1
|
Grondin JP, Geffroy M, Simoneau-Roy M, Chauvier A, Turcotte P, St-Pierre P, Dubé A, Moreau J, Massé E, Penedo JC, Lafontaine DA. Insights into the cotranscriptional and translational control mechanisms of the Escherichia coli tbpA thiamin pyrophosphate riboswitch. Commun Biol 2024; 7:1345. [PMID: 39420148 PMCID: PMC11487190 DOI: 10.1038/s42003-024-07008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Riboswitches regulate gene expression by modulating their structure upon metabolite binding. These RNA orchestrate several layers of regulation to achieve genetic control. Although Escherichia coli riboswitches modulate translation initiation, several cases have been reported where riboswitches also modulate mRNA levels. Here, we characterize the regulation mechanisms of the thiamin pyrophosphate (TPP) tbpA riboswitch in E. coli. Our results indicate that the tbpA riboswitch modulates both levels of translation and transcription and that TPP sensing is achieved more efficiently cotranscriptionally than post-transcriptionally. The preference for cotranscriptional binding is also observed when monitoring the TPP-dependent inhibition of translation initiation. Using single-molecule approaches, we observe that the aptamer domain freely fluctuates between two main structures involved in TPP recognition. Our results suggest that translation initiation is controlled through the ligand-dependent stabilization of the riboswitch structure. This study demonstrates that riboswitch cotranscriptional sensing is the primary determinant in controlling translation and mRNA levels.
Collapse
Affiliation(s)
- Jonathan P Grondin
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mélanie Geffroy
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Delpharm Boucherville, Boucherville, QC, Canada
| | - Maxime Simoneau-Roy
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Cégep de Saint-Hyacinthe, Saint-Hyacinthe, QC, Canada
| | - Adrien Chauvier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pierre Turcotte
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Unité de recherche clinique et épidémiologique, CIUSSS de l'Estrie, Sherbrooke, QC, Canada
| | - Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Audrey Dubé
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de médecine de famille et de médecine d'urgence, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Moreau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. Andrews, St Andrews, UK
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Das A, Bao C, Ermolenko DN. Comparing FRET Pairs that Report on Intersubunit Rotation in Bacterial Ribosomes. J Mol Biol 2023; 435:168185. [PMID: 37348753 PMCID: PMC10528089 DOI: 10.1016/j.jmb.2023.168185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry, and Center for RNA Biology, University of Rochester, Rochester, NY 14642, United States
| | - Chen Bao
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry, and Center for RNA Biology, University of Rochester, Rochester, NY 14642, United States
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry, and Center for RNA Biology, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
3
|
Das A, Bao C, Ermolenko DN. Comparing FRET pairs that report on intersubunit rotation in bacterial ribosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540051. [PMID: 37214817 PMCID: PMC10197640 DOI: 10.1101/2023.05.09.540051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.
Collapse
|
4
|
Das A, Adiletta N, Ermolenko DN. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Int J Mol Sci 2023; 24:ijms24086878. [PMID: 37108045 PMCID: PMC10138997 DOI: 10.3390/ijms24086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nichole Adiletta
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Bao C, Ermolenko DN. Ribosome as a Translocase and Helicase. BIOCHEMISTRY (MOSCOW) 2021; 86:992-1002. [PMID: 34488575 PMCID: PMC8294220 DOI: 10.1134/s0006297921080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During protein synthesis, ribosome moves along mRNA to decode one codon after the other. Ribosome translocation is induced by a universally conserved protein, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. EF-G-induced translocation results in unwinding of the intramolecular secondary structures of mRNA by three base pairs at a time that renders the translating ribosome a processive helicase. Professor Alexander Sergeevich Spirin has made numerous seminal contributions to understanding the molecular mechanism of translocation. Here, we review Spirin's insights into the ribosomal translocation and recent advances in the field that stemmed from Spirin's pioneering work. We also discuss key remaining challenges in studies of translocase and helicase activities of the ribosome.
