strain. Confirmed interactions of Rad2, Rad14 and Rad26 with photolyase regulators and/or Rad1 or Rad10 suggest that each of these proteins could have evolved into a component of the photolyase regulator-cored protein complex to mediate photoreactivation. The interactions inhibited in the null mutants resulted in transcriptional abolishment or repression of those factors involved in the complex. In conclusion, the anti-UV effects of Rad2, Rad14 and Rad26 depend primarily on DNA photorepair-dependent photoreactivation in M. robertsii and mechanistically differ from those of yeast orthologs depending on NER.
Collapse
Affiliation(s)
- Han Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yi-Lu Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
15
|
Yu L, Xu SY, Luo XC, Ying SH, Feng MG. High photoreactivation activities of Rad2 and Rad14 in recovering insecticidal Beauveria bassiana from solar UV damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112849. [PMID: 38277960 DOI: 10.1016/j.jphotobiol.2024.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Anti-ultraviolet (UV) roles of Rad2 and Rad14 depend on nucleotide excision repair (NER) of UV-induced DNA lesions in budding yeast but remain unexplored yet in filamentous fungi. Here, nucleus-specific Rad2 and Rad14 orthologs are shown to recover Beauveria bassiana, a main source of wide-spectrum mycoinsecticides, from solar UV damage through photorepair-depending photoreactivation. As a photorepair index, photoreactivation (germination) rates of lethal UVB dose-irradiated conidia via a 3- or 5-h light plus 9- or 7-h dark incubation at 25 °C were drastically reduced in the Δrad2 and Δrad14 mutants versus a wild-type strain. As an NER index, nighttime-mimicking 12-h dark reactivation rates of low UVB dose-impaired conidia decreased sharply compared to the corresponding photoreactivation rates in the presence or absence of either ortholog, indicating that its extant NER activity was limited to recovering light UVB damage in the field. The high photoreactivation activity of either Rad2 or Rad14 was derived from its tight link to a large protein complex formed by photolyase regulators and other anti-UV proteins through multiple protein-protein interactions revealed by yeast two-hybrid assays. Therefore, Rad2 and Rad14 recover B. bassiana from solar UV damage through photoreactiovation in vivo that depends primarily on photorepair, although they contribute little to the fungal lifecycle-related phenotypes. These findings unveil a novel scenario distinguished from the NER-depending anti-UV roles of Rad2 and Rad14 in the model yeast and broaden a biological basis crucial for rational application of fungal insecticides to improve pest control efficacy via feasible recovery of solar UV damage.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Guthrie OW. Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear. Int J Mol Sci 2024; 25:1749. [PMID: 38339024 PMCID: PMC10855171 DOI: 10.3390/ijms25031749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Nucleotide excision repair (NER) is a multistep biochemical process that maintains the integrity of the genome. Unlike other mechanisms that maintain genomic integrity, NER is distinguished by two irreversible nucleolytic events that are executed by the xeroderma pigmentosum group G (XPG) and xeroderma pigmentosum group F (XPF) structure-specific endonucleases. Beyond nucleolysis, XPG and XPF regulate the overall efficiency of NER through various protein-protein interactions. The current experiments evaluated whether an environmental stressor could negatively affect the expression of Xpg (Ercc5: excision repair cross-complementing 5) or Xpf (Ercc4: excision repair cross-complementing 4) in the mammalian cochlea. Ubiquitous background noise was used as an environmental stressor. Gene expression levels for Xpg and Xpf were quantified from the cochlear neurosensory epithelium after noise exposure. Further, nonlinear cochlear signal processing was investigated as a functional consequence of changes in endonuclease expression levels. Exposure to stressful background noise abrogated the expression of both Xpg and Xpf, and these effects were associated with pathological nonlinear signal processing from receptor cells within the mammalian inner ear. Given that exposure to environmental sounds (noise, music, etc.) is ubiquitous in daily life, sound-induced limitations to structure-specific endonucleases might represent an overlooked genomic threat.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
17
|
Kose C, Cao X, Dewey EB, Malkoç M, Adebali O, Sekelsky J, Lindsey-Boltz LA, Sancar A. Cross-species investigation into the requirement of XPA for nucleotide excision repair. Nucleic Acids Res 2024; 52:677-689. [PMID: 37994737 PMCID: PMC10810185 DOI: 10.1093/nar/gkad1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
After reconstitution of nucleotide excision repair (excision repair) with XPA, RPA, XPC, TFIIH, XPF-ERCC1 and XPG, it was concluded that these six factors are the minimal essential components of the excision repair machinery. All six factors are highly conserved across diverse organisms spanning yeast to humans, yet no identifiable homolog of the XPA gene exists in many eukaryotes including green plants. Nevertheless, excision repair is reported to be robust in the XPA-lacking organism, Arabidopsis thaliana, which raises a fundamental question of whether excision repair could occur without XPA in other organisms. Here, we performed a phylogenetic analysis of XPA across all species with annotated genomes and then quantitatively measured excision repair in the absence of XPA using the sensitive whole-genome qXR-Seq method in human cell lines and two model organisms, Caenorhabditis elegans and Drosophila melanogaster. We find that although the absence of XPA results in inefficient excision repair and UV-sensitivity in humans, flies, and worms, excision repair of UV-induced DNA damage is detectable over background. These studies have yielded a significant discovery regarding the evolution of XPA protein and its mechanistic role in nucleotide excision repair.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Evan B Dewey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mustafa Malkoç
