1
|
Dong W, Luo Y, He D, Zhang M, Zeng J, Chen Y. Oncolytic virotherapy against lung cancer: key receptors and signaling pathways of viral entry. Front Immunol 2024; 15:1473288. [PMID: 39430750 PMCID: PMC11486668 DOI: 10.3389/fimmu.2024.1473288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer accounts for the highest cancer-related mortality worldwide. While immunotherapies targeting anti-tumor immune responses have demonstrated efficacy in clinical practice, the demand for novel treatment modalities remains urgent. Oncolytic viruses (OVs), which selectively kill tumor cells while stimulating an anti-tumor immune response, represent a potential breakthrough in lung cancer therapy. The induction of anti-tumor immunity by OVs is central to their overall therapeutic effectiveness. Many natural receptors on the surface of cancer cells are dysregulated, providing potential entry points for OVs. Furthermore, the inherent dysregulation of some key signaling pathways in lung cancer cells promotes proliferation, progression and metastasis, which may facilitate selective viral replication. In this review, we explore the application of OVs in lung cancer by analyzing several major OVs and their corresponding entry receptors. Then, we also examine the key signaling pathways and molecules with the potential to synergize with OVs in modulating the immune tumor microenvironment. Finally, we discuss the combination and administration strategies that warrant further clinical trials for validation. Despite certain limitations, the tolerability of OVs positions virotherapy as a promising avenue in the future of lung cancer treatment.
Collapse
Affiliation(s)
- Wenxun Dong
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Luo
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Daqian He
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
| | - Jingtong Zeng
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Ying Chen
- Department of Thoracic Surgery I, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
2
|
He X, Yao W, Zhu JD, Jin X, Liu XY, Zhang KJ, Zhao SL. Potent antitumor efficacy of human dental pulp stem cells armed with YSCH-01 oncolytic adenovirus. J Transl Med 2023; 21:688. [PMID: 37789452 PMCID: PMC10546667 DOI: 10.1186/s12967-023-04539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Systemic administration of oncolytic adenovirus for cancer therapy is still a challenge. Mesenchymal stem cells as cell carriers have gained increasing attention in drug delivery due to their excellent tumor tropism, immunosuppressive modulatory effects, and paracrine effects. However, the potential of human dental pulp stem cells (hDPSCs) loaded with oncolytic adenovirus for cancer biotherapy has not been investigated yet. METHODS The stemness of hDPSCs was characterized by FACS analysis and Alizarin red staining, Oil Red O staining, and immunofluorescence assays. The biological fitness of hDPSCs loaded with oncolytic adenovirus YSCH-01 was confirmed by virus infection with different dosages and cell viability CCK-8 assays. Additionally, the expression of CAR receptor in hDPSCs was detected by qPCR assay. Tumor tropism of hDPSC loaded with YSCH-01 in vitro and in vivo was investigated by Transwell assays and living tumor-bearing mice imaging technology and immunohistochemistry, Panoramic scanning of frozen section slices assay analysis. Furthermore, the antitumor efficacy was observed through the different routes of YSCH-01/hPDSCs administration in SW780 and SCC152 xenograft models. The direct tumor cell-killing effect of YSCH-01/hDPSCs in the co-culture system was studied, and the supernatant of YSCH-01/hDPSCs inhibited cell growth was further analyzed by CCK-8 assays. RESULTS hDPSCs were found to be susceptible to infection by a novel oncolytic adenovirus named YSCH-01 and were capable of transporting this virus to tumor sites at 1000 VP/cell infectious dosage in vitro and in vivo. Moreover, it was discovered that intraperitoneal injection of hDPSCs loaded with oncolytic adenovirus YSCH-01 exhibited potential anti-tumor effects in both SW780 and SCC152 xenograft models. The crucial role played by the supernatant secretome derived from hDPSCs loaded with YSCH-01 significantly exerted a specific anti-tumor effect without toxicity for normal cells, in both an active oncolytic virus and an exogenous protein-independent manner. Furthermore, the use of hDPSCs as a cell carrier significantly reduced the required dosage of virus delivery in vivo compared to other methods. CONCLUSIONS These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.
Collapse
Affiliation(s)
- Xu He
- Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Yao
- Shanghai Fengxian Stomatological Hospital, 189 Wanghe Road, Fengxian District, Shanghai, 201499, China
| | - Ji-Ding Zhu
- Shanghai Fengxian Stomatological Hospital, 189 Wanghe Road, Fengxian District, Shanghai, 201499, China
| | - Xin Jin
- Department of Stomatology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Xin-Yuan Liu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, 1588 Huhang Road, Fengxian District, Shanghai, 201499, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, 1588 Huhang Road, Fengxian District, Shanghai, 201499, China.
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China.
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China.
| | - Shou-Liang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, 12 Urumqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
3
|
Kremling V, Loll B, Pach S, Dahmani I, Weise C, Wolber G, Chiantia S, Wahl MC, Osterrieder N, Azab W. Crystal structures of glycoprotein D of equine alphaherpesviruses reveal potential binding sites to the entry receptor MHC-I. Front Microbiol 2023; 14:1197120. [PMID: 37250020 PMCID: PMC10213783 DOI: 10.3389/fmicb.2023.1197120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.
