1
|
Mata J. Genome-wide mapping of polyadenylation sites in fission yeast reveals widespread alternative polyadenylation. RNA Biol 2013; 10:1407-14. [PMID: 23900342 PMCID: PMC3817161 DOI: 10.4161/rna.25758] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Regulatory elements in the 3′ untranslated regions (UTRs) of eukaryotic mRNAs influence mRNA localization, translation, and stability. 3′-UTR length is determined by the location at which mRNAs are cleaved and polyadenylated. The use of alternative polyadenylation sites is common, and can be regulated in different situations. I present a new method to identify cleavage and polyadenylation sites (CSs) at the genome-wide level. The approach is strand-specific, avoids RNA enzymatic modification steps that can introduce sequence-specific biases, and uses unique molecular identifiers to ensure that all identified CS originates from individual RNA molecules. I applied this method to create the first comprehensive genome-wide map of polyadenylation sites of the fission yeast Schizosaccharomyces pombe, comprising the analysis of 2,021,000 individual mRNAs that defined 8,883 CSs. CSs were identified for 90% of coding genes and 50% of ncRNAs. Alternative polyadenylation was prevalent in both groups, with 41% and 45% of all detected genes, respectively, displaying more than one CS. The specificity of the cleavage reaction was gene-specific, resulting in highly variable levels of heterogeneity in 3′-UTR lengths. Finally, I show that for both coding and non-coding genes, the most common regulatory motif associated with CSs in fission yeast is the canonical human AAUAAA sequence.
Collapse
Affiliation(s)
- Juan Mata
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| |
Collapse
|
2
|
Kamminga LM, Ketting RF. RNAi genes pave their own way. Genes Dev 2011; 25:529-33. [PMID: 21406552 DOI: 10.1101/gad.2038611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterochromatin formation in fission yeast and the role of RNAi in this process have been intensively studied. So far, however, nothing is known about the regulation of expression of RNAi components during these events. Gullerova and colleagues (pp. 556-568) reveal an autoregulatory loop that regulates the expression of RNAi genes and centromeric heterochromatin formation during the cell cycle. Gene orientation plays a surprising role in this process.
Collapse
Affiliation(s)
- Leonie M Kamminga
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands.
| | | |
Collapse
|
3
|
Abstract
RNAi plays a central role in the regulation of eukaryotic genes. In Schizosaccharomyces pombe fission yeast, RNAi involves the formation of siRNA from dsRNA that acts to establish and maintain heterochromatin over centromeres, telomeres, and mating loci. We showed previously that transient heterochromatin also forms over S. pombe convergent genes (CGs). Remarkably, most RNAi genes are themselves convergent. We demonstrate here that transient heterochromatin formed by the RNAi pathway over RNAi CGs leads to their autoregulation in G1-S. Furthermore, the switching of RNAi gene orientation from convergent to tandem causes loss of their G1-S down-regulation. Surprisingly, yeast mutants with tandemized dcr1, ago1, or clr4 genes display aberrant centromeric heterochromatin, which results in abnormal cell morphology. Our results emphasize the significance of gene orientation for correct RNAi gene expression, and suggest a role for cell cycle-dependent formation of RNAi CG heterochromatin in cellular integrity.
Collapse
|
4
|
Cremona N, Potter K, Wise JA. A meiotic gene regulatory cascade driven by alternative fates for newly synthesized transcripts. Mol Biol Cell 2010; 22:66-77. [PMID: 21148298 PMCID: PMC3016978 DOI: 10.1091/mbc.e10-05-0448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To determine the relative importance of transcriptional regulation versus RNA processing and turnover during the transition from proliferation to meiotic differentiation in the fission yeast Schizosaccharomyces pombe, we analyzed temporal profiles and effects of RNA surveillance factor mutants on expression of 32 meiotic genes. A comparison of nascent transcription with steady-state RNA accumulation reveals that the vast majority of these genes show a lag between maximal RNA synthesis and peak RNA accumulation. During meiosis, total RNA levels parallel 3' processing, which occurs in multiple, temporally distinct waves that peak from 3 to 6 h after meiotic induction. Most early genes and one middle gene, mei4, share a regulatory mechanism in which a specialized RNA surveillance factor targets newly synthesized transcripts for destruction. Mei4p, a member of the forkhead transcription factor family, in turn regulates a host of downstream genes. Remarkably, a spike in transcription is observed for less than one-third of the genes surveyed, and even these show evidence of RNA-level regulation. In aggregate, our findings lead us to propose that a regulatory cascade driven by changes in processing and stability of newly synthesized transcripts operates alongside the well-known transcriptional cascade as fission yeast cells enter meiosis.