Collapse
Affiliation(s)
- Chen Bao
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Egorova T, Sokolova E, Shuvalova E, Matrosova V, Shuvalov A, Alkalaeva E. Fluorescent toeprinting to study the dynamics of ribosomal complexes. Methods 2019; 162-163:54-59. [PMID: 31201933 DOI: 10.1016/j.ymeth.2019.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Classical toeprinting is generally used to determine the position of ribosomes on mRNA; however, it has several disadvantages. We describe a fluorescent toeprinting assay that enables easier identification of ribosomal complexes bound to mRNA in vitro. The procedure involves the use of stable and safe fluorescently labeled oligonucleotides for reverse transcription reactions as primers, followed by the analysis of cDNA products using an automatic sequencer. This procedure allows the multiplexing and simultaneous analysis of a large number of samples. Over the past ten years, fluorescent toeprinting was applied to determine the activities of eukaryotic release factors and additional proteins involved in translation termination, to study the dynamics of translation initiation and elongation complexes, and to quantitatively evaluate the observed ribosomal complexes. Because of the simplicity and small amounts of material required, fluorescent toeprinting provides a highly scalable and versatile tool to study ribosomal complexes.
Collapse
Affiliation(s)
- Tatiana Egorova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vera Matrosova
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0177. [PMID: 28138065 DOI: 10.1098/rstb.2016.0177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Viral internal ribosome entry sites (IRESs) are unique RNA elements, which use stable and dynamic RNA structures to recruit ribosomes and drive protein synthesis. IRESs overcome the high complexity of the canonical eukaryotic translation initiation pathway, often functioning with a limited set of eukaryotic initiation factors. The simplest types of IRESs are typified by the cricket paralysis virus intergenic region (CrPV IGR) and hepatitis C virus (HCV) IRESs, both of which independently form high-affinity complexes with the small (40S) ribosomal subunit and bypass the molecular processes of cap-binding and scanning. Owing to their simplicity and ribosomal affinity, the CrPV and HCV IRES have been important models for structural and functional studies of the eukaryotic ribosome during initiation, serving as excellent targets for recent technological breakthroughs in cryogenic electron microscopy (cryo-EM) and single-molecule analysis. High-resolution structural models of ribosome : IRES complexes, coupled with dynamics studies, have clarified decades of biochemical research and provided an outline of the conformational and compositional trajectory of the ribosome during initiation. Here we review recent progress in the study of HCV- and CrPV-type IRESs, highlighting important structural and dynamics insights and the synergy between cryo-EM and single-molecule studies.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexey N Petrov
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Noller HF, Lancaster L, Mohan S, Zhou J. Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA. Q Rev Biophys 2017; 50:e12. [PMID: 29233224 DOI: 10.1017/s0033583517000117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ribosomes are remarkable ribonucleoprotein complexes that are responsible for protein synthesis in all forms of life. They polymerize polypeptide chains programmed by nucleotide sequences in messenger RNA in a mechanism mediated by transfer RNA. One of the most challenging problems in the ribosome field is to understand the mechanism of coupled translocation of mRNA and tRNA during the elongation phase of protein synthesis. In recent years, the results of structural, biophysical and biochemical studies have provided extensive evidence that translocation is based on the structural dynamics of the ribosome itself. Detailed structural analysis has shown that ribosome dynamics, like aminoacyl-tRNA selection and catalysis of peptide bond formation, is made possible by the properties of ribosomal RNA.
Collapse
Affiliation(s)
- Harry F Noller
- Department of Molecular,Cell and Developmental Biology and Center for Molecular Biology of RNA,University of California at Santa Cruz,Santa Cruz, CA 95064,USA
| | - Laura Lancaster
- Department of Molecular,Cell and Developmental Biology and Center for Molecular Biology of RNA,University of California at Santa Cruz,Santa Cruz, CA 95064,USA
| | - Srividya Mohan
- Department of Molecular,Cell and Developmental Biology and Center for Molecular Biology of RNA,University of California at Santa Cruz,Santa Cruz, CA 95064,USA
| | - Jie Zhou
- Department of Molecular,Cell and Developmental Biology and Center for Molecular Biology of RNA,University of California at Santa Cruz,Santa Cruz, CA 95064,USA
| |
Collapse
|
10
|