Collapse
Affiliation(s)
- Viviane Kremling
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Szymon Pach
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Ismail Dahmani
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Christoph Weise
- BioSupraMol Core Facility, Bio-Mass Spectrometry, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Salvatore Chiantia
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
5
|
Paris O, Mennechet FJD, Kremer EJ. Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies. Front Immunol 2022; 13:975910. [PMID: 36275713 PMCID: PMC9579290 DOI: 10.3389/fimmu.2022.975910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Collapse
|
6
|
Dienst EGT, Kremer EJ. Adenovirus receptors on antigen-presenting cells of the skin. Biol Cell 2022; 114:297-308. [PMID: 35906865 DOI: 10.1111/boc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Skin, the largest human organ, is part of the first line of physical and immunological defense against many pathogens. Understanding how skin antigen-presenting cells (APCs) respond to viruses or virus-based vaccines is crucial to develop antiviral pharmaceutics, and efficient and safe vaccines. Here, we discuss the way resident and recruited skin APCs engage adenoviruses and the impact on innate immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
9
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
10
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
11
|
Mystery eye: Human adenovirus and the enigma of epidemic keratoconjunctivitis. Prog Retin Eye Res 2019; 76:100826. [PMID: 31891773 DOI: 10.1016/j.preteyeres.2019.100826] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Known to occur in widespread outbreaks, epidemic keratoconjunctivitis (EKC) is a severe ocular surface infection with a strong historical association with human adenovirus (HAdV). While the conjunctival manifestations can vary from mild follicular conjunctivitis to hyper-acute, exudative conjunctivitis with formation of conjunctival membranes, EKC is distinct as the only form of adenovirus conjunctivitis in which the cornea is also involved, likely due to the specific corneal epithelial tropism of its causative viral agents. The initial development of a punctate or geographic epithelial keratitis may herald the later formation of stromal keratitis, and manifest as subepithelial infiltrates which often persist or recur for months to years after the acute infection has resolved. The chronic keratitis in EKC is associated with foreign body sensation, photophobia, glare, and reduced vision. However, over a century since the first clinical descriptions of EKC, and over 60 years since the first causative agent, human adenovirus type 8, was identified, our understanding of this disorder remains limited. This is underscored by a current lack of effective diagnostic tools and treatments. In part, stasis in our knowledge base has been encouraged by the continued acceptance, and indeed propagation of, inaccurate paradigms pertaining to disease etiology and pathogenesis, particularly with regard to mechanisms of innate and adaptive immunity within the cornea. Owing to its often persistent and medically refractory visual sequelae, reconsideration of key aspects of EKC disease biology is warranted to identify new treatment targets to curb its worldwide socioeconomic burden.
Collapse
|
12
|
Song Y, Wei Q, Liu Y, Bai Y, Deng R, Xing G, Zhang G. Development of novel subunit vaccine based on truncated fiber protein of egg drop syndrome virus and its immunogenicity in chickens. Virus Res 2019; 272:197728. [PMID: 31442468 DOI: 10.1016/j.virusres.2019.197728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Egg-drop syndrome virus (EDSV) is an avian adenovirus that causes markedly decrease in egg production and in the quality of the eggs when it infects chickens. In this report, we engineered truncated fiber protein containing the entire knob domain and part of the shaft region as a vaccine candidate. The protein was obtained in the soluble fraction in Escherichia coli (E. coli), and expression level after nickel-affinity purification was 126 mg/L. By means of multiple characterization methods, it is demonstrated that the recombinant protein retains the native trimeric structure. A single inoculation with the structure-stabilized recombinant protein, even at the lowest dose of 2 μg, stimulated hemagglutination inhibition (HI) antibody responses in chickens, for at least 16 weeks. Neutralizing titers in sera from the protein immunized groups was similar to that of inactivated vaccine immunized group. The lymphocyte proliferation response and cytokine secretion were also induced in immunized SPF chickens. In addition, immunization with the fiber protein also significantly reduced the viral load in the liver. Taken together, these results suggest the truncated fiber protein as an effective single dose, long lasting and rapidly effective vaccine to protect against EDSV.
Collapse
Affiliation(s)
- Yapeng Song
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
13
|
Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43. Oncotarget 2018; 7:53414-53429. [PMID: 27462785 PMCID: PMC5288196 DOI: 10.18632/oncotarget.10800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 02/03/2023] Open
Abstract
Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.
Collapse
|
14
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
15
|
Hadpech S, Nangola S, Chupradit K, Fanhchaksai K, Furnon W, Urvoas A, Valerio-Lepiniec M, Minard P, Boulanger P, Hong SS, Tayapiwatana C. Alpha-helicoidal HEAT-like Repeat Proteins (αRep) Selected as Interactors of HIV-1 Nucleocapsid Negatively Interfere with Viral Genome Packaging and Virus Maturation. Sci Rep 2017; 7:16335. [PMID: 29180782 PMCID: PMC5703948 DOI: 10.1038/s41598-017-16451-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A new generation of artificial proteins, derived from alpha-helicoidal HEAT-like repeat protein scaffolds (αRep), was previously characterized as an effective source of intracellular interfering proteins. In this work, a phage-displayed library of αRep was screened on a region of HIV-1 Gag polyprotein encompassing the C-terminal domain of the capsid, the SP1 linker and the nucleocapsid. This region is known to be essential for the late steps of HIV-1 life cycle, Gag oligomerization, viral genome packaging and the last cleavage step of Gag, leading to mature, infectious virions. Two strong αRep binders were isolated from the screen, αRep4E3 (32 kDa; 7 internal repeats) and αRep9A8 (28 kDa; 6 internal repeats). Their antiviral activity against HIV-1 was evaluated in VLP-producer cells and in human SupT1 cells challenged with HIV-1. Both αRep4E3 and αRep9A8 showed a modest but significant antiviral effects in all bioassays and cell systems tested. They did not prevent the proviral integration reaction, but negatively interfered with late steps of the HIV-1 life cycle: αRep4E3 blocked the viral genome packaging, whereas αRep9A8 altered both virus maturation and genome packaging. Interestingly, SupT1 cells stably expressing αRep9A8 acquired long-term resistance to HIV-1, implying that αRep proteins can act as antiviral restriction-like factors.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Faculty of Pharmaceutical Science, Burapha University, Muang District, Chonburi Province, 20131, Thailand.,University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanda Fanhchaksai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wilhelm Furnon