Collapse
Affiliation(s)
- Nicole Cremona
- Department of Molecular Biology & Microbiology and Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
5
|
McPheeters DS, Cremona N, Sunder S, Chen HM, Averbeck N, Leatherwood J, Wise JA. A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions. Nat Struct Mol Biol 2009; 16:255-64. [PMID: 19198588 PMCID: PMC2776722 DOI: 10.1038/nsmb.1556] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 01/07/2009] [Indexed: 11/30/2022]
Abstract
Expression of crs1 pre-mRNA, encoding a meiotic cyclin, is blocked in actively growing fission yeast cells by a multifaceted mechanism. The most striking feature is that crs1 transcripts are continuously synthesized in vegetative cells, but are targeted for degradation rather than splicing and polyadenylation. Turnover of crs1 RNA requires the exosome, similar to previously described nuclear surveillance and silencing mechanisms, but does not involve a non-canonical poly(A) polymerase. Instead, crs1 transcripts are targeted for destruction by a factor previously implicated in turnover of meiotic RNAs in growing cells. Like exosome mutants, mmi1 mutants splice and polyadenylate vegetative crs1 transcripts. Two regulatory elements are located at the 3′ end of the crs1 gene, consistent with the increased accumulation of spliced RNA in polyadenylation factor mutants. This highly integrated regulatory strategy may ensure a rapid response to adverse conditions, thereby guaranteeing survival.
Collapse
Affiliation(s)
- David S McPheeters
- Center for RNA Molecular Biology and Department of Molecular Biology & Microbiology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
mRNA processing in Antonospora locustae spores. Mol Genet Genomics 2008; 280:565-74. [PMID: 18818951 DOI: 10.1007/s00438-008-0387-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
Microsporidia are a group of intracellular parasites characterized by highly reduced and compact genomes. The presence of a high gene density had several consequences for microsporidian genomes, including a high frequency of overlap between transcripts of adjacent genes. This phenomenon is apparently widespread in microsporidia, and strongly correlated with gene density. However, all analyses to date have focused on one or a few transcripts from many loci, so it is unclear how diverse the pool of transcripts at a given locus may be. To address this question, we characterized initiation and termination points from 62 transcripts in gene-dense regions in Antonospora locustae spores using both conventional and fluorescence-based RACE-PCR procedures. In parallel, we investigated the abundance and nature of transcripts along a 6 kb region surrounding the actin locus of A. locustae using northern blotting, RACE-PCR and previously characterised EST sequences. Overall, we confirmed previous suggestions that most transcripts in A. locustae spores overlap with the downstream gene, but that at the 5' end untranslated regions are very short and overlap is rare. From fluorescence-based RACE-PCR we show that transcription of most genes (31 out of 34) initiates at a single position, whereas 35% of loci analyzed with 3' RACE polyadenylate mRNA at several sites. Finally, we identified the presence of previously unsuspected and very large transcripts in A. locustae spores. Those transcripts were found to overlap up to four open reading frames in different strands, adding a novel layer of complexity in the mRNA transcription of this microsporidian species.
Collapse
|
7
|
Gullerova M, Proudfoot NJ. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 2008; 132:983-95. [PMID: 18358811 DOI: 10.1016/j.cell.2008.02.040] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/21/2007] [Accepted: 02/05/2008] [Indexed: 01/02/2023]
Abstract
Transcription analyses reported in these studies reveal that convergent genes in S. pombe generate overlapping transcripts in the G1 phase of the cell cycle. We show that this double-strand (ds) RNA induces localized RNAi (Dicer and RITS) dependent transient heterochromatin structures including histone H3 lysine 9 trimethylation marks and Swi6 association. Consequently cohesin is recruited to these chromosomal positions through interaction with Swi6. In G2, localized cohesin is further concentrated into the intergenic regions of the convergent genes tested. This results in a block to further dsRNA formation by promoting gene-proximal transcription termination between the convergent genes. Cohesin release at mitosis leads to a new G1 phase with repeated dsRNA formation, transient heterochromatin, and cohesin recruitment. Our results uncover a hitherto unanticipated role for cohesin and further suggest a widespread role for the selective formation of dsRNA, heterochromatin, and subsequent cohesin recruitment in regulated transcriptional termination.