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
- Department of Computational Science-Biological Sciences, TÜBITAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst) 2023; 132:103568. [PMID: 37977600 DOI: 10.1016/j.dnarep.2023.103568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023]
Abstract
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Jakhar N, Prabhakant A, Krishnan M. Mapping the recognition pathway of cyclobutane pyrimidine dimer in DNA by Rad4/XPC. Nucleic Acids Res 2023; 51:10132-10146. [PMID: 37757853 PMCID: PMC10602858 DOI: 10.1093/nar/gkad730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
UV radiation-induced DNA damages have adverse effects on genome integrity and cellular function. The most prevalent UV-induced DNA lesion is the cyclobutane pyrimidine dimer (CPD), which can cause skin disorders and cancers in humans. Rad4/XPC is a damage sensing protein that recognizes and repairs CPD lesions with high fidelity. However, the molecular mechanism of how Rad4/XPC interrogates CPD lesions remains elusive. Emerging viewpoints indicate that the association of Rad4/XPC with DNA, the insertion of a lesion-sensing β-hairpin of Rad4/XPC into the lesion site and the flipping of CPD's partner bases (5'-dA and 3'-dA) are essential for damage recognition. Characterizing these slow events is challenging due to their infrequent occurrence on molecular time scales. Herein, we have used enhanced sampling and molecular dynamics simulations to investigate the mechanism and energetics of lesion recognition by Rad4/XPC, considering multiple plausible pathways between the crystal structure of the Rad4-DNA complex and nine intermediate states. Our results shed light on the most likely sequence of events, their potential coupling and energetics. Upon association, Rad4 and DNA form an encounter complex in which CPD and its partner bases remain in the duplex and the BHD3 β-hairpin is yet to be inserted into the lesion site. Subsequently, sequential base flipping occurs, with the flipping of the 5'-dA base preceding that of the 3'-dA base, followed by the insertion of the BHD3 β-hairpin into the lesion site. The results presented here have significant implications for understanding the molecular basis of UV-related skin disorders and cancers and for paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nikhil Jakhar
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Akshay Prabhakant
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
20
|
Lindsey-Boltz LA, Yang Y, Kose C, Deger N, Eynullazada K, Kawara H, Sancar A. Nucleotide excision repair in Human cell lines lacking both XPC and CSB proteins. Nucleic Acids Res 2023; 51:6238-6245. [PMID: 37144462 PMCID: PMC10325923 DOI: 10.1093/nar/gkad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Nucleotide excision repair removes UV-induced DNA damage through two distinct sub-pathways, global repair and transcription-coupled repair (TCR). Numerous studies have shown that in human and other mammalian cell lines that the XPC protein is required for repair of DNA damage from nontranscribed DNA via global repair and the CSB protein is required for repair of lesions from transcribed DNA via TCR. Therefore, it is generally assumed that abrogating both sub-pathways with an XPC-/-/CSB-/- double mutant would eliminate all nucleotide excision repair. Here we describe the construction of three different XPC-/-/CSB-/- human cell lines that, contrary to expectations, perform TCR. The XPC and CSB genes were mutated in cell lines derived from Xeroderma Pigmentosum patients as well as from normal human fibroblasts and repair was analyzed at the whole genome level using the very sensitive XR-seq method. As predicted, XPC-/- cells exhibited only TCR and CSB-/- cells exhibited only global repair. However, the XPC-/-/CSB-/- double mutant cell lines, although having greatly reduced repair, exhibited TCR. Mutating the CSA gene to generate a triple mutant XPC-/-/CSB-/-/CSA-/- cell line eliminated all residual TCR activity. Together, these findings provide new insights into the mechanistic features of mammalian nucleotide excision repair.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nazli Deger
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Khagani Eynullazada
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hiroaki Kawara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Maritz C, Khaleghi R, Yancoskie MN, Diethelm S, Brülisauer S, Ferreira NS, Jiang Y, Sturla SJ, Naegeli H. ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair. Nat Commun 2023; 14:3892. [PMID: 37393406 PMCID: PMC10314917 DOI: 10.1038/s41467-023-39635-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT.
Collapse
Affiliation(s)
- Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Reihaneh Khaleghi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sarah Diethelm
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sonja Brülisauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Natalia Santos Ferreira
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Yang Jiang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
22
|
He F, Bravo M, Fan L. Helicases required for nucleotide excision repair: structure, function and mechanism. Enzymes 2023; 54:273-304. [PMID: 37945175 DOI: 10.1016/bs.enz.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco Bravo
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States.
| |
Collapse
|
23
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li J, Liu H, Xing J, Zhang Y, Li N. Triptolide enhances carboplatin-induced apoptosis by inhibiting nucleotide excision repair (NER) activity in melanoma. Front Pharmacol 2023; 14:1157433. [PMID: 37324464 PMCID: PMC10267402 DOI: 10.3389/fphar.2023.1157433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.