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Pierre Boulanger
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Saw-See Hong
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France. .,Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, 75654, Paris Cedex 13, France.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
Gupta A, Ahmed KA, Ayalew LE, Popowich S, Kurukulasuriya S, Goonewardene K, Gunawardana T, Karunarathna R, Ojkic D, Tikoo SK, Willson P, Gomis S. Immunogenicity and protective efficacy of virus-like particles and recombinant fiber proteins in broiler-breeder vaccination against fowl adenovirus (FAdV)-8b. Vaccine 2017; 35:2716-2722. [PMID: 28396209 DOI: 10.1016/j.vaccine.2017.03.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 11/17/2022]
Abstract
Inclusion body hepatitis (IBH) is an economically important diseases in broiler chicken industry. Several serotypes of fowl adenovirus (FAdV) can cause IBH, among them, serotype FAdV-8b is associated with the majority of the IBH cases in Canada. Here, we evaluated FAdV-8b virus-like particles (VLPs) and recombinant FAdV-8b fiber proteins (expressed in E. coli) as potential broiler-breeder vaccines against IBH. For assessing the immunogenicity of vaccines, we investigated both humoral and cellular immunity. The humoral immune response was evaluated by determining total IgY and virus-neutralizing antibody in serum at 14, 28, 35 and 60days post-immunization (dpi). We examined cellular immunity using flow cytometry by determining CD4:CD8 ratio change in peripheral blood after the booster vaccination. The protective effect of vaccines was tested by challenging 14day-old progeny (n=30/group) carrying maternal antibodies (MtAb) by challenging with virulent FAdV-8b virus (1×107 TCID50, FAdV-8b-SK). Although total IgY levels were comparable in all groups, the neutralizing antibody response in broiler-breeders at 35 and 60 dpi was significantly (p<0.05) higher those vaccinated with FAdV-8b VLPs followed by FAdV-8b fiber compared to fiber-knob. Moreover, vaccines comprised of FAdV-8b VLPs and FAdV-8b fiber rather than FAdV-8b fiber-knob efficiently elicited the cell-mediated immune response as evidenced by a statistically significant (p<0.05) CD8+ T-cell proliferative response in broiler-breeders four days after the booster vaccination. Unlike FAdV-8b fiber-knob, FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders were able to transfer a substantial amount (28.4±9%) of MtAb to their progeny. Challenge revealed that MtAb provided 100% and 82.7% protection in progeny hatched from FAdV-8b VLPs, and FAdV-8b fiber vaccinated broiler-breeders, respectively. Collectively, our data suggest that FAdV-8b subunit vaccine-induced MtAb efficiently protected progeny against clinical IBH and broiler-breeder vaccination with subunit vaccines is a potential approach to protect against IBH.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kalhari Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ruwani Karunarathna
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Davor Ojkic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
17
|
Yousuf MA, Lee JS, Zhou X, Ramke M, Lee JY, Chodosh J, Rajaiya J. Protein Kinase C Signaling in Adenoviral Infection. Biochemistry 2016; 55:5938-5946. [PMID: 27700064 DOI: 10.1021/acs.biochem.6b00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of protein kinase C (PKC), a serine/threonine protein kinase, ubiquitously influences cellular signal transduction and has been shown to play a role in viral entry. In this study, we explored a role for PKC in human adenovirus type 37 infection of primary human corneal fibroblasts, a major target cell for infection. We sought evidence for an interaction between PKC activation and two potential downstream targets: cSrc kinase, shown previously to play a critical role in adenovirus signaling in these cells, and caveolin-1, reported earlier to be important to entry of adenovirus type 37. Infection of fibroblasts increased PKCα phosphorylation and translocation of PKCα from the cytosol to caveolin-1 containing vesicles. Virus-induced phosphorylation of both cSrc and AKT was abolished in cell lysates pretreated with calphostin C, a chemical inhibitor of PKC. Inhibition of PKC also reduced virus associated phosphorylation of caveolin-1, while inhibition of cSrc by the chemical inhibitor PP2 reduced only caveolin-1 phosphorylation, but not PKCα phosphorylation, in lipid rafts. These results suggest a role for PKCα upstream to both cSrc and caveolin-1. Phosphorylated PKCα was found in the same endosomal fractions as phosphorylated cSrc, and PKCα was present to a greater degree in caveolin-1 pull downs from virus infected than mock infected cell lysates. Calphostin C also reduced early viral gene expression, indicating that PKCα activity may be required for viral entry. PKCα plays a central role in adenovirus infection of corneal fibroblasts and regulation of downstream molecules, including the important lipid raft component caveolin-1.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ji Sun Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiaohong Zhou
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Mirja Ramke
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - James Chodosh
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jaya Rajaiya
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
18
|
Hasenburg A, Fischer DC, Tong XW, Rojas-Martinez A, Kaufman RH, Ramzy I, Kohlberger P, Orlowska-Volk M, Aguilar-Cordova E, Kieback DG. Adenovirus-Mediated Thymidine Kinase Gene Therapy for Recurrent Ovarian Cancer: Expression of Coxsackie-Adenovirus Receptor and Integrins αvβ3 and αvβ5. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A. Hasenburg
- Department of Obstetrics and Gynecology, Department of Pathology, University Medical Center, Freiburg, Germany; Department of Obstetrics and Gynecology, Department of Pediatrics/Hematology-Oncology, and Department of Pathology, Baylor College of Medicine, Houston, Texas; Harvard Gene Therapy Initiative, Boston, Massachusetts; Department of Obstetrics and Gynecology, University Medical Center, Maastricht, The Netherlands; Department of Obsterics and Gynecology 1, Freiburg University Medical Center,
| | | | | | | | | | | | | | | | | | - D. G. Kieback
- Department of Obstetrics and Gynecology, Department of Pathology, University Medical Center, Freiburg, Germany; Department of Obstetrics and Gynecology, Department of Pediatrics/Hematology-Oncology, and Department of Pathology, Baylor College of Medicine, Houston, Texas; Harvard Gene Therapy Initiative, Boston, Massachusetts; Department of Obstetrics and Gynecology, University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
19
|
Vasiljevic S, Beale EV, Bonomelli C, Easthope IS, Pritchard LK, Seabright GE, Caputo AT, Scanlan CN, Dalziel M, Crispin M. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor. Mol Immunol 2015; 68:234-43. [PMID: 26391350 DOI: 10.1016/j.molimm.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies.