Collapse
Affiliation(s)
- Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | | |
Collapse
|
8
|
Corradi N, Gangaeva A, Keeling PJ. Comparative profiling of overlapping transcription in the compacted genomes of microsporidia Antonospora locustae and Encephalitozoon cuniculi. Genomics 2008; 91:388-93. [PMID: 18280697 DOI: 10.1016/j.ygeno.2007.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/26/2007] [Accepted: 12/17/2007] [Indexed: 11/30/2022]
Abstract
Microsporidia are highly adapted parasites related to fungi with compact, gene-dense genomes. It has previously been shown in the microsporidian Antonospora locustae that transcripts from any given gene overlap with adjacent genes at a high frequency, perhaps due to the compact nature of its genome. However, it is still not known if this phenomenon is widespread among microsporidia or conserved between species, or even whether it is strictly correlated with compaction. To address these questions, we performed a comparison of transcription profiles in two microsporidian species, A. locustae and Encephalitozoon cuniculi. Transcription overlap was characterized at many A. locustae loci representing a range of gene densities, to determine if overlapping transcription correlates with the length of intergenic spacers. In parallel, we examined the first cases of transcription overlap in E. cuniculi. Using regions of the genome where the order of genes is conserved between A. locustae and E. cuniculi, we identified the transcriptional processing points in both species to determine how the process changes through evolutionary time. We show that there is little conservation of processing points between species and indeed that the process differs in important ways in the two genomes. Overall, A. locustae transcripts generally start just upstream of the start codon, but terminate well within or beyond downstream genes. In contrast, E. cuniculi transcripts often initiate within upstream genes, but more frequently terminate prior to the downstream gene. This process appears to have predictable characteristics within a given genome, but to be relatively flexible between species, presenting further challenges to the study of gene expression in these obligately intracellular parasites.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, Canada
| | | | | |
Collapse
|
9
|
Williams BAP, Slamovits CH, Patron NJ, Fast NM, Keeling PJ. A high frequency of overlapping gene expression in compacted eukaryotic genomes. Proc Natl Acad Sci U S A 2005; 102:10936-41. [PMID: 16037215 PMCID: PMC1182411 DOI: 10.1073/pnas.0501321102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene density of eukaryotic nuclear genomes is generally low relative to prokaryotes, but several eukaryotic lineages (many parasites or endosymbionts) have independently evolved highly compacted, gene-dense genomes. The best studied of these are the microsporidia, highly adapted fungal parasites, and the nucleomorphs, relict nuclei of endosymbiotic algae found in cryptomonads and chlorarachniophytes. These systems are now models for the effects of compaction on the form and dynamics of the nuclear genome. Here we report a large-scale investigation of gene expression from compacted eukaryotic genomes. We have conducted EST surveys of the microsporidian Antonospora locustae and nucleomorphs of the cryptomonad Guillardia theta and the chlorarachniophyte Bigelowiella natans. In all three systems we find a high frequency of mRNA molecules that encode sequence from more than one gene. There is no bias for these genes to be on the same strand, so it is unlikely that these mRNAs represent operons. Instead, compaction appears to have reduced the intergenic regions to such an extent that control elements like promoters and terminators have been forced into or beyond adjacent genes, resulting in long untranslated regions that encode other genes. Normally, transcriptional overlap can interfere with expression of a gene, but these genomes cope with high frequencies of overlap and with termination signals within expressed genes. These findings also point to serious practical difficulties in studying expression in compacted genomes, because many techniques, such as arrays or serial analysis of gene expression will be misleading.