Collapse
Affiliation(s)
- Geng Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongmin Guo
- People’s Hospital of Changshou Chongqing, Chongqing, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
van den Heuvel D, Kim M, Wondergem AP, van der Meer PJ, Witkamp M, Lambregtse F, Kim HS, Kan F, Apelt K, Kragten A, González-Prieto R, Vertegaal ACO, Yeo JE, Kim BG, van Doorn R, Schärer OD, Luijsterburg MS. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc Natl Acad Sci U S A 2023; 120:e2208860120. [PMID: 36893274 PMCID: PMC10089173 DOI: 10.1073/pnas.2208860120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Annelotte P. Wondergem
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Paula J. van der Meer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Myrèse Witkamp
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Ferdy Lambregtse
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Folkert Kan
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative Medicine, University of Sevilla, 41092Seville, Spain
- Department of Cell Biology, University of Seville, 41012Seville, Spain
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Martijn S. Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| |
Collapse
|
25
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
26
|
Bralić A, Tehseen M, Sobhy MA, Tsai CL, Alhudhali L, Yi G, Yu J, Yan C, Ivanov I, Tsutakawa SE, Tainer J, Hamdan S. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair. Nucleic Acids Res 2022; 51:1019-1033. [PMID: 36477609 PMCID: PMC9943652 DOI: 10.1093/nar/gkac1095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleotide excision repair (NER) is critical for removing bulky DNA base lesions and avoiding diseases. NER couples lesion recognition by XPC to strand separation by XPB and XPD ATPases, followed by lesion excision by XPF and XPG nucleases. Here, we describe key regulatory mechanisms and roles of XPG for and beyond its cleavage activity. Strikingly, by combing single-molecule imaging and bulk cleavage assays, we found that XPG binding to the 7-subunit TFIIH core (coreTFIIH) stimulates coreTFIIH-dependent double-strand (ds)DNA unwinding 10-fold, and XPG-dependent DNA cleavage by up to 700-fold. Simultaneous monitoring of rates for coreTFIIH single-stranded (ss)DNA translocation and dsDNA unwinding showed XPG acts by switching ssDNA translocation to dsDNA unwinding as a likely committed step. Pertinent to the NER pathway regulation, XPG incision activity is suppressed during coreTFIIH translocation on DNA but is licensed when coreTFIIH stalls at the lesion or when ATP hydrolysis is blocked. Moreover, ≥15 nucleotides of 5'-ssDNA is a prerequisite for efficient translocation and incision. Our results unveil a paired coordination mechanism in which key lesion scanning and DNA incision steps are sequentially coordinated, and damaged patch removal is only licensed after generation of ≥15 nucleotides of 5'-ssDNA, ensuring the correct ssDNA bubble size before cleavage.
Collapse
Affiliation(s)
- Amer Bralić
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed A Sobhy
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lubna Alhudhali
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gang Yi
- Bioscience Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30302 USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA 30302 USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA 30302 USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A Tainer
- Correspondence may also be addressed to John A. Tainer. Tel: +1 713 563 7725; Fax: +1 713 794 3270;
| | - Samir M Hamdan
- To whom correspondence should be addressed. Tel: +96 628082384; Cell: +96 6544700031;
| |
Collapse
|
27
|
Kim M, Kim HS, D’Souza A, Gallagher K, Jeong E, Topolska-Woś A, Ogorodnik Le Meur K, Tsai CL, Tsai MS, Kee M, Tainer JA, Yeo JE, Chazin WJ, Schärer OD. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc Natl Acad Sci U S A 2022; 119:e2207408119. [PMID: 35969784 PMCID: PMC9407234 DOI: 10.1073/pnas.2207408119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
The xeroderma pigmentosum protein A (XPA) and replication protein A (RPA) proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair (NER) pathway. We have previously characterized the two interaction sites, one between the XPA N-terminal (XPA-N) disordered domain and the RPA32 C-terminal domain (RPA32C), and the other with the XPA DNA binding domain (DBD) and the RPA70AB DBDs. Here, we show that XPA mutations that inhibit the physical interaction in either site reduce NER activity in biochemical and cellular systems. Combining mutations in the two sites leads to an additive inhibition of NER, implying that they fulfill distinct roles. Our data suggest a model in which the interaction between XPA-N and RPA32C is important for the initial association of XPA with NER complexes, while the interaction between XPA DBD and RPA70AB is needed for structural organization of the complex to license the dual incision reaction. Integrative structural models of complexes of XPA and RPA bound to single-stranded/double-stranded DNA (ss/dsDNA) junction substrates that mimic the NER bubble reveal key features of the architecture of XPA and RPA in the preincision complex. Most critical among these is that the shape of the NER bubble is far from colinear as depicted in current models, but rather the two strands of unwound DNA must assume a U-shape with the two ss/dsDNA junctions localized in close proximity. Our data suggest that the interaction between XPA and RPA70 is key for the organization of the NER preincision complex.