Collapse
Affiliation(s)
- Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Emma V Beale
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Camille Bonomelli
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Iona S Easthope
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Christopher N Scanlan
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
20
|
Sakr HI, Coleman DT, Cardelli JA, Mathis JM. Characterization of an Oncolytic Adenovirus Vector Constructed to Target the cMet Receptor. Oncolytic Virother 2015; 4:119-132. [PMID: 26866014 PMCID: PMC4746000 DOI: 10.2147/ov.s87369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Hany I Sakr
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, LA, USA; Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - James A Cardelli
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - J Michael Mathis
- Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Excoffon KJDA, Bowers JR, Sharma P. 1. Alternative splicing of viral receptors: A review of the diverse morphologies and physiologies of adenoviral receptors. RECENT RESEARCH DEVELOPMENTS IN VIROLOGY 2015; 9:1-24. [PMID: 25621323 PMCID: PMC4302334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the biology of cell surface proteins is important particularly when they are utilized as viral receptors for viral entry. By manipulating the expression of cell surface receptors that have been coopted by viruses, the susceptibility of an individual to virus-induced disease or, alternatively, the effectiveness of viral-based gene therapy can be modified. The most commonly studied vector for gene therapy is adenovirus. The majority of adenovirus types utilize the coxsackievirus and adenovirus receptor (CAR) as a primary receptor to enter cells. Species B adenovirus do not interact with CAR, but instead interact with the cell surface proteins desmoglein-2 (DSG-2) and cluster of differentiation 46 (CD46). These cell surface proteins exhibit varying degrees of alternative mRNA splicing, creating an estimated 20 distinct protein isoforms. It is likely that alternative splice forms have allowed these proteins to optimize their effectiveness in a plethora of niches, including roles as cell adhesion proteins and regulators of the innate immune system. Interestingly, there are soluble isoforms of these viral receptors, which lack the transmembrane domain. These soluble isoforms can potentially bind to the surface of a virus in the extracellular compartment, blocking the ability of the virus to bind to the host cell, reducing viral infectivity. Finally, the diversity of viral receptor isoforms appears to facilitate an assortment of interactions between viral receptor proteins and cytosolic proteins, leading to differential sorting in polarized cells. Using adenoviral receptors as a model system, the purpose of this review is to highlight the role that isoform-specific protein localization plays in the entry of pathogenic viruses from the apical surface of polarized epithelial cells.
Collapse
|
22
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014; 14:1241-57. [PMID: 24773178 DOI: 10.1517/14712598.2014.915307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014. [PMID: 24773178 DOI: 10.1517/14712598.2014.91530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012; 33:442-8. [PMID: 22621975 DOI: 10.1016/j.tips.2012.04.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022]
Abstract
Cancer, cardiovascular disease, and infectious diseases are all global health threats. To combat these diseases with gene therapies, adenovirus-based vectors have been developed. Although certain clinical trials appear successful, there is an obvious need to improve the efficacy of most adenovirus-based vectors. For the most commonly used vector (based on type 5; Ad5), a main problem is its accumulation in the liver, which can be attributed to interactions with specific host factors. The diverse tropism for types other than Ad5 implies that vectors based on alternative types could have advantages. The numerous interactions of different adenoviruses with host molecules - such as the recently identified desmoglein-2 receptor - may cause novel and unexpected obstacles, but also may provide possibilities for vectors based on alternative types. This review provides an update of new and previously known molecules that mediate cellular attachment of human adenoviruses and discusses how these may influence the targeting of adenovirus-based vectors.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
25
|
Zhou X, Robinson CM, Rajaiya J, Dehghan S, Seto D, Jones MS, Dyer DW, Chodosh J. Analysis of human adenovirus type 19 associated with epidemic keratoconjunctivitis and its reclassification as adenovirus type 64. Invest Ophthalmol Vis Sci 2012; 53:2804-11. [PMID: 22467570 PMCID: PMC3367469 DOI: 10.1167/iovs.12-9656] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Human adenovirus species D type 19 (HAdV-D19) has been associated with epidemic keratoconjunctivitis (EKC), a highly inflammatory infection of the ocular surface. Confusion exists regarding the origins of HAdV-D19. The prototype virus (HAdV-D19p) does not cause EKC, while a virus identified later with the identical serologic determinant is a significant ocular pathogen. METHODS High throughput genome sequencing and bioinformatics analysis were performed on HAdV-D19p and three HAdV-D19 EKC strains, and compared to the previously sequenced clinical isolate, HAdV-D19 (C) and HAdV-D37. Corneas of C57BL/6J mice were injected with HAdV-D19p, HAdV-D19 (C), or virus-free buffer, and inflammation assessed by clinical examination, flow cytometry, and cytokine ELISA. Confocal microscopy and real-time PCR of infected corneal cell cultures were used to test viral entry. RESULTS HAdV-D19 (C) and the other clinical EKC isolates showed nearly 100% sequence identity. EKC strains diverged from HAdV-D19p in the penton base, E3, and fiber transcription units. Simplot analysis showed recombination between EKC-associated HAdV-D19 with HAdV-D37, HAdV-D22, and HAdV-D19p, the latter contributing only the hexon gene, the principal serum neutralization determinant. HAdV-D19p induced stromal keratitis in the C57BL/6J mouse, but failed to infect productively human corneal epithelial cells. These data led to retyping of the clinical EKC isolates with a HAdV-D19 hexon gene as HAdV-D64. CONCLUSIONS HAdV-D19 associated with EKC (HAdV-D64) originated from a recombination between HAdV-D19p, HAdV-D37, and HAdV-D22, and was mischaracterized because of a shared hexon gene. HAdV-D19p is not infectious for corneal epithelial cells, thus explaining the lack of any association with keratitis.