Xie P. Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation. Heliyon 2016; 2:e00214. [PMID: 28070564 PMCID: PMC5219732 DOI: 10.1016/j.heliyon.2016.e00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomal translocation catalyzed by EF-G hydrolyzing GTP entails multiple conformational changes of ribosome and positional changes of tRNAs and mRNA in the ribosome. However, the detailed dynamic relations among these changes and EF-G sampling are not clear. Here, based on our proposed pathway of ribosomal translocation, we study theoretically the dynamic relations among these changes exhibited in the single molecule data and those exhibited in the ensemble kinetic data. It is shown that the timing of these changes in the single molecule data and that in the ensemble kinetic data show very different. The theoretical results are in agreement with both the available ensemble kinetic experimental data and the single molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Bąkowska-Żywicka K, Kasprzyk M, Twardowski T. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro. FEMS Yeast Res 2016; 16:fow077. [PMID: 27609601 PMCID: PMC5049586 DOI: 10.1093/femsyr/fow077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/29/2022] Open
Abstract
Recently, a number of ribosome-associated non-coding RNAs (rancRNAs) have been discovered in all three domains of life. In our previous studies, we have described several types of rancRNAs in Saccharomyces cerevisiae, derived from many cellular RNAs, including mRNAs, rRNAs, tRNAs and snoRNAs. Here, we present the evidence that the tRNA fragments from simple eukaryotic organism S. cerevisiae directly bind to the ribosomes. Interestingly, rancRNA-tRFs in yeast are derived from both, 5′- and 3′-part of the tRNAs and both types of tRFs associate with the ribosomes in vitro. The location of tRFs within the ribosomes is distinct from classical A- and P-tRNA binding sites. Moreover, 3′-tRFs bind to the distinct site than 5′-tRFs. These interactions are stress dependent and as a consequence, provoke regulation of protein biosynthesis. We observe strong correlation between tRF binding to the ribosomes and inhibition of protein biosynthesis in particular environmental conditions. These results implicate the existence of an ancient and conserved mechanism of translation regulation with the involvement of ribosome-associating tRNA-derived fragments. Small RNAs derived from tRNAs associate with Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro.
Collapse
Affiliation(s)
- Kamilla Bąkowska-Żywicka
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marta Kasprzyk
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
12
|
Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits. Cell Rep 2016; 16:2187-2196. [PMID: 27524615 DOI: 10.1016/j.celrep.2016.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.
Collapse
Affiliation(s)
- Heena Sharma
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5. [PMID: 27159452 PMCID: PMC4896748 DOI: 10.7554/elife.14874] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 12/17/2022] Open
Abstract
Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.
Collapse
Affiliation(s)
| | - Cha San Koh
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Timothy Grant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
14
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Petrov A, Grosely R, Chen J, O'Leary SE, Puglisi JD. Multiple Parallel Pathways of Translation Initiation on the CrPV IRES. Mol Cell 2016; 62:92-103. [PMID: 27058789 PMCID: PMC4826567 DOI: 10.1016/j.molcel.2016.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/28/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023]
Abstract
The complexity of eukaryotic translation allows fine-tuned regulation of protein synthesis. Viruses use internal ribosome entry sites (IRESs) to minimize or, like the CrPV IRES, eliminate the need for initiation factors. Here, by exploiting the CrPV IRES, we observed the entire process of initiation and transition to elongation in real time. We directly tracked the CrPV IRES, 40S and 60S ribosomal subunits, and tRNA using single-molecule fluorescence spectroscopy and identified multiple parallel initiation pathways within the system. Our results distinguished two pathways of 80S:CrPV IRES complex assembly that produce elongation-competent complexes. Following 80S assembly, the requisite eEF2-mediated translocation results in an unstable intermediate that is captured by binding of the elongator tRNA. Whereas initiation can occur in the 0 and +1 frames, the arrival of the first tRNA defines the reading frame and strongly favors 0 frame initiation. Overall, even in the simplest system, an intricate reaction network regulates translation initiation.
Collapse
Affiliation(s)
- Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Jin Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | - Seán E O'Leary
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| |
Collapse
|
16
|
Xie P. Model of the pathway of -1 frameshifting: Long pausing. Biochem Biophys Rep 2016; 5:408-424. [PMID: 28955849 PMCID: PMC5600365 DOI: 10.1016/j.bbrep.2016.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
It has been characterized that the programmed ribosomal -1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal-an upstream, internal Shine-Dalgarno (SD) sequence-is also necessary to stimulate the efficient -1 frameshifting. However, the molecular and physical mechanism of the -1 frameshifting is poorly understood. Here, we propose a model of the pathway of the -1 translational frameshifting during ribosome translation of the dnaX -1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014) [29]) on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015) [30]) on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.
Collapse
|
17
|
|
18
|
Initiation factor 2 stabilizes the ribosome in a semirotated conformation. Proc Natl Acad Sci U S A 2015; 112:15874-9. [PMID: 26668356 DOI: 10.1073/pnas.1520337112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNA(fMet), and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding.