Collapse
Affiliation(s)
- Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Areetha D’Souza
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Kaitlyn Gallagher
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Eunwoo Jeong
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Agnieszka Topolska-Woś
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Kateryna Ogorodnik Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Miaw-Sheue Tsai
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Minyong Kee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232-7917
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
| |
Collapse
|
28
|
Xue S, Shen W, Cai J, Jia J, Zhao D, Zhang S, Zhao X, Ma N, Wang W, Wang B, Zhang X, Liu X. Association between rs735482 polymorphism and risk of cancer: A meta-analysis of 10 case-control studies. Medicine (Baltimore) 2022; 101:e29318. [PMID: 35905230 PMCID: PMC9333535 DOI: 10.1097/md.0000000000029318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Several studies have inspected the relationship between rs735482 polymorphism and the risk of some human cancers, but the findings remain controversial. We designed this meta-analysis to validate the association between rs735482 polymorphism and cancer risk. All articles were published before September 1, 2018 and searched in Pubmed, Embase, Web of Science, China National Knowledge Infrastructure, WangFang, and Chinese BioMedical databases, STATA 12.0 software was used for statistical analysis, which provides reasonable data and technical support for this article. A total of 10 studies were included in the meta-analysis, including 2652 cancer cases and 3536 rs735482 polymorphic controls. Data were directly extracted from these studies and odds ratios with 95% confidence intervals were computed to estimate the strength of the association. By pooling all eligible studies, the rs735482 polymorphism showed no significant association with susceptibility of several cancers in all the five genetic models (the allelic model: OR = 1.019, 95% CI: 0.916-1.134, P = .731). In addition, another adjusted OR data showed a significant increased risk between the rs735482 and susceptibility of several cancers (the codominant model BB vs AA: OR = 1.353, 95% CI: 1.033-1.774, P = .028) and the stratification analysis by ethnicity indicated the rs735482 is associated with an increased risk of cancer in Chinese group (BB vs AA, OR = 1.391, 95% CI = 1.054-1.837, P = .020; AB+BB vs AA OR = 1.253, 95% CI = 1.011-1.551, P = .039). However, the ERCC1 rs735482 is associated with a decreased risk of cancer in Italian group (AB vs AA, OR = 0.600, 95% CI = 0.402-0.859, P = .012; AB + BB vs AA, OR = 0.620, 95% CI = 0.424-0.908, P = .014). The results of this meta-analysis do not support the association between rs735482 polymorphism and cancer risk. But stratified analysis showed that rs735482 significantly increased the risk of cancer in Chinese while decreased the risk of cancer in Italian. Because of the limited number of samples, larger and well-designed researches are needed to estimate this association in detail.
Collapse
Affiliation(s)
- Shilin Xue
- School of Basic Medical Sciences Peking University, Peking University Health Science Center, Beijing, China
| | - Wenya Shen
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Jianning Cai
- Department of Epidemic Treating and Preventing, Center for Disease Prevention and Control of Shijiazhuang City, Shijiazhuang, China
| | - Jinhai Jia
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Dan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Shan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Xiujun Zhao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Ning Ma
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Wenjuan Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Bingshuang Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
| | - Xuehui Liu
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei, China
- *Correspondence: Xuehui Liu, Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China (e-mail: )
| |
Collapse
|
29
|
Abstract
The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1–XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.
Collapse
|
30
|
Hu H, Liu S, Chu A, Chen J, Xing C, Jing J. Comprehensive analysis of ceRNA network of ERCC4 in colorectal cancer. PeerJ 2022; 9:e12647. [PMID: 34993023 PMCID: PMC8679902 DOI: 10.7717/peerj.12647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective ERCC4 is one of the most significant molecules of Nucleotide Excision Repair (NER), which has been researched due to its high expression in colorectal cancer (CRC). This study aimed to find out the ceRNA (competitive endogenous RNA) network of ERCC4 in CRC. Methods and Materials Pan cancer mRNA expression of ERCC4 was evaluated using TCGA database. The protein expression of ERCC4 was evaluated based on the Human Protein Atlas (HPA). We screened DElncRNAs and DEmiRNAs in two groups of ERCC4high and ERCC4low expression in CRC. Then a lncRNA-miRNA-ERCC4 regulatory network was constructed based on DElncRNAs and DEmiRNAs using Starbase database and visualized by Cytoscape software. Kaplan-Meier analysis was performed to evaluate the prognostic value of the ceRNA network. Further, RT-PCR was performed to validate the expression of the representative molecules in the ceRNA network in CRC and normal tissues. The relationship between drug sensitivity and these molecules were also evaluated using RNAactDrug database. Results ERCC4 was overexpressed in a variety of tumors at mRNA levels, including CRC. High expression of ERCC4 was also observed on protein level in CRC. A total of 1,885 DElncRNAs and 68 DEmiRNAs were identified from CRC samples in ERCC4high and ERCC4low expression groups. Predicted by the Starbase database, we got interacting miRNAs and lncRNAs of ERCC4 from the DEmiRNAs and DElncRNAs, and a lncRNA-miRNA-ERCC4 regulatory network was constructed. Kaplan-Meier survival curves results showed that miR-200c-3p (hazard ratio [HR] = 0.62, P = 0.032), MALAT1 (HR = 1.54, P = 0.016), and AC005520.2 (hazard ratio [HR] = 1.75, P = 0.002) were significantly associated with the prognosis of CRC. After validation by RT-PCR, we found that ERCC4 and MALAT1 were up-regulated in CRC compared with normal tissues, while miR-200c-3p was down-regulated. A strong negative correlation was observed between MALAT1 and miR-200c-3p. Drug sensitivity analysis showed that ERCC4, miR-200c and MALAT1 were all associated with Cisplatin. Conclusion We constructed a ceRNA network of ERCC4 in CRC, of which the MALAT1-miR-200c-3p-ERCC4 axis may be involved in the development, prognosis and chemotherapy sensitivity of CRC. These findings might provide novel clues and insights on the molecular mechanisms of ERCC4 and NER pathway in CRC.