Collapse
Affiliation(s)
- Bryony A P Williams
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
10
|
Dai J, Chuang RY, Kelly TJ. DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 2004; 102:337-42. [PMID: 15623550 PMCID: PMC539312 DOI: 10.1073/pnas.0408811102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Origins of DNA replication in Schizosaccharomyces pombe lack a specific consensus sequence analogous to the Saccharomyces cerevisiae autonomously replicating sequence (ARS) consensus, raising the question of how they are recognized by the replication machinery. Because all well characterized S. pombe origins are located in intergenic regions, we analyzed the sequence properties and biological activity of such regions. The AT content of intergenes is very high ( approximately 70%), and runs of A's or T's occur with a significantly greater frequency than expected. Additionally, the two DNA strands in intergenes display compositional asymmetry that strongly correlates with the direction of transcription of flanking genes. Importantly, the sequence properties of known S. pombe origins of DNA replication are similar to those of intergenes in general. In functional studies, we assayed the in vivo origin activity of 26 intergenes in a 68-kb region of S. pombe chromosome 2. We also assayed the origin activity of sets of randomly chosen intergenes with the same length or AT content. Our data demonstrate that at least half of intergenes have potential origin activity and that the relative ability of an intergene to function as an origin is governed primarily by AT content and length. We propose a stochastic model for initiation of DNA replication in the fission yeast. In this model, the number of AT tracts in a given sequence is the major determinant of its probability of binding SpORC and serving as a replication origin. A similar model may explain some features of origins of DNA replication in metazoans.
Collapse
Affiliation(s)
- Jianli Dai
- Department of Molecular Biology and Genetics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
11
|
Dembla-Rajpal N, Seipelt R, Wang Q, Rymond BC. Proteasome inhibition alters the transcription of multiple yeast genes. ACTA ACUST UNITED AC 2004; 1680:34-45. [PMID: 15451170 DOI: 10.1016/j.bbaexp.2004.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 11/25/2022]
Abstract
The 26S proteasome degrades denatured proteins and other proteins targeted for destruction by covalent modification. Here we show that impaired proteasome function influences the transcription of numerous yeast genes. Of 6144 genes present on the macroarray filters used in this study, approximately 5% showed measurable mRNA decreases and 2% showed mRNA increases following 30 min of proteasome inhibition. Northern blot hybridization shows that this response is time- and dose-dependent and occurs with either pharmacological or genetic impairment of the proteasome. A number of splicing factors possess the PEST motif found in certain proteasome substrates. However, mRNA levels drop with proteasome inhibition without obvious increases in intron-bearing pre-mRNA, indicating that splicing is not generally impaired when proteome activity is blocked. Chimeric gene constructs, nuclear run-on experiments, and transcriptional inhibition studies show that for members of three functional groups (i.e., ribosomal protein genes, histone genes, and heat shock protein genes) changes in mRNA levels occur largely by transcriptional modulation. In addition, these studies reveal a possible new means of modulating kinetochore levels through CEP3 expression. Together these data strongly support the view that proteasome activity plays a significant role in the regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Neetu Dembla-Rajpal
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Nutrient-dependent variations in transcript levels of the filamentous fungus Neurospora crassa were studied on a microarray containing some 4700 cDNAs. Cells were grown in minimal and acetate medium. The isolated RNA was analyzed in comparison to the results obtained upon the hybridization of samples prepared from the RNA of cells grown in full medium. Altogether, 160 cDNA clones exhibited significant variations, falling into five distinct subgroups of very similar transcription profiles. This is indicative of the occurrence of a high degree of co-regulation of genes in N. crassa. Especially the regulation of the expression of proteins involved in metabolic pathways was found to be strongly regulated at the RNA level.
Collapse
Affiliation(s)
- Verena Aign
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
13
|
Orozco IJ, Kim SJ, Martinson HG. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J Biol Chem 2002; 277:42899-911. [PMID: 12196547 DOI: 10.1074/jbc.m207415200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes encoding polyadenylated mRNAs depend on their poly(A) signals for termination of transcription. Typically, transcription downstream of the poly(A) signal gradually declines to zero, but often there is a transient increase in polymerase density immediately preceding the decline. Special elements called pause sites are traditionally invoked to account for this increase. Using run-on transcription from the nuclei of transfected cells, we show that both the pause and the gradual decline that follow a poly(A) site are generated entirely by the poly(A) signal itself in a series of model constructs. We found no other elements to be involved and argue that the elements called pause sites do not function through pausing. Both the poly(A)-dependent pause and the subsequent decline occurred earlier for a stronger poly(A) signal than for a weaker one. Because the gradual decline resembles the abortive elongation that occurs downstream of many promoters, one model has proposed that the poly(A) signal flips the polymerase from the elongation mode to the abortive mode like a binary switch. We compared abortive elongators with poly(A) terminators and found a 4-fold difference in processivity. We conclude that poly(A) terminating polymerases do not merely revert to their prior state of low processivity but rather convert to a new termination-prone condition.