Collapse
Affiliation(s)
- Xiaohong Zhou
- From the
Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Christopher M. Robinson
- From the
Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Jaya Rajaiya
- From the
Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Shoaleh Dehghan
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - Donald Seto
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - Morris S. Jones
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - David W. Dyer
- and the
Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James Chodosh
- From the
Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Marvin SA, Wiethoff CM. Emerging roles for ubiquitin in adenovirus cell entry. Biol Cell 2012; 104:188-98. [PMID: 22251092 DOI: 10.1111/boc.201100096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/13/2012] [Indexed: 11/28/2022]
Abstract
Adenovirus relies on numerous interactions between viral and host cell proteins to efficiently enter cells. Undoubtedly, post-translational modifications of host and cellular proteins can impact the efficiency of this cell entry process. Ubiquitylation, once simply thought of as a modification targeting proteins for proteasomal degradation, is now known to regulate protein trafficking within cells, protein-protein interactions and cell signalling pathways. Accumulating evidence suggests that protein ubiquitylation can influence all stages of the life cycle of other viruses such as cell entry, replication and egress. Until recently, the influence of ubiquitylation has only been documented during adenovirus replication. This review highlights the most recent evidence demonstrating direct engagement of host ubiquitylation and SUMOylation machinery by adenovirus during cell entry. Additionally, potential roles for host protein ubiquitylation and the potential for adenovirus regulation of host ubiquitylation machinery during cell entry are discussed.
Collapse
Affiliation(s)
- Shauna A Marvin
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
27
|
Nangola S, Urvoas A, Valerio-Lepiniec M, Khamaikawin W, Sakkhachornphop S, Hong SS, Boulanger P, Minard P, Tayapiwatana C. Antiviral activity of recombinant ankyrin targeted to the capsid domain of HIV-1 Gag polyprotein. Retrovirology 2012; 9:17. [PMID: 22348230 PMCID: PMC3308923 DOI: 10.1186/1742-4690-9-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/20/2012] [Indexed: 01/01/2023] Open
Abstract
Background Ankyrins are cellular mediators of a number of essential protein-protein interactions. Unlike intrabodies, ankyrins are composed of highly structured repeat modules characterized by disulfide bridge-independent folding. Artificial ankyrin molecules, designed to target viral components, might act as intracellular antiviral agents and contribute to the cellular immunity against viral pathogens such as HIV-1. Results A phage-displayed library of artificial ankyrins was constructed, and screened on a polyprotein made of the fused matrix and capsid domains (MA-CA) of the HIV-1 Gag precursor. An ankyrin with three modules named AnkGAG1D4 (16.5 kDa) was isolated. AnkGAG1D4 and MA-CA formed a protein complex with a stoichiometry of 1:1 and a dissociation constant of Kd ~ 1 μM, and the AnkGAG1D4 binding site was mapped to the N-terminal domain of the CA, within residues 1-110. HIV-1 production in SupT1 cells stably expressing AnkGAG1D4 in both N-myristoylated and non-N-myristoylated versions was significantly reduced compared to control cells. AnkGAG1D4 expression also reduced the production of MLV, a phylogenetically distant retrovirus. The AnkGAG1D4-mediated antiviral effect on HIV-1 was found to occur at post-integration steps, but did not involve the Gag precursor processing or cellular trafficking. Our data suggested that the lower HIV-1 progeny yields resulted from the negative interference of AnkGAG1D4-CA with the Gag assembly and budding pathway. Conclusions The resistance of AnkGAG1D4-expressing cells to HIV-1 suggested that the CA-targeted ankyrin AnkGAG1D4 could serve as a protein platform for the design of a novel class of intracellular inhibitors of HIV-1 assembly based on ankyrin-repeat modules.
Collapse
Affiliation(s)
- Sawitree Nangola
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
29
|
Gonzalez G, DaFonseca S, Errazuriz E, Coric P, Souquet F, Turcaud S, Boulanger P, Bouaziz S, Hong SS. Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative luciferase-Vpr packaging-based assay. PLoS One 2011; 6:e27234. [PMID: 22073298 PMCID: PMC3207847 DOI: 10.1371/journal.pone.0027234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/12/2011] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity.
Collapse
Affiliation(s)
- Gaëlle Gonzalez
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Sandrina DaFonseca
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Elisabeth Errazuriz
- Centre Commun d'Imagerie Laënnec, Université Lyon I, Faculté de Medicine, Lyon, France
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR-8015, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Florence Souquet
- Laboratoire Synthèse et Structure de Molécules d'Intérêt Pharmacologique, CNRS UMR-8638, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Serge Turcaud
- Laboratoire Synthèse et Structure de Molécules d'Intérêt Pharmacologique, CNRS UMR-8638, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Pierre Boulanger
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR-8015, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Saw See Hong
- Université Lyon I & INRA UMR-754, Retrovirus & Comparative Pathology, Lyon, France
| |
Collapse
|
30
|
Aurisicchio L, Ciliberto G. Emerging cancer vaccines: the promise of genetic vectors. Cancers (Basel) 2011; 3:3687-713. [PMID: 24212974 PMCID: PMC3759217 DOI: 10.3390/cancers3033687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 01/18/2023] Open
Abstract
Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Gennaro Ciliberto
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
31
|
Guidetti A, Carlo-Stella C, Ruella M, Miceli R, Devizzi L, Locatelli SL, Giacomini A, Testi A, Buttiglieri S, Risso A, Mariani L, Di Nicola M, Passera R, Tarella C, Gianni AM. Myeloablative doses of yttrium-90-ibritumomab tiuxetan and the risk of secondary myelodysplasia/acute myelogenous leukemia. Cancer 2011; 117:5074-84. [PMID: 21567384 DOI: 10.1002/cncr.26182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/22/2011] [Accepted: 03/10/2011] [Indexed: 11/12/2022]
Abstract
BACKGROUND Because the long-term toxicity of myeloablative radioimmunotherapy remains a matter of concern, the authors evaluated the hematopoietic damage and incidence of secondary myelodysplastic syndrome and acute myelogenous leukemia (sMDS/AML) in patients who received myeloablative doses of the radiolabeled antibody yttrium-90 (⁹⁰Y)-ibritumomab tiuxetan. METHODS The occurrence of sMDS/AML was investigated prospectively in 53 elderly patients with non-Hodgkin lymphoma (NHL) who underwent an autograft after high-dose radioimmunotherapy (HD-RIT) myeloablative conditioning with ⁹⁰Y-ibritumomab tiuxetan. Bone marrow (BM) hematopoietic progenitors and telomere length (TL) also were investigated. RESULTS At a median follow-up of 49 months, 4 patients developed sMDS/AML at 6 months, 12 months, 27 months, and 36 months after HD-RIT, and the 5-year cumulative incidence of sMDS/AML was 8.29%. A significant but transient decrease in BM granulocyte-macrophage progenitors was observed; whereas multilineage, erythroid, and fibroblast progenitors were unaffected. A significant and persistent shortening of BM TL also was detected. A matched-pair analysis comparing the study patients with 55 NHL patients who underwent autografts after chemotherapy-based myeloablative conditioning demonstrated a 8.05% 5-year cumulative incidence of sMDS/AML. CONCLUSIONS HD-RIT for patients with NHL was associated with 1) limited toxicity on hematopoietic progenitors, 2) accelerated TL shortening, and 3) non-negligible incidence of sMDS/AML, which nevertheless was comparable to the incidence observed in a matched group of patients who received chemotherapy-based conditioning. Thus, in the current series of elderly patients with NHL, the development of sMDS/AML was not influenced substantially by HD-RIT.