Collapse
Affiliation(s)
- Huixin Hu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.,Department of Anorectal Surgery in Liaoning Province, the First Hospital of China Medical of China Medical University, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
32
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
33
|
Menzies GE, Prior IA, Brancale A, Reed SH, Lewis PD. Carcinogen-induced DNA structural distortion differences in the RAS gene isoforms; the importance of local sequence. BMC Chem 2021; 15:51. [PMID: 34521464 PMCID: PMC8439098 DOI: 10.1186/s13065-021-00777-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.
Collapse
Affiliation(s)
- Georgina E Menzies
- School of Biosciences and Dementia Research Institute at Cardiff, Cardiff University, Cardiff, CF10 3NX, UK.
| | - Ian A Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Simon H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Paul D Lewis
- School of Management, Swansea University Bay Campus, Swansea, SA1 8EN, UK
| |
Collapse
|
34
|
Park YJ, Kim SH, Kim TS, Lee SM, Cho BS, Seo CI, Kim HD, Kim J. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair. Cell Mol Life Sci 2021; 78:3591-3606. [PMID: 33464383 PMCID: PMC11072392 DOI: 10.1007/s00018-020-03754-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.
Collapse
Affiliation(s)
- Y J Park
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S H Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - T S Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S M Lee
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - B S Cho
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - C I Seo
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - H D Kim
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea
| | - J Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea.
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
35
|
Kapoor S, Gustafson T, Zhang M, Chen YS, Li J, Nguyen N, Perez JET, Dashwood WM, Rajendran P, Dashwood RH. Deacetylase Plus Bromodomain Inhibition Downregulates ERCC2 and Suppresses the Growth of Metastatic Colon Cancer Cells. Cancers (Basel) 2021; 13:cancers13061438. [PMID: 33809839 PMCID: PMC8004213 DOI: 10.3390/cancers13061438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 01/14/2023] Open
Abstract
There is growing evidence that DNA repair factors have clinical value for cancer treatment. Nucleotide excision repair (NER) proteins, including excision repair cross-complementation group 2 (ERCC2), play a critical role in maintaining genome integrity. Here, we examined ERCC2 expression following epigenetic combination drug treatment. Attention was drawn to ERCC2 for three reasons. First, from online databases, colorectal cancer (CRC) patients exhibited significantly reduced survival when ERCC2 was overexpressed in colon tumors. Second, ERCC2 was the most highly downregulated RNA transcript in human colon cancer cells, plus Ercc2 in rat tumors, after treatment with the histone deacetylase 3 (HDAC3) inhibitor sulforaphane (SFN) plus JQ1, which is an inhibitor of the bromodomain and extraterminal domain (BET) family. Third, as reported here, RNA-sequencing of polyposis in rat colon (Pirc) polyps following treatment of rats with JQ1 plus 6-methylsulfinylhexyl isothiocyanate (6-SFN) identified Ercc2 as the most highly downregulated gene. The current work also defined promising second-generation epigenetic drug combinations with enhanced synergy and efficacy, especially in metastasis-lineage colon cancer cells cultured as 3D spheroids and xenografts. This investigation adds to the growing interest in combination approaches that target epigenetic 'readers', 'writers', and 'erasers' that are deregulated in cancer and other pathologies, providing new avenues for precision oncology and cancer interception.
Collapse
Affiliation(s)
- Sabeeta Kapoor
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Trace Gustafson
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Mutian Zhang
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Ying-Shiuan Chen
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Nhung Nguyen
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Jorge Enrique Tovar Perez
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA; (S.K.); (T.G.); (M.Z.); (Y.-S.C.); (J.L.); (N.N.); (J.E.T.P.); (W.M.D.)