Collapse
Affiliation(s)
- Ian J Orozco
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
14
|
Chakraborty S, Sarmah B, Chakraborty N, Datta A. Premature termination of RNA polymerase II mediated transcription of a seed protein gene in Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:2940-9. [PMID: 12087180 PMCID: PMC117036 DOI: 10.1093/nar/gkf334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The poly(A) signal and downstream elements with transcriptional pausing activity play an important role in termination of RNA polymerase II transcription. We show that an intronic sequence derived from the plant seed protein gene (AmA1) specifically acts as a transcriptional terminator in the fission yeast, Schizosaccharomyces pombe. The 3'-end points of mRNA encoded by the AmA1 gene were mapped at different positions in S.pombe and in native cells of Amaranthus hypochondriacus. Deletion analyses of the AmA1 intronic sequence revealed that multiple elements essential for proper transcriptional termination in S.pombe include two site-determining elements (SDEs) and three downstream sequence elements. RT-PCR analyses detected transcripts up to the second SDE. This is the first report showing that the highly conserved mammalian poly(A) signal, AAUAAA, is also functional in S.pombe. The poly(A) site was determined as Y(A) both in native and heterologous systems but at different positions. Deletion of these cis-elements abolished 3'-end processing in S.pombe and a single point mutation in this motif reduced the activity by 70% while enhancing activity at downstream SDE. These results indicate that the bipartite sequence elements as signals for 3'-end processing in fission yeast act in tandem with other cis-acting elements. A comparison of these elements in the AmA1 intron that function as a transcriptional terminator in fission yeast with that of its native genes showed that both require an AT-rich distal and proximal upstream element. However, these sequences are not identical. Transcription run-on analysis indicates that elongating RNA polymerase II molecules accumulate over these pause signals, maximal at 611-949 nt. Furthermore, we demonstrate that the AmA1 intronic terminator sequence acts in a position-independent manner when placed within another gene.
Collapse
Affiliation(s)
- Subhra Chakraborty
- National Center for Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi 110067, India
| | | | | | | |
Collapse
|
15
|
Prescott EM, Proudfoot NJ. Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci U S A 2002; 99:8796-801. [PMID: 12077310 PMCID: PMC124378 DOI: 10.1073/pnas.132270899] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional interference between genes and the regulatory elements of simple eukaryotes such as Saccharomyces cerevisiae is an unavoidable consequence of their compressed genetic arrangement. We have shown previously that with the tandem arranged genes GAL10 and GAL7, inefficient transcriptional termination of the upstream gene inhibits initiation of transcription on the downstream gene. We now show that transcriptional interference can occur also with S. cerevisiae RNA polymerase II genes arranged convergently. We demonstrate that when the GAL10 and GAL7 genes are rearranged in a convergent orientation, transcriptional initiation occurs at full levels. However, as soon as the two transcripts begin to overlap, elongation is restricted, resulting in a severe reduction in steady-state mRNA accumulation. This effect is observed only in cis arrangement, arguing against RNA-interference effects acting on the potential generation of antisense transcripts. These data reinforce the necessity of separating adjacent RNA polymerase II transcription units by efficient termination signals.