Collapse
|
19
|
Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat Commun 2015; 6:7442. [PMID: 26072700 PMCID: PMC4490557 DOI: 10.1038/ncomms8442] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement. EF-G enhances the rate of tRNA–mRNA translocation on the ribosome. Here the authors use single-molecule FRET to follow tRNA translocation in real time, identifying new chimeric intermediates and suggesting how EF-G binding and GTP hydrolysis change the energetic landscape of translocation to accelerate forward tRNA movement.
Collapse
Affiliation(s)
- Sarah Adio
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Niels Fischer
- 3D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| |
Collapse
|
20
|
Castro-Roa D, Zenkin N. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro. Methods 2015; 86:51-9. [PMID: 26080048 DOI: 10.1016/j.ymeth.2015.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022] Open
Abstract
The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation.
Collapse
Affiliation(s)
- Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
21
|
Castro-Roa D, Zenkin N. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems. Methods Mol Biol 2015; 1276:81-99. [PMID: 25665559 DOI: 10.1007/978-1-4939-2392-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA polymerase is a complex machinery, which is further embedded in interactions with other cellular components that interplay with either the transcribed DNA (DNA polymerases, topoisomerases, etc.) or the nascent RNA (RNA processing enzymes, ribosomes, etc.). In prokaryotes, coupling of transcription and translation is thought to play many regulatory roles but the mechanistic understanding of their interactions has been hindered by the lack of a defined experimental system. Here, we describe a pure transcription-coupled-to-translation system in which control of the ribosome has been achieved through its stepwise translocation towards RNA polymerase. This system can be used to study the effects of concurrent translation on RNA chain elongation and to elucidate the interface between the two macromolecular complexes.
Collapse
Affiliation(s)
- Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK,
| | | |
Collapse
|
22
|
Holtkamp W, Wintermeyer W, Rodnina MV. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014; 36:908-18. [PMID: 25118068 DOI: 10.1002/bies.201400076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
23
|
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat Struct Mol Biol 2014; 21:817-24. [PMID: 25108354 DOI: 10.1038/nsmb.2869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.
Collapse
|
24
|
Abstract
EF4, a highly conserved protein present in bacteria, mitochondria and chloroplasts, can bind to both the posttranslocation and pretranslocation ribosomal complexes. When binding to the posttranslocation state, it catalyzes backward translocation to a pretranslocation state. When binding to the pretranslocation state, it catalyzes transition to another pretranslocation state that is similar and possibly identical to that resulting from the posttranslocation state bound by EF4, and competes with EF-G to regulate the elongation cycle. However, the molecular mechanism on how EF4 induces state transitions and mRNA translocation remains unclear. Here, we present both the model for state transitions induced by EF4 binding to the posttranslocation state and that by EF4 binding to the pretranslocation state, based on which we study the kinetics of EF4-induced state transitions and mRNA translocation, giving quantitative explanations of the available experimental data. Moreover, we present some predicted results on state transitions and mRNA translocation induced by EF4 binding to the pretranslocation state complexed with the mRNA containing a duplex region.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
25
|
Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc Natl Acad Sci U S A 2013; 110:20964-9. [PMID: 24324168 DOI: 10.1073/pnas.1320387110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.