- Correspondence: (P.R.); (R.H.D.)
| |
Collapse
|
36
|
Rechkunova NI, Krasikova YS, Lavrik OI. Interactome of Base and Nucleotide Excision DNA Repair Systems. Mol Biol 2021. [DOI: 10.1134/s0026893321020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Base and Nucleotide Excision Repair Pathways in DNA Plasmids Harboring Oxidatively Generated Guanine Lesions. Chem Res Toxicol 2021; 34:154-160. [PMID: 33405911 DOI: 10.1021/acs.chemrestox.0c00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. We have demonstrated earlier that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) are excised from double-stranded DNA by competing BER and NER in whole-cell extracts [Shafirovich, V., et al. (2016) J. Biol. Chem. 321, 5309-5319]. In this work we compared the NER and BER yields with single Gh or Sp lesions embedded at the same sites in covalently closed circular pUC19NN plasmid DNA (cccDNA) and in the same but linearized form (linDNA) of this plasmid. The kinetics of the Sp and Gh BER and NER incisions were monitored in HeLa cell extracts. The yield of NER products is ∼5 times greater in covalently closed circular DNA than in the linearized form, while the BER yield is smaller by ∼20-30% depending on the guanine lesion. Control BER experiments with 8-oxo-7,8-dihydroguanine (8-oxoG) show that the BER yield is increased by a factor of only 1.4 ± 0.2 in cccDNA relative to linDNA. These surprising differences in BER and NER activities are discussed in terms of the lack of termini in covalently closed circular DNA and the DNA lesion search dynamics of the NER DNA damage sensor XPC-RAD23B and the BER enzyme OGG1 that recognizes and excises 8-oxoG.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Abraham Aharonoff
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Ana Helena Sales
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
38
|
Chauhan AK, Li P, Sun Y, Wani G, Zhu Q, Wani AA. Spironolactone-induced XPB degradation requires TFIIH integrity and ubiquitin-selective segregase VCP/p97. Cell Cycle 2020; 20:81-95. [PMID: 33381997 PMCID: PMC7849777 DOI: 10.1080/15384101.2020.1860559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mineralocorticoid and androgen receptor antagonist, spironolactone, was recently identified as an inhibitor of nucleotide excision repair (NER), acting via induction of proteolysis of TFIIH component Xeroderma Pigmentosum B protein (XPB). This activity provides a strong rationale for repurposing spironolactone for cancer therapy. Here, we report that the spironolactone-induced XPB proteolysis is mediated through ubiquitin-selective segregase, valosin-containing protein (VCP)/p97. We show that spironolactone induces a dose- and time-dependent degradation of XPB but not XPD, and that the XPB degradation is blocked by VCP/p97 inhibitors DBeQ, NMS-873, and neddylation inhibitor MLN4924. Moreover, the cellular treatment by VCP/p97 inhibitors leads to the accumulation of ubiquitin conjugates of XPB but not XPD. VCP/p97 knockdown by inducible shRNA does not affect XPB level but compromises the spironolactone-induced XPB degradation. Also, VCP/p97 interacts with XPB upon treatment of spironolactone and proteasome inhibitor MG132, while the VCP/p97 adaptor UBXD7 binds XPB and its ubiquitin conjugates. Additionally, ATP analog-mediated inhibition of Cdk7 significantly decelerates spironolactone-induced XPB degradation. Likewise, engaging TFIIH to NER by UV irradiation slows down spironolactone-induced XPB degradation. These results indicate that the spironolactone-induced XPB proteolysis requires VCP/p97 function and that XPB within holo-TFIIH rather than core-TFIIH is more vulnerable to spironolactone-induced proteolysis. Abbreviations
NER: nucleotide excision repair; TFIIH: transcription factor II H; CAK: Cdk-activating kinase (CAK) complex; XPB: Xeroderma Pigmentosum type B; VCP/p97: valosin-containing protein/p97; Cdk7: cyclin-dependent kinase 7; NAE: NEDD8-activating enzyme; IP: immunoprecipitation
Collapse
Affiliation(s)
- Anil K Chauhan
- Department of Radiology, The Ohio State University , Columbus, OH, USA
| | - Ping Li
- Department of Radiology, The Ohio State University , Columbus, OH, USA
| | - Yingming Sun
- Department of Radiology, The Ohio State University , Columbus, OH, USA
| | - Gulzar Wani
- Department of Radiology, The Ohio State University , Columbus, OH, USA
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University , Columbus, OH, USA
| | - Altaf A Wani
- Department of Radiology, The Ohio State University , Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University , Columbus, OH, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
39
|
González-Corrochano R, Ruiz FM, Taylor NMI, Huecas S, Drakulic S, Spínola-Amilibia M, Fernández-Tornero C. The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair. Nucleic Acids Res 2020; 48:9943-9958. [PMID: 32821917 PMCID: PMC7515719 DOI: 10.1093/nar/gkaa688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is an essential pathway to remove bulky lesions affecting one strand of DNA. Defects in components of this repair system are at the ground of genetic diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The XP complementation group G (XPG) endonuclease cleaves the damaged DNA strand on the 3′ side of the lesion coordinated with DNA re-synthesis. Here, we determined crystal structures of the XPG nuclease domain in the absence and presence of DNA. The overall fold exhibits similarities to other flap endonucleases but XPG harbors a dynamic helical arch that is uniquely oriented and defines a gateway. DNA binding through a helix-2-turn-helix motif, assisted by one flanking α-helix on each side, shows high plasticity, which is likely relevant for DNA scanning. A positively-charged canyon defined by the hydrophobic wedge and β-pin motifs provides an additional DNA-binding surface. Mutational analysis identifies helical arch residues that play critical roles in XPG function. A model for XPG participation in NER is proposed. Our structures and biochemical data represent a valuable tool to understand the atomic ground of XP and CS, and constitute a starting point for potential therapeutic applications.