Collapse
Affiliation(s)
- Anna Guidetti
- Medical Oncology 3, National Cancer Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Domanska-Blicharz K, Tomczyk G, Smietanka K, Kozaczynski W, Minta Z. Molecular characterization of fowl adenoviruses isolated from chickens with gizzard erosions. Poult Sci 2011; 90:983-9. [DOI: 10.3382/ps.2010-01214] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
O'Neill AM, Smith AN, Spangler EA, Whitley EM, Schleis SE, Bird RC, Curiel DT, Thacker EE, Smith BF. Resistance of canine lymphoma cells to adenoviral infection due to reduced cell surface RGD binding integrins. Cancer Biol Ther 2011; 11:651-8. [PMID: 21321486 DOI: 10.4161/cbt.11.7.14690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recombinant adenovirus vectors (Ad) have been recognized as effective in vivo gene delivery vehicles and utilized as gene therapy agents for a number of cancers. The elucidation of viral entry mechanisms has allowed the development of recombinant vectors that exploit existing cell surface receptors to achieve entry into the cell. B lymphocytes are normally resistant to infection by adenovirus 5, likely due to the lack of the Coxsackie and Adenovirus receptor (CAR). Using reverse-transcriptase PCR and flow cytometry, the CD40 receptor has been shown to be expressed on many lymphoma cells. We exploited this finding to develop a gene therapy strategy for treatment of canine B cell lymphoma. Ad5 was targeted to cells expressing CD40 via CD40 ligand (CD40L) and was effective in infecting CD40-expressing control cells; however, both primary canine lymphoma cells and cell lines demonstrated limited evidence of transduction. Following receptor binding, adenovirus entry into cells may require interaction with α(v)β(3/5) integrins; we demonstrate that canine lymphoma cells are deficient in these integrins. Reduced α(v)β(3) integrin expression may render these cells incapable of internalizing Ad vectors. Thus, any viral targeting approaches for treatment of canine lymphoma must also take into account the potential lack of internalization signals.
Collapse
Affiliation(s)
- Ann Marie O'Neill
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gregory SM, Nazir SA, Metcalf JP. Implications of the innate immune response to adenovirus and adenoviral vectors. Future Virol 2011; 6:357-374. [PMID: 21738557 DOI: 10.2217/fvl.11.6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenovirus (AdV) is a common cause of respiratory illness in both children and adults. Respiratory symptoms can range from those of the common cold to severe pneumonia. Infection can also cause significant disease in the immunocompromised and among immunocompetent subjects in close quarters. Fortunately, infection with AdV in the normal host is generally mild. This is one reason why its initial use as a gene-therapy vector appeared to be so promising. Unfortunately, both innate and adaptive responses to the virus have limited the development of AdV vectors as a tool of gene therapy by increasing toxicity and limiting duration of transgene expression. This article will focus on the innate immune response to infection with wild-type AdV and exposure to AdV gene-therapy vectors. As much of the known information relates to the pulmonary inflammatory response, this organ system will be emphasized. This article will also discuss how that understanding has led to the creation of new vectors for use in gene therapy.
Collapse
Affiliation(s)
- Seth M Gregory
- Division of Pulmonary & Critical Care Medicine of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
35
|
Sakakibara A, Tsukuda M, Kondo N, Ishiguro Y, Kimura M, Fujita K, Takahashi H, Matsuda H. Examination of the optimal condition on the in vitro sensitivity to telomelysin in head and neck cancer cell lines. Auris Nasus Larynx 2011; 38:589-99. [PMID: 21362583 DOI: 10.1016/j.anl.2011.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Telomelysin (OBP-301) is a telomerase-specific replication-competent adenovirus with a human telomerase reverse transcriptase (hTERT) promoter. Telomelysin has a strong antitumor effect on a variety of cancers, including head and neck squamous cell carcinoma (HNSCC), and combining telomelysin treatment with paclitaxel or cisplatin enhances the antitumor effect on HNSCC. In the present study, we investigated the relationship between the antitumor activity of telomelysin and tumor cell doubling time(DT), S-phase fraction, and E1A expression. We also investigated whether the antitumor effects of OBP-301-resistant tumor cells are enhanced by cisplatin, paclitaxel, or streptolysin O. METHODS The tumor cell DT of 17 human HNSCC cell lines was examined. Antitumor activities of telomelysin (OBP-301) for each HNSCC cell line were examined by MTT assay. Cell cycle analysis was conducted by flowcytometry. E1A gene expressions after infection with telomelysin, hTERT, CAR (Cocksackie Adenovirus Receptor), and c-Myc were examined by quantitative PCR, and E1A expressions were examined again after pretreatment with cisplatin, paclitaxel, or streptolysin O. Correlations were analyzed by Spearman's correlation coefficient. RESULTS There was a significant relationship between telomelysin sensitivity and DT, S-phase fraction and early E1A expression, and pretreatment with cisplatin, paclitaxel, and streptolysin O increased infectivity of telomelysin-resistant HNSCC cell lines. CONCLUSION These findings are useful for advancing clinical trials, and suggest that adjuvant telomelysin treatment would be effective even in telomelysin-resistant HNSCC cell lines.