Collapse
|
26
|
Peske F, Wintermeyer W. Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Sahu B, Khade PK, Joseph S. Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis. Biochemistry 2013; 52:6695-701. [PMID: 24025161 PMCID: PMC11849674 DOI: 10.1021/bi4008879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate decoding of mRNA requires the precise interaction of protein factors and tRNAs with the ribosome. X-ray crystallography and cryo-electron microscopy have provided detailed structural information about the 70S ribosome with protein factors and tRNAs trapped during translation. Crystal structures showed that one of the universally conserved 16S rRNA bases, A55, in the shoulder domain of the 30S subunit interacts with elongation factors Tu and G (EF-Tu and EF-G, respectively). The exact functional role of A55 in protein synthesis is not clear. We changed A55 to U and analyzed the effect of the mutation on the elongation cycle of protein synthesis using functional assays. Expression of 16S rRNA with the A55U mutation in cells confers a dominant lethal phenotype. Additionally, ribosomes with the A55U mutation in 16S rRNA show substantially reduced in vitro protein synthesis activity. Equilibrium binding studies showed that the A55U mutation considerably inhibited the binding of the EF-Tu·GTP·tRNA ternary complex to the ribosome. Furthermore, the A55U mutation slightly inhibited the peptidyl transferase reaction, the binding of EF-G·GTP to the ribosome, and mRNA-tRNA translocation. These results indicate that A55 is important for fine-tuning the activity of the ribosome during the elongation cycle of protein synthesis.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Prashant K. Khade
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314
| |
Collapse
|
28
|
Dynamics of forward and backward translocation of mRNA in the ribosome. PLoS One 2013; 8:e70789. [PMID: 23951009 PMCID: PMC3739767 DOI: 10.1371/journal.pone.0070789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Translocation of the mRNA-tRNA complex in the ribosome, which is catalyzed by elongation factor EF-G, is one of critical steps in the elongation cycle of protein synthesis. Besides this conventional forward translocation, the backward translocation can also occur, which can be catalyzed by elongation factor LepA. However, the molecular mechanism of the translocation remains elusive. To understand the mechanism, here we study theoretically the dynamics of the forward translocation under various nucleotide states of EF-G and the backward translocation in the absence of and in the presence of LepA. We present a consistent explanation of spontaneous forward translocations in the absence of EF-G, the EF-G-catalyzed forward translocations in the presence of a non-hydrolysable GTP analogue and in the presence of GTP, and the spontaneous and LepA-catalyzed backward translocation. The theoretical results provide quantitative explanations of a lot of different, independent experimental data, and also provide testable predictions.
Collapse
|
29
|
Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 2013; 20:1077-84. [PMID: 23912278 DOI: 10.1038/nsmb.2645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022]
Abstract
In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA-mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G-mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site-exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.
Collapse
|
30
|
Ermolenko DN, Cornish PV, Ha T, Noller HF. Antibiotics that bind to the A site of the large ribosomal subunit can induce mRNA translocation. RNA (NEW YORK, N.Y.) 2013; 19:158-66. [PMID: 23249745 PMCID: PMC3543091 DOI: 10.1261/rna.035964.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Chloramphenicol/metabolism
- Chloramphenicol/pharmacology
- Clindamycin/metabolism
- Clindamycin/pharmacology
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/drug effects
- Escherichia coli Proteins/metabolism
- Fluorescence Resonance Energy Transfer
- Lincomycin/metabolism
- Lincomycin/pharmacology
- Peptide Elongation Factor G/drug effects
- Peptide Elongation Factor G/metabolism
- Peptidyl Transferases/drug effects
- Peptidyl Transferases/metabolism
- Protein Biosynthesis/drug effects
- RNA Transport/drug effects
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA, Transfer/drug effects
- RNA, Transfer/metabolism
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/metabolism
- Sparsomycin/metabolism
- Sparsomycin/pharmacology
Collapse
Affiliation(s)
- Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
31
|
Rapid purification of ribosomal particles assembled on histone H4 mRNA: a new method based on mRNA–DNA chimaeras. Biochem J 2013; 449:719-28. [DOI: 10.1042/bj20121211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Detailed knowledge of the structure of the ribosomal particles during their assembly on mRNA is a prerequisite for understanding the intricate translation initiation process. In vitro preparation of eukaryotic translation initiation complexes is limited by the rather tricky assembly from individually purified ribosomal subunits, initiation factors and initiator tRNA. In order to directly isolate functional complexes from living cells, methods based on affinity tags have been developed which, however, often suffer from non-specific binding of proteins and/or RNAs. In the present study we present a novel method designed for the purification of high-quality ribosome/mRNA particles assembled in RRL (rabbit reticulocyte lysate). Chimaerical mRNA–DNA molecules, consisting of the full-length mRNA ligated to a biotinylated desoxy-oligonucleotide, are immobilized on streptavidin-coated beads and incubated with RRL to form initiation complexes. After a washing step, the complexes are eluted by specific DNase I digestion of the DNA moiety of the chimaera, releasing initiation complexes in native conditions. Using this simple and robust purification setup, 80S particles properly programmed with full-length histone H4 mRNA were isolated with the expected ribosome/mRNA molar ratio of close to 1. We show that by using this novel approach purified ribosomal particles can be obtained that are suitable for biochemical and structural studies, in particular single-particle cryo-EM (cryo-electron microscopy). This purification method thus is a versatile tool for the isolation of fully functional RNA-binding proteins and macromolecular RNPs.