Collapse
Affiliation(s)
- Elizabeth M Prescott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
16
|
Sarmah B, Chakraborty N, Chakraborty S, Datta A. Plant pre-mRNA splicing in fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 2002; 293:1209-16. [PMID: 12054504 DOI: 10.1016/s0006-291x(02)00364-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pre-mRNA splicing or the removal of introns from precursor messenger RNAs depends on the accurate recognition of intron sequences by the splicing machinery. We have analyzed various aspects of intron sequence and structure in relation to splice site selection and splicing efficiency of a plant gene AmA1 in Schizosaccharomyces pombe. Earlier, we reported the cloning of AmA1, a seed albumin gene from Amaranthus hypochondriacus [A. Raina, A. Datta, Proc. Natl. Acad. Sci. USA 89 (1992) 11774]. In the absence of an in vitro splicing system for plants, the expression of AmA1 genomic clone in S. pombe has been used to analyze splicing of intron constructs. We aim to focus on S. pombe as a possible alternative and examined its effectiveness as a host for plant gene splicing. The results show here that pre-mRNA transcripts of AmA1 gene underwent splicing in S. pombe.
Collapse
Affiliation(s)
- Bhaskarjyoti Sarmah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
17
|
Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, Geiges B, Küttner F, Lepiniec L, Stierhof YD, Schwarz H, Jürgens G, Mayer U. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes Dev 2002; 16:959-71. [PMID: 11959844 PMCID: PMC152350 DOI: 10.1101/gad.221702] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant microtubules are organized into specific cell cycle-dependent arrays that have been implicated in diverse cellular processes, including cell division and organized cell expansion. Mutations in four Arabidopsis genes collectively called the PILZ group result in lethal embryos that consist of one or a few grossly enlarged cells. The mutant embryos lack microtubules but not actin filaments. Whereas the cytokinesis-specific syntaxin KNOLLE is not localized properly, trafficking of the putative auxin efflux carrier PIN1 to the plasma membrane is normal. The four PILZ group genes were isolated by map-based cloning and are shown to encode orthologs of mammalian tubulin-folding cofactors (TFCs) C, D, and E, and associated small G-protein Arl2 that mediate the formation of alpha/beta-tubulin heterodimers in vitro. The TFC C ortholog, PORCINO, was detected in cytosolic protein complexes and did not colocalize with microtubules. Another gene with a related, although weaker, embryo-lethal phenotype, KIESEL, was shown to encode a TFC A ortholog. Our genetic ablation of microtubules shows their requirement in cell division and vesicle trafficking during cytokinesis, whereas cell growth is mediated by microtubule-independent vesicle trafficking to the plasma membrane during interphase.
Collapse
|
18
|
Kim MJ, Kim JB, Kim DS, Park SD. Glucose-inducible expression of rrg1+ in Schizosaccharomyces pombe: post-transcriptional regulation of mRNA stability mediated by the downstream region of the poly(A) site. Nucleic Acids Res 2002; 30:1145-53. [PMID: 11861905 PMCID: PMC101252 DOI: 10.1093/nar/30.5.1145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
rrg1+(rapid response to glucose) has been isolated previously as a UV-inducible gene in Schizosaccharomyces pombe, designated as uvi22+. However, it was revealed that the transcript level of this gene was regulated by glucose, not by DNA-damaging agents. Glucose depletion led to a rapid decrease in the level of rrg1+ mRNA, by approximately 50% within 30 min. This effect was readily reversed upon re-introduction of glucose within 1 h. High concentrations (4 and 8%) of glucose showed similar effects on increasing the rrg1+ mRNA level compared with 2% glucose, while a low concentration (0.1%) was not effective in raising the rrg1+ mRNA level. In addition, sucrose and fructose could increase rrg1+ mRNA level. Interestingly, the rapid decline in mRNA level seen upon glucose deprivation resulted from precipitous reduction of mRNA half-life. Serial and internal deletions within the 3'-flanking region of rrg1+ revealed that a 210-nt region downstream of the distal poly(A) site was critical for glucose-regulated expression. Moreover, this downstream region participated in 3'-end formation of mRNA. Taken together, this is the first report on glucose-inducible expression regulated post-transcriptionally by control of mRNA stability in S.pombe.