Collapse
Affiliation(s)
- Atsuko Sakakibara
- Department of Biology and Function in the Head and Neck, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
37
|
Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-2355. [PMID: 21994621 PMCID: PMC3185574 DOI: 10.3390/v2102290] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023] Open
Abstract
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated “stealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
Collapse
|
38
|
Bru T, Salinas S, Kremer EJ. An update on canine adenovirus type 2 and its vectors. Viruses 2010; 2:2134-2153. [PMID: 21994722 PMCID: PMC3185752 DOI: 10.3390/v2092134] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/27/2022] Open
Abstract
Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.
Collapse
Affiliation(s)
- Thierry Bru
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-467-613-372; Fax: +33-467-040-231
| |
Collapse
|
39
|
Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2:1886-1917. [PMID: 21994713 PMCID: PMC3186006 DOI: 10.3390/v2091886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022] Open
Abstract
Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.
Collapse
Affiliation(s)
| | - Philip Ng
- Author to whom correspondence should be addressed; Tel.: +1 7137984158; E-Mail:
| |
Collapse
|
40
|
Flak MB, Connell CM, Chelala C, Archibald K, Salako MA, Pirlo KJ, Lockley M, Wheatley SP, Balkwill FR, McNeish IA. p21 Promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker. Mol Cancer 2010; 9:175. [PMID: 20598155 PMCID: PMC2904726 DOI: 10.1186/1476-4598-9-175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 07/03/2010] [Indexed: 11/22/2022] Open
Abstract
The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015). We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1) to 0.03 pfu/cell (TOV21G). Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.
Collapse
Affiliation(s)
- Magdalena B Flak
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine, Queen Mary University of London, London EC1 M 6BQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Retargeted adenoviral cancer gene therapy for tumour cells overexpressing epidermal growth factor receptor or urokinase-type plasminogen activator receptor. Gene Ther 2010; 17:1000-10. [PMID: 20410926 DOI: 10.1038/gt.2010.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have assessed the ability of bispecific fusion proteins to improve adenovirus-mediated transfer of therapeutic and marker transgenes. We constructed an expression vector that can be easily modified to synthesize a variety of fusion proteins for retargeting adenoviral gene therapy vectors to cell surface markers, which are differentially expressed between normal and cancer cells. Adenoviral transduction can be improved in a number of tumour cell lines which overexpress EGFR (epidermal growth factor receptor) or uPAR (urokinase-type plasminogen activator receptor), but which have only low levels of endogenous hCAR (human coxsackie B and adenovirus receptor) expression. Up to 40-fold improvement in beta-galactosidase transgene expression was seen using an EGFR retargeting protein, and up to 16-fold using a second fusion protein targeting uPAR. In vitro, our uPAR retargeting fusion protein improved the sensitivity to adenoviral herpes simplex virus thymidine kinase/ganciclovir by an order of magnitude, whereas in vivo, our EGFR retargeting protein is able to significantly delay tumour growth in rodent animal models in a dose-dependent manner. The 'cassette' design of our fusion protein constructs offers a flexible method for the straightforward synthesis of multiple adenoviral retargeting proteins, directed against a variety of tumour-associated antigens, for use in clinical trials.
Collapse
|
42
|
Zhong Z, Shi S, Han J, Zhang Z, Sun X. Anionic liposomes increase the efficiency of adenovirus-mediated gene transfer to coxsackie-adenovirus receptor deficient cells. Mol Pharm 2010; 7:105-15. [PMID: 19968324 DOI: 10.1021/mp900151k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite remarkable progress in the research of both viral and nonviral gene delivery vectors, the drawbacks in each delivery system have limited their clinical applications. Therefore, one of the concepts for developing novel vectors is to overcome the limitations of individual vectors by combining them. In the current study, adenoviral vectors were formulated with anionic liposomes to protect them from neutralizing antibodies and to improve their transduction efficiency in Coxsackievirus-adenovirus receptor (CAR) deficient cells. A calcium-induced phase change method was applied to encapsulate adenovirus 5 (Ad5) into anionic liposomes to formulate the complexes of Ad5 and anionic liposomes (Ad5-AL). Meanwhile, the complexes of Ad5 and cationic liposomes (Ad5-CL) were also prepared as controls. LacZ gene expression in CAR overexpressing cells (A549) and CAR deficient cells (CHO and MDCK) was measured by either qualitative or quantitative detection. Confocal laser scanning microscopy was performed to determine intracellular location of Ad5 after their infection. Human sera with a high titer of antiadenovirus antibody were used to assess the neutralizing antibody protection ability of the complexed vectors. Accompanying the enhanced gene expression, a high ability to introduce Ad5 into cytoplasm and nucleus mediated by Ad5-AL was also observed in CAR deficient cells. Additionally, antibody neutralizing assay indicated that neutralizing serum inhibited naked Ad5 and Ad5-CL at rather higher dilution than Ad5-AL, which demonstrated Ad5-AL was more capable of protecting Ad5 from neutralizing than Ad5-CL. In conclusion, anionic liposomes prepared by the calcium-induced phase change method could significantly enhance the transduction ability of Ad5 in CAR deficient cells.
Collapse
Affiliation(s)
- Zhirong Zhong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, P. R. China
| | | | | | | | | |
Collapse
|
43
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 2009; 9:1279-87. [PMID: 19645630 DOI: 10.1517/14712590903187053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based gene transfer has been successfully utilised in gene therapy and vaccine applications. To date, an increasing number of human clinical trials utilise recombinant Ad-based vectors as a gene transfer platform. In particular, progress has been made recently in utilising Ad-based vectors as a vaccine platform in HIV, cancer immunotherapy approaches and in vaccination for other infections. Despite these successes, the scientific and bio-industrial communities have recently recognised that innate and pre-existing immunity against Ad vectors can constitute a serious obstacle to the development and application of this technology. It is essential to overcome vector-mediated immune responses, such as production of inflammatory cytokines and pre-existing immunity to Ad, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. This review focuses on the biology of Ad infection and the approaches that are being adopted to overcome immunity against the Ad-based vectors.