Collapse
Affiliation(s)
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nicholas M I Taylor
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Srdja Drakulic
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Carlos Fernández-Tornero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
40
|
Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair (Amst) 2020; 96:102972. [PMID: 33007515 DOI: 10.1016/j.dnarep.2020.102972] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Critical for transcription initiation and bulky lesion DNA repair, TFIIH provides an exemplary system to connect molecular mechanisms to biological outcomes due to its strong genetic links to different specific human diseases. Recent advances in structural and computational biology provide a unique opportunity to re-examine biologically relevant molecular structures and develop possible mechanistic insights for the large dynamic TFIIH complex. TFIIH presents many puzzles involving how its two SF2 helicase family enzymes, XPB and XPD, function in transcription initiation and repair: how do they initiate transcription, detect and verify DNA damage, select the damaged strand for incision, coordinate repair with transcription and cell cycle through Cdk-activating-kinase (CAK) signaling, and result in very different specific human diseases associated with cancer, aging, and development from single missense mutations? By joining analyses of breakthrough cryo-electron microscopy (cryo-EM) structures and advanced computation with data from biochemistry and human genetics, we develop unified concepts and molecular level understanding for TFIIH functions with a focus on structural mechanisms. We provocatively consider that TFIIH may have first evolved from evolutionary pressure for TCR to resolve arrested transcription blocks to DNA replication and later added its key roles in transcription initiation and global DNA repair. We anticipate that this level of mechanistic information will have significant impact on thinking about TFIIH, laying a robust foundation suitable to develop new paradigms for DNA transcription initiation and repair along with insights into disease prevention, susceptibility, diagnosis and interventions.
Collapse
|
41
|
XPA deficiency affects the ubiquitin-proteasome system function. DNA Repair (Amst) 2020; 94:102937. [PMID: 32693352 DOI: 10.1016/j.dnarep.2020.102937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Xeroderma pigmentosum complementation group A (XPA), is defective in xeroderma pigmentosum patients, causing pre-disposition to skin cancer and neurological abnormalities, which is not well understood. Here, we analyzed the XPA-deficient cells transcriptional profile under oxidative stress. The imbalance in of ubiquitin-proteasome system (UPS) gene expression was observed in XPA-deficient cells and the involvement of nuclear factor erythroid 2-related factor-2 (NFE2L2) was indicated. Co-immunoprecipitation assays showed the interaction between XPA, apurinic-apyrimidinic endonuclease 1 (APE1) and NFE2L2 proteins. Decreased NFE2L2 protein expression and proteasome activity was also observed in XPA-deficient cells. The data suggest the involvement of the growth arrest and DNA-damage-inducible beta (GADD45β) in NFE2L2 functions. Similar results were obtained in xpa-1 (RNAi) Caenorhabditis elegans suggesting the conservation of XPA and NFE2L2 interactions. In conclusion, stress response activation occurs in XPA-deficient cells under oxidative stress; however, these cells fail to activate the UPS cytoprotective response, which may contribute to XPA patient's phenotypes.
Collapse
|
42
|
Single Nucleotide Polymorphisms in MiRNA Binding Sites of Nucleotide Excision Repair-Related Genes Predict Clinical Benefit of Oxaliplatin in FOLFOXIRI Plus Bevacizumab: Analysis of the TRIBE Trial. Cancers (Basel) 2020; 12:cancers12071742. [PMID: 32629861 PMCID: PMC7408001 DOI: 10.3390/cancers12071742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The nucleotide excision repair (NER) pathway participates in platinum-induced DNA damage repair. Single nucleotide polymorphisms (SNPs) in miRNA-binding sites in the NER genes RPA2 and GTF2H1 are associated with the risk of colorectal cancer (CRC). Here, we analyzed whether RPA2 and GTF2H1 SNPs predict the efficacy of oxaliplatin in metastatic CRC (mCRC) patients. Patients and methods: Genomic DNA was extracted from blood samples from 457 patients with mCRC enrolled in the TRIBE trial, which compared first-line FOLFOXIRI plus bevacizumab (BEV) (n = 230, discovery cohort) and first-line FOLFIRI plus BEV (n = 227, control cohort). SNPs were analyzed by PCR-based direct sequencing. Results: In the FOLFOXIRI + BEV-treated cohort expressing wild-type KRAS, progression-free survival (PFS) was shorter for the RPA2 rs7356 C/C variant subgroup than the any T allele subgroup in univariate analysis (9.1 versus 13.3 months respectively, hazard ratio (HR) 2.32, 95% confidence interval (CI): 1.07–5.03, p = 0.020) and this remained significant in multivariable analysis (HR 2.97, 95%CI: 1.27–6.94, p = 0.012). A similar trend was observed for overall survival. In contrast, patients expressing mutant RAS and RPA2 rs7356 C/C variant had longer PFS with FOLFOXIRI + BEV than with FOLFIRI + BEV (12.1 versus 7.6 months, HR 0.23, 95%CI: 0.09–0.62, p = 0.002) but no superiority of FOLFOXIRI + BEV was observed for the RAS mutant, RPA2 rs7356 any T variant subgroup (11.7 versus 9.6 months, HR 0.77, 95%CI: 0.56–1.07, p = 0.12) or the RAS wild-type, RPA2 rs7356 C/C variant subgroup. Conclusion: RPA2 SNPs may serve as predictive and prognostic markers of oxaliplatin responsiveness in a RAS status-dependent manner in mCRC patients receiving FOLFOXIRI + BEV.