Collapse
Affiliation(s)
- Min Ji Kim
- School of Biological Sciences, Seoul National University, Kwanak-Ku, Shilim-dong, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Abstract
The parasitic protist Giardia lamblia lacks mitochondria and peroxisomes, as well as many typical membrane-bound organella characteristics of higher eukaryotic cells, together with extremely economized usage of DNA sequence, as demonstrated by the lack of introns. We describe here the presence of overlapping genes in G. lamblia, in which a part of the protein coding sequence of one mRNA exists in a region corresponding to the 3'-noncoding region of another mRNA transcribed from a gene on the opposite strand. Recently we isolated 13 kinesin-related cDNAs from G. lamblia. Nine of these cDNAs contain long 3'-noncoding sequences in which long open reading frames (ORFs) exist (in the remaining four cDNAs, the lengths of the 3'-noncoding sequences are very short). The predicted amino acid sequences of these ORFs were subjected to a search for homologies with sequences in databases. The amino acid sequences of the six ORFs exhibited significant sequence similarities with known sequences. These lines of evidence suggest the frequent occurrence of gene overlap in Giardial genome.
Collapse
Affiliation(s)
- N Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
20
|
Tran DP, Kim SJ, Park NJ, Jew TM, Martinson HG. Mechanism of poly(A) signal transduction to RNA polymerase II in vitro. Mol Cell Biol 2001; 21:7495-508. [PMID: 11585929 PMCID: PMC99921 DOI: 10.1128/mcb.21.21.7495-7508.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2001] [Accepted: 07/26/2001] [Indexed: 11/20/2022] Open
Abstract
Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a "pause" element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii) cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.
Collapse
Affiliation(s)
- D P Tran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The molecular connections between mRNA 3' end processing and transcriptional termination have been investigated in S. pombe using a genetic screen. By this approach, we have identified a RNAP II termination domain in the well-defined cleavage polyadenylation factor called CstF-64 in metazoans and Rna15p in S. cerevisiae. Furthermore, this C-terminal domain interacts with Res2, previously identified as a component of the G1/S transition-specific transcription factor MBF. Deletion of res2 in both fission and budding yeast results in a defect in 3' end formation. This raises the possibility that RNAP II transcriptional termination may in some situations be integrated with cell cycle events.
Collapse
Affiliation(s)
- A Aranda
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
22
|
Kim M, Lee W, Park J, Kim JB, Jang YK, Seong RH, Choe SY, Park SD. The stress-activated MAP kinase Sty1/Spc1 and a 3'-regulatory element mediate UV-induced expression of the uvi15(+) gene at the post-transcriptional level. Nucleic Acids Res 2000; 28:3392-402. [PMID: 10954610 PMCID: PMC110690 DOI: 10.1093/nar/28.17.3392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure of Schizosaccharomyces pombe cells to UV light results in increased uvi15(+) gene expression at both the mRNA and protein levels, leading to elevated cell survival. This UV-induced expression of the uvi15(+) gene was reduced in Deltasty1 and Deltawis1 cells lacking the stress-activated protein kinase pathway, but not in DNA damage checkpoint mutants. To further understand the cellular mechanisms responsible for this UV-induced expression, the transcription rate and mRNA half-life were investigated. Transcription run-on assays revealed that the rate of uvi15(+) transcription was increased 1.8-fold regardless of Sty1 when cells were UV irradiated. The half-life of uvi15(+) mRNA was also increased 1.5-fold after UV irradiation, but it was decreased in the Deltasty1 background for both basal and UV-induced mRNAs, indicating that the stress-activated MAPK cascade can mediate UV-induced gene expression by increasing mRNA half-life. Deletion analyses identified a 54 nt element downstream of the distal poly(A) site, which was involved in the increased half-life of uvi15(+) mRNA. These results suggest that both Sty1 and the 3'-regulatory element regulate UV-induced expression of the uvi15(+) gene at the post-transcriptional level.
Collapse
Affiliation(s)
- M Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rogan DF, Cousins DJ, Staynov DZ. Intergenic transcription occurs throughout the human IL-4/IL-13 gene cluster. Biochem Biophys Res Commun 1999; 255:556-61. [PMID: 10049749 DOI: 10.1006/bbrc.1999.0241] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experiments have shown that the previously identified elements in the proximal promoter of IL-4 are not sufficient to fully explain the regulation of its transcription. Consequently we examined another aspect of transcriptional regulation, intergenic transcription, which has been observed throughout the prototypic gene cluster of human beta-globin. These intergenic transcripts are nuclear and it is possible that they play an important functional role in the beta-globin locus. Here we show that intergenic transcription also occurs in the IL-4/IL-13 gene cluster. Intergenic transcription occurs when the surrounding genes are not transcriptionally active; it also occurs in the promoters of these genes; the transcripts are polyadenylated and they remain in the nucleus. We also show that, in HeLa cells which do not express IL-4 or IL-13, intergenic transcription is absent from the region immediately surrounding the genes. This suggests a role for intergenic transcription in the regulation of the IL-4/IL-13 gene cluster.