Collapse
|
45
|
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2009; 61:14-26. [PMID: 19840853 DOI: 10.1016/j.phrs.2009.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 01/11/2023]
Abstract
The clinical manifestation of most diseases of the central nervous system results from neuronal dysfunction or loss. Diseases such as stroke, epilepsy and neurodegeneration (e.g. Alzheimer's disease and Parkinson's disease) share common cellular and molecular mechanisms (e.g. oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction) that contribute to the loss of neuronal function. Neurotrophic factors (NTFs) are secreted proteins that regulate multiple aspects of neuronal development including neuronal maintenance, survival, axonal growth and synaptic plasticity. These properties of NTFs make them likely candidates for preventing neurodegeneration and promoting neuroregeneration. One approach to delivering NTFs to diseased cells is through viral vector-mediated gene delivery. Viral vectors are now routinely used as tools for studying gene function as well as developing gene-based therapies for a variety of diseases. Currently, many clinical trials using viral vectors in the nervous system are underway or completed, and seven of these trials involve NTFs for neurodegeneration. In this review, we discuss viral vector-mediated gene transfer of NTFs to treat neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | | | | |
Collapse
|
46
|
Haisma HJ, Boesjes M, Beerens AM, van der Strate BWA, Curiel DT, Plüddemann A, Gordon S, Bellu AR. Scavenger receptor A: a new route for adenovirus 5. Mol Pharm 2009; 6:366-74. [PMID: 19227971 DOI: 10.1021/mp8000974] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenoviruses are common pathogens associated with respiratory diseases, gastrointestinal illnesses and/or conjunctivitis. Currently, this virus is used as a vector in gene therapy trials. The promise of viral gene therapy applications is substantially reduced because the virus is cleared by liver macrophages upon systemic administration. The mechanism underlying adenoviral tropism to and degradation in macrophages is poorly understood. We identified a new adenoviral receptor, the scavenger receptor A (SR-A), responsible for uptake of the virus in macrophages. CHO cells expressing SR-A showed increased viral transgene expression when compared with wild type cells. Preincubation of J774 macrophage cells with SR-A ligands decreased significantly adenoviral uptake. Electron-microscopy analysis of infected J774 cells showed activation of a viral degradation pathway. Infection of mice with adenovirus resulted in a substantial decrease of the virus in liver macrophages when SR-A was blocked. Our data provide a basis for understanding of the adenoviral uptake and degradation mechanism in macrophages in vitro and in vivo. Inhibition of adenoviral SR-A uptake can be utilized in gene therapy applications to increase its efficiency and efficacy.
Collapse
Affiliation(s)
- Hidde J Haisma
- Department of Therapeutic Gene Modulation, Groningen University Institute for Drug Exploration, University of Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Radyukhin VA. The fine structure of the influenza virus envelope and the concept of transmembrane asymmetry of lateral domains in biomembranes. Mol Biol 2009. [DOI: 10.1134/s0026893309040013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Matthews KS, Alvarez RD, Curiel DT. Advancements in adenoviral based virotherapy for ovarian cancer. Adv Drug Deliv Rev 2009; 61:836-41. [PMID: 19422865 DOI: 10.1016/j.addr.2009.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/28/2009] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is a leading gynecologic malignancy with relatively grim survival statistics. There is a significant need for the development of new treatment options for this malignancy. The development of virotherapy as a treatment option for ovarian cancer has the potential to improve patient survival. Adenoviruses have multiple advantages as vectors for virotherapy including a well-understood structure and the ability to infect cells easily. We will outline the advances in virotherapy in the treatment of ovarian cancer, with particular attention directed toward adenoviral vectors.
Collapse
Affiliation(s)
- Kellie S Matthews
- The Division of Gynecologic Oncology, The University of Alabama at Birmingham, 619 19th Street South, OHB 534, Birmingham, AL 35213, USA.
| | | | | |
Collapse
|
49
|
Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 2009; 392:162-8. [PMID: 19646729 DOI: 10.1016/j.virol.2009.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/11/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
Bovine adenovirus serotype 3 (BAd3) and porcine adenovirus serotype 3 (PAd3) entry into the host cells is independent of Coxsackievirus adenovirus receptor and integrins. The role of sialic acid in BAd3 and PAd3 entry was investigated. Removal of sialic acid by neuraminidase, or blocking sialic acid by wheat germ agglutinin lectin significantly inhibited BAd3, but not PAd3, transduction of Madin-Darby bovine kidney cells. Maackia amurensis agglutinin or Sambucus nigra (elder) agglutinin treatment efficiently blocked BAd3 transduction suggesting that BAd3 utilized alpha(2,3)-linked and alpha(2,6)-linked sialic acid as a cell receptor. BAd3 transduction of MDBK cells was sensitive to sodium periodate, bromelain, or trypsin treatment indicating that the receptor sialoconjugate was a glycoprotein rather than a ganglioside. To determine sialic acid-containing cell membrane proteins that bind to BAd3, virus overlay protein binding assay (VOPBA) was performed and showed that sialylated cell membrane proteins in size of approximately 97 and 34 kDa bind to BAd3. The results suggest that sialic acid serves as a primary receptor for BAd3.
Collapse
|
50
|
Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 2009; 19:165-78. [PMID: 19367611 DOI: 10.1002/rmv.612] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenoviruses (Ads) are the most frequently used viral vectors in gene therapy and cancer therapy. Obstacles to successful clinical application include accumulation of vector and transduction in liver cells, coupled with poor transduction of target cells and tissues such as tumours. Many host molecules, including coagulation factor X, have been identified and suggested to serve as mediators of Ad liver tropism. This review summarises current knowledge concerning these molecules and the mechanisms used by Ads to bind to target cells, and considers the prospects of designing vectors that have been detargeted from the liver and retargeted to cells and tissues of interest in the context of gene therapy and cancer therapy.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, SE-901 85, Sweden.
| |
Collapse
|