Collapse
|
32
|
Chen J, Tsai A, O'Leary SE, Petrov A, Puglisi JD. Unraveling the dynamics of ribosome translocation. Curr Opin Struct Biol 2012; 22:804-14. [PMID: 23142574 DOI: 10.1016/j.sbi.2012.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Translocation is one of the key events in translation, requiring large-scale conformational changes in the ribosome, movements of two transfer RNAs (tRNAs) across a distance of more than 20Å, and the coupled movement of the messenger RNA (mRNA) by one codon, completing one cycle of peptide-chain elongation. Translocation is catalyzed by elongation factor G (EF-G in bacteria), which hydrolyzes GTP in the process. However, how the conformational rearrangements of the ribosome actually drive the movements of the tRNAs and how EF-G GTP hydrolysis plays a role in this process are still unclear. Fluorescence methods, both single-molecule and bulk, have provided a dynamic view of translocation, allowing us to follow the different conformational changes of the ribosome in real-time. The application of electron microscopy has revealed new conformational intermediates during translocation and important structural rearrangements in the ribosome that drive tRNA movement, while computational approaches have added quantitative views of the translational pathway. These recent advances shed light on the process of translocation, providing insight on how to resolve the different descriptions of translocation in the current literature.
Collapse
Affiliation(s)
- Jin Chen
- Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | | | | | | | | |
Collapse
|
33
|
Sahu B, Khade PK, Joseph S. Functional replacement of two highly conserved tetraloops in the bacterial ribosome. Biochemistry 2012; 51:7618-26. [PMID: 22938718 DOI: 10.1021/bi300930r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomes are RNA-protein complexes responsible for protein synthesis. A dominant structural motif in the rRNAs is an RNA helix capped with a four-nucleotide loop, called a tetraloop. The sequence of the tetraloop is invariant at some positions in the rRNAs but is highly variable at other positions. The biological reason for the conservation of the tetraloop sequence at specific positions in the rRNAs is not clear. In the 16S rRNA, the GAAA tetraloop in helix 8 and the UACG tetraloop in helix 14 are highly conserved and located near the binding site for EF-Tu and EF-G. To investigate whether the structural stability of the tetraloop or the precise sequence of the tetraloop is important for function, we separately changed the GAAA tetraloop in helix 8 to a UACG tetraloop and the UACG tetraloop in helix 14 to a GAAA tetraloop. The effects of the tetraloop replacements on protein synthesis were analyzed in vivo and in vitro. Replacement of the tetraloops in helices 8 and 14 did not significantly affect the growth rate of the Escherichia coli (Δ7rrn) strain. However, the mutant ribosomes showed a slightly reduced rate of protein synthesis in vitro. In addition, we observed a 2-fold increase in the error rate of translation with the mutant ribosomes, which is consistent with an earlier report. Our results suggest that the tetraloops in helices 8 and 14 are highly conserved mainly for their structural stability and the precise sequences of these tetraloops are not critical for protein synthesis.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
34
|
Zenkin N. Hypothesis: Emergence of Translation as a Result of RNA Helicase Evolution. J Mol Evol 2012; 74:249-56. [DOI: 10.1007/s00239-012-9503-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
35
|
Abstract
Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric "duplicator RNAs," resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
36
|
Shi X, Khade PK, Sanbonmatsu KY, Joseph S. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol 2012; 419:125-38. [PMID: 22459262 DOI: 10.1016/j.jmb.2012.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022]
Abstract
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.
Collapse
MESH Headings
- Binding Sites
- Conserved Sequence
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ricin/metabolism
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
37
|
Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 2012; 31:1836-46. [PMID: 22388519 DOI: 10.1038/emboj.2012.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022] Open
Abstract
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.
Collapse
|
38
|
Liu CY, Qureshi MT, Lee TH. Interaction strengths between the ribosome and tRNA at various steps of translocation. Biophys J 2011; 100:2201-8. [PMID: 21539788 DOI: 10.1016/j.bpj.2011.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Transfer RNA (tRNA) translocates inside the ribosome during translation. We studied the interaction strengths between the ribosome and tRNA at various stages of translocation. We utilized an optical trap to measure the mechanical force to rupture tRNA from the ribosome. We measured the rupture forces of aminoacyl tRNA or peptidyl tRNA mimic from the ribosome in a prepeptidyl transfer state, the pretranslocational state, and the posttranslocational state. In addition, we measured the interaction strength between the ribosome and aminoacyl-tRNA in presence of viomycin. Based on the interaction strengths between the ribosome and tRNA under these conditions, 1), we concluded that tRNA interaction with the 30S subunit is far more important than the interaction with the 50S subunit in the mechanism of translocation; and 2), we propose a mechanism of translocation where the ribosomal ratchet motion, with the aid of EF-G, drives tRNA translocation.