Collapse
Affiliation(s)
- D F Rogan
- Department of Respiratory Medicine and Allergy, King's College London, Guy's Campus, London, SE1 9RT, United Kingdom
| | | | | |
Collapse
|
24
|
Abstract
Downstream elements (DSEs) with transcriptional pausing activity play an important role in transcription termination of RNA polymerase II. We have defined two such DSEs in Schizosaccharomyces pombe, one for the ura4 gene and a new one in the 3'-end region of the nmt2 gene. Although these DSEs do not have sequence homology, both are orientation specific and are composed of multiple and redundant sequence elements that work together to achieve full pausing activity. Previous studies on the nmt1 and nmt2 genes revealed that transcription extends several kilobases past the genes' poly(A) sites. We show that the insertion of either DSE immediately downstream of the nmt1 poly(A) site induces more immediate termination. nmt2 termination efficiency can be increased by moving the DSE closer to the poly(A) site. These results suggest that DSEs may be a common feature in yeast genes.
Collapse
Affiliation(s)
- A Aranda
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
25
|
Gerads M, Ernst JF. Overlapping coding regions and trancriptional units of two essential chromosomal genes (CCT8, TRP1)in the fungal pathogen Candida albicans. Nucleic Acids Res 1998; 26:5061-6. [PMID: 9801300 PMCID: PMC147973 DOI: 10.1093/nar/26.22.5061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequencing of the 3'-untranslated region of the CCT8 gene of the fungal pathogen Candida albicans revealed that the CCT8 coding region overlaps 13 bp with the coding region of the convergently orientated TRP1 gene. The same overlap was found in three strains with different genetic backgrounds. 3'-RACE was used to determine that the CCT8 and TRP1 transcripts extended significantly into the coding region of the adjacent gene, which also contained sequences encoding the poly(A) addition site. A strain retaining one wild-type CCT8/TRP1 locus on one chromosome and a deletion on the other homologous chromosome contained both CCT8 and TRP1 transcripts; this result indicates that both transcripts are synthesized from the same gene locus. The CCT8/TRP1 gene pair of C . albicans constitutes an extreme natural case of transcriptional overlap in a eukaryote. The results confirm that convergent overlapping transcription units are compatible with expression of the overlapping genes.
Collapse
Affiliation(s)
- M Gerads
- Institut für Mikrobiologie and Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
26
|
Greger IH, Proudfoot NJ. Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J 1998; 17:4771-9. [PMID: 9707436 PMCID: PMC1170806 DOI: 10.1093/emboj/17.16.4771] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated transcriptional interactions between the GAL10 and GAL7 genes of Saccharomyces cerevisiae. Both genes are part of the galactose (GAL) gene cluster which is transcriptionally activated to high levels in the presence of galactose. Since GAL7 is positioned downstream of GAL10 and both genes are expressed co-ordinately at high levels, the possibility that GAL10 transcription influences GAL7 was analysed. Using transcriptional run-on assays, we show that high levels of polymerase are found in the 600 bp GAL10-7 intergenic region that accumulate over the GAL7 promoter. Furthermore, GAL7 transcription is enhanced when the GAL10 upstream activating sequence (UASG) is deleted, indicating that interference between GAL10 and GAL7 is likely to occur in the chromosomal locus. Deletions in the GAL10 poly(A) signal result in complete inactivation of the GAL7 promoter and cause a dramatic increase in bi-cistronic GAL10-7 mRNA, predominantly utilizing the downstream, GAL7 poly(A) site. These data demonstrate a pivotal role for the GAL10 poly(A) site in allowing the simultaneous expression of GAL10 and GAL7. In effect, this RNA processing signal has a direct influence on both transcriptional termination and initiation.
Collapse
Affiliation(s)
- I H Greger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|