Collapse
|
43
|
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci U S A 2020; 117:14127-14138. [PMID: 32522879 PMCID: PMC7321962 DOI: 10.1073/pnas.1921311117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA repair is essential to life and to avoidance of genome instability and cancer. Xeroderma pigmentosum group G (XPG) protein acts in multiple DNA repair pathways, both as an active enzyme and as a scaffold for coordinating with other repair proteins. We present here the structure of the catalytic domain responsible for its DNA binding and nuclease activity. Our analysis provides structure-based hypotheses for how XPG recognizes its bubble DNA substrate and predictions of the structural impacts of XPG disease mutations associated with two phenotypically distinct diseases: xeroderma pigmentosum (XP, skin cancer prone) or Cockayne syndrome (XP/CS, severe progressive developmental defects). Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG’s role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Collapse
|
44
|
van der Weegen Y, Golan-Berman H, Mevissen TET, Apelt K, González-Prieto R, Goedhart J, Heilbrun EE, Vertegaal ACO, van den Heuvel D, Walter JC, Adar S, Luijsterburg MS. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat Commun 2020; 11:2104. [PMID: 32355176 PMCID: PMC7192910 DOI: 10.1038/s41467-020-15903-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair. The response to DNA damage-stalled RNA polymerase II leads to the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. Here, the authors reveal the complex assembly mechanism of the TCR complex in human cells.
Collapse
Affiliation(s)
- Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Hadar Golan-Berman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Tycho E T Mevissen
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Elisheva E Heilbrun
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
45
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
46
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Cheon NY, Kim HS, Yeo JE, Schärer OD, Lee JY. Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. Nucleic Acids Res 2019; 47:8337-8347. [PMID: 31372632 PMCID: PMC6895271 DOI: 10.1093/nar/gkz629] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/14/2022] Open
Abstract
DNA repair is critical for maintaining genomic integrity. Finding DNA lesions initiates the entire repair process. In human nucleotide excision repair (NER), XPC-RAD23B recognizes DNA lesions and recruits downstream factors. Although previous studies revealed the molecular features of damage identification by the yeast orthologs Rad4-Rad23, the dynamic mechanisms by which human XPC-RAD23B recognizes DNA defects have remained elusive. Here, we directly visualized the motion of XPC-RAD23B on undamaged and lesion-containing DNA using high-throughput single-molecule imaging. We observed three types of one-dimensional motion of XPC-RAD23B along DNA: diffusive, immobile and constrained. We found that consecutive AT-tracks led to increase in proteins with constrained motion. The diffusion coefficient dramatically increased according to ionic strength, suggesting that XPC-RAD23B diffuses along DNA via hopping, allowing XPC-RAD23B to bypass protein obstacles during the search for DNA damage. We also examined how XPC-RAD23B identifies cyclobutane pyrimidine dimers (CPDs) during diffusion. XPC-RAD23B makes futile attempts to bind to CPDs, consistent with low CPD recognition efficiency. Moreover, XPC-RAD23B binds CPDs in biphasic states, stable for lesion recognition and transient for lesion interrogation. Taken together, our results provide new insight into how XPC-RAD23B searches for DNA lesions in billions of base pairs in human genome.
Collapse
Affiliation(s)
- Na Young Cheon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
48
|
Rechkunova NI, Maltseva EA, Lavrik OI. Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair. BIOCHEMISTRY (MOSCOW) 2019; 84:1008-1020. [PMID: 31693460 DOI: 10.1134/s0006297919090037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
49
|
Abstract
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human disorders caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated ageing. All three syndromes include developmental abnormalities, indicating an important role for optimal transcription and for NER in protecting against spontaneous DNA damage during embryonic development. Here, we review the current knowledge on genes that function in NER that also affect embryonic development, in particular the development of a fully functional nervous system.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
50
|
Choong PF, Teh HX, Teoh HK, Ong HK, Cheong SK, Kamarul T. DNA repair efficiency associated with reprogrammed osteosarcoma cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|