Collapse
Affiliation(s)
- Chen-Yu Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
39
|
Abstract
The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
40
|
Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JHD. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 2011; 332:981-4. [PMID: 21596992 DOI: 10.1126/science.1202692] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of ~3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.
Collapse
Affiliation(s)
- Jack A Dunkle
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Martin F, Barends S, Jaeger S, Schaeffer L, Prongidi-Fix L, Eriani G. Cap-assisted internal initiation of translation of histone H4. Mol Cell 2011; 41:197-209. [PMID: 21255730 DOI: 10.1016/j.molcel.2010.12.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/08/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
In eukaryotes, a crucial step of translation initiation is the binding of the multifactor complex eIF4F to the 5' end of the mRNA, a prerequisite to recruitment of the activated small ribosomal 43S particle. Histone H4 mRNAs have short 5'UTRs, which do not conform to the conventional scanning-initiation model. Here we show that the ORF of histone mRNA contains two structural elements critical for translation initiation. One of the two structures binds eIF4E without the need of the cap. Ribosomal 43S particles become tethered to this site and directly loaded in the vicinity of the AUG. The other structure, 19 nucleotides downstream of the initiation codon, forms a three-way helix junction, which sequesters the m(7)G cap. This element facilitates direct positioning of the ribosome on the cognate start codon. This unusual translation initiation mode might be considered as a hybrid mechanism between the canonical and the IRES-driven translation initiation process.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg CEDEX, France
| | | | | | | | | | | |
Collapse
|
42
|
Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome. Proc Natl Acad Sci U S A 2011; 108:1839-44. [PMID: 21245352 DOI: 10.1073/pnas.1018582108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Internal ribosome entry site (IRES) RNAs are elements of viral or cellular mRNAs that bypass steps of canonical eukaryotic cap-dependent translation initiation. Understanding of the structural basis of IRES mechanisms is limited, partially due to a lack of high-resolution structures of IRES RNAs bound to their cellular targets. Prompted by the universal phylogenetic conservation of the ribosomal P site, we solved the crystal structures of proposed P site binding domains from two intergenic region IRES RNAs bound to bacterial 70S ribosomes. The structures show that these IRES domains nearly perfectly mimic a tRNA • mRNA interaction. However, there are clear differences in the global shape and position of this IRES domain in the intersubunit space compared to those of tRNA, supporting a mechanism for IRES action that invokes hybrid state mimicry to drive a noncanonical mode of translocation. These structures suggest how relatively small structured RNAs can manipulate complex biological machines.
Collapse
|
43
|
García-Ortega L, Alvarez-García E, Gavilanes JG, Martínez-del-Pozo A, Joseph S. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Res 2010; 38:4108-19. [PMID: 20215430 PMCID: PMC2896532 DOI: 10.1093/nar/gkq151] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.
Collapse
Affiliation(s)
- Lucía García-Ortega
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
44
|
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 2010; 42:159-200. [PMID: 20025795 DOI: 10.1017/s0033583509990060] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.
Collapse
|
45
|
Mazauric MH, Seol Y, Yoshizawa S, Visscher K, Fourmy D. Interaction of the HIV-1 frameshift signal with the ribosome. Nucleic Acids Res 2010; 37:7654-64. [PMID: 19812214 PMCID: PMC2794165 DOI: 10.1093/nar/gkp779] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ribosomal frameshifting on viral RNAs relies on the mechanical properties of structural elements, often pseudoknots and more rarely stem-loops, that are unfolded by the ribosome during translation. In human immunodeficiency virus (HIV)-1 type B a long hairpin containing a three-nucleotide bulge is responsible for efficient frameshifting. This three-nucleotide bulge separates the hairpin in two domains: an unstable lower stem followed by a GC-rich upper stem. Toeprinting and chemical probing assays suggest that a hairpin-like structure is retained when ribosomes, initially bound at the slippery sequence, were allowed multiple EF-G catalyzed translocation cycles. However, while the upper stem remains intact the lower stem readily melts. After the first, and single step of translocation of deacylated tRNA to the 30 S P site, movement of the mRNA stem-loop in the 5′ direction is halted, which is consistent with the notion that the downstream secondary structure resists unfolding. Mechanical stretching of the hairpin using optical tweezers only allows clear identification of unfolding of the upper stem at a force of 12.8 ± 1.0 pN. This suggests that the lower stem is unstable and may indeed readily unfold in the presence of a translocating ribosome.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC 3115 ICSN-CNRS 1 ave de la terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
46
|
Fei J, Wang J, Sternberg SH, MacDougall DD, Elvekrog MM, Pulukkunat DK, Englander MT, Gonzalez RL. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. Methods Enzymol 2010; 472:221-59. [PMID: 20580967 PMCID: PMC4748369 DOI: 10.1016/s0076-6879(10)72008-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful tool for mechanistic investigations of increasingly complex biochemical systems. Recently, we and others have successfully used smFRET to directly investigate the role of structural dynamics in the function and regulation of the cellular protein synthesis machinery. A significant challenge to these experiments, and to analogous experiments in similarly complex cellular machineries, is the need for specific and efficient fluorescent labeling of the biochemical system at locations that are both mechanistically informative and minimally perturbative to the biological activity. Here, we describe the development of a highly purified, fluorescently labeled in vitro translation system that we have successfully designed for smFRET studies of protein synthesis. The general approaches we outline should be amenable to single-molecule fluorescence studies of other complex biochemical systems.
Collapse
Affiliation(s)
- Jingyi Fei
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Jiangning Wang
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Samuel H. Sternberg
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Daniel D. MacDougall
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Margaret M. Elvekrog
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Dileep K. Pulukkunat
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Michael T. Englander
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
- Integrated Program in Cellular, Molecular, and Biomedical Sciences
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-1096 FAX: (212) 932-1289
| |
Collapse
|
47
|
Zhang W, Dunkle JA, Cate JHD. Structures of the ribosome in intermediate states of ratcheting. Science 2009; 325:1014-7. [PMID: 19696352 DOI: 10.1126/science.1175275] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein biosynthesis on the ribosome requires repeated cycles of ratcheting, which couples rotation of the two ribosomal subunits with respect to each other, and swiveling of the head domain of the small subunit. However, the molecular basis for how the two ribosomal subunits rearrange contacts with each other during ratcheting while remaining stably associated is not known. Here, we describe x-ray crystal structures of the intact Escherichia coli ribosome, either in the apo-form (3.5 angstrom resolution) or with one (4.0 angstrom resolution) or two (4.0 angstrom resolution) anticodon stem-loop tRNA mimics bound, that reveal intermediate states of intersubunit rotation. In the structures, the interface between the small and large ribosomal subunits rearranges in discrete steps along the ratcheting pathway. Positioning of the head domain of the small subunit is controlled by interactions with the large subunit and with the tRNA bound in the peptidyl-tRNA site. The intermediates observed here provide insight into how tRNAs move into the hybrid state of binding that precedes the final steps of mRNA and tRNA translocation.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
48
|
Mazauric MH, Leroy JL, Visscher K, Yoshizawa S, Fourmy D. Footprinting analysis of BWYV pseudoknot-ribosome complexes. RNA (NEW YORK, N.Y.) 2009; 15:1775-1786. [PMID: 19625386 PMCID: PMC2743054 DOI: 10.1261/rna.1385409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA-tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first "hit" by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.
Collapse
Affiliation(s)
- Marie-Hélène Mazauric
- Laboratoire de Chimie et Biologie Structurales, FRC3115, ICSN-CNRS, Gif-sur-Yvette 91190, France
| | | | | | | | | |
Collapse
|
49
|
Shi X, Chiu K, Ghosh S, Joseph S. Bases in 16S rRNA important for subunit association, tRNA binding, and translocation. Biochemistry 2009; 48:6772-82. [PMID: 19545171 DOI: 10.1021/bi900472a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated so their role in translation could be studied. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding, and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association, and tRNA binding. In contrast, the A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far as 100 A from the tRNA binding sites can be important for translation.
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314, USA
| | | | | | | |
Collapse
|
50
|
Shoji S, Walker SE, Fredrick K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem Biol 2009; 4:93-107. [PMID: 19173642 DOI: 10.1021/cb8002946] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA-mRNA movement.
Collapse
Affiliation(s)
| | | | - Kurt Fredrick
- Department of Microbiology
- Center for RNA Biology
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|