1
|
Honda H, Sadashima S, Yoshimura M, Sakurada N, Koyama S, Yagita K, Hamasaki H, Noguchi H, Arahata H, Sasagasako N. Altered expression of human myxovirus resistance protein A in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2024; 83:745-751. [PMID: 38916909 DOI: 10.1093/jnen/nlae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. The etiology of sporadic ALS (sALS) has not yet been clarified. An increasing body of evidence suggests the involvement of viral infections and interferons (IFNs). Human myxovirus resistance protein A (MxA) is an IFN-induced dynamin-like GTPase that acts as a potent antiviral factor. This study examined MxA expression in ALS patient spinal cords using immunohistochemistry. Thirty-two cases of sALS (pathologically proven ALS-TDP), 10 non-ALS, other neurological disease control cases were examined. In most ALS cases, MxA cytoplasmic condensates were observed in the remaining spinal anterior horn neurons. The ALS group had a significantly higher rate of MxA-highly expressing neurons than the non-ALS group. Colocalization of MxA cytoplasmic condensate and transactive response DNA-binding protein 43 kDa (TDP-43)-positive inclusions was rarely observed. Because MxA has antiviral activity induced by IFNs, our results suggest that IFNs are involved in the pathogenesis of ALS in spinal cord anterior horn neurons. Our study also suggests that monitoring viral infections and IFN activation in patients with ALS may be critically important.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Neuropathology Center, NHO, Omuta Hospital, Fukuoka, Japan
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| | - Shoko Sadashima
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Brain Medical Hakata, Fukuoka, Japan
| | - Motoi Yoshimura
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hajime Arahata
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| | - Naokazu Sasagasako
- Division of Neurology, Department of Neurology, Neuro Muscular Center, NHO, Omuta Hospital, Fukuoka, Japan
| |
Collapse
|
2
|
Honda H, Yoshimura M, Arahata H, Yagita K, Sadashima S, Hamasaki H, Shijo M, Koyama S, Noguchi H, Sasagasako N. Mutated FUS in familial amyotrophic lateral sclerosis involves multiple hnRNPs in the formation of neuronal cytoplasmic inclusions. J Neuropathol Exp Neurol 2023; 82:231-241. [PMID: 36592411 DOI: 10.1093/jnen/nlac124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fused in sarcoma (FUS), coded by FUS, is a heterogeneous nuclear ribonucleoprotein (hnRNP). FUS mutations are among the major mutations in familial amyotrophic lateral sclerosis (ALS-FUS: ALS6). The pathological hallmarks of ALS-FUS are FUS-positive neuronal cytoplasmic inclusions (NCI). We examined various hnRNPs in FUS NCIs in the hippocampus in ALS-FUS cases with different FUS mutations (Case 1, H517P; Case 2, R521C). We also examined TDP43-positive NCIs in sporadic ALS hippocampi. Immunohistochemistry was performed using primary antibodies against FUS, p-TDP43, TDP43, hnRNPA1, hnRNPD, PCBP1, PCBP2, and p62. Numerous FUS inclusions were found in the hippocampal granule and pyramidal cell layers. Double immunofluorescence revealed colocalization of FUS and p-TDP43, and FUS and PCBP2 (p-TDP43/FUS: 64.3%, PCBP2/FUS: 23.9%). Colocalization of FUS and PCBP1, however, was rare (PCBP1/FUS: 7.6%). In the hippocampi of patients with sporadic ALS, no colocalization was observed between TDP43-positive inclusions and other hnRNPs. This is the first study to show that FUS inclusions colocalize with other hnRNPs, such as TDP43, PCBP2, and PCBP1. These findings suggest that in ALS-FUS, FUS inclusions are the initiators, followed by alterations of multiple other hnRNPs, resulting in impaired RNA metabolism.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoi Yoshimura
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hajime Arahata
- Division of Neurology, Department of Neurology, Neuro Muscular Center, National Omuta Hospital, Fukuoka, Japan
| | - Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoko Sadashima
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Division of Neurology, Department of Neurology, Neuro Muscular Center, National Omuta Hospital, Fukuoka, Japan
| |
Collapse
|
3
|
Gawade K, Plewka P, Häfner SJ, Lund AH, Marchand V, Motorin Y, Szczesniak MW, Raczynska KD. FUS regulates a subset of snoRNA expression and modulates the level of rRNA modifications. Sci Rep 2023; 13:2974. [PMID: 36806717 PMCID: PMC9941101 DOI: 10.1038/s41598-023-30068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
FUS is a multifunctional protein involved in many aspects of RNA metabolism, including transcription, splicing, translation, miRNA processing, and replication-dependent histone gene expression. In this work, we show that FUS depletion results in the differential expression of numerous small nucleolar RNAs (snoRNAs) that guide 2'-O methylation (2'-O-Me) and pseudouridylation of specific positions in ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Using RiboMeth-seq and HydraPsiSeq for the profiling of 2'-O-Me and pseudouridylation status of rRNA species, we demonstrated considerable hypermodification at several sites in HEK293T and SH-SY5Y cells with FUS knockout (FUS KO) compared to wild-type cells. We observed a similar direction of changes in rRNA modification in differentiated SH-SY5Y cells with the FUS mutation (R495X) related to the severe disease phenotype of amyotrophic lateral sclerosis (ALS). Furthermore, the pattern of modification of some rRNA positions was correlated with the abundance of corresponding guide snoRNAs in FUS KO and FUS R495X cells. Our findings reveal a new role for FUS in modulating the modification pattern of rRNA molecules, that in turn might generate ribosome heterogeneity and constitute a fine-tuning mechanism for translation efficiency/fidelity. Therefore, we suggest that increased levels of 2'-O-Me and pseudouridylation at particular positions in rRNAs from cells with the ALS-linked FUS mutation may represent a possible new translation-related mechanism that underlies disease development and progression.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Patrycja Plewka
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Sophia J Häfner
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor CNRS-INSERM and UMR7365 IMoPA CNRS, Nancy, France
| | - Michal W Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Yin Z, Shen H, Gu CM, Zhang MQ, Liu Z, Huang J, Zhu Y, Zhong Q, Huang Y, Wu F, Ou R, Zhang Q, Liu S. MiRNA-142-3P and FUS can be Sponged by Long Noncoding RNA DUBR to Promote Cell Proliferation in Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:754936. [PMID: 34746238 PMCID: PMC8570042 DOI: 10.3389/fmolb.2021.754936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) represents a frequently occurring adulthood acute leukemia (AL). Great progresses have been achieved in the treatment of AML, but its pathogenic mechanism remains unclear. This study reported the biological functions of lncRNA DUBR in AML pathogenic mechanism. As a result, lncRNA DUBR showed high expression level within AML, resulting in poor prognosis, especially in M4 AML. In vitro studies elucidated that knockdown of DUBR with small interfering RNA (siRNA) resulted in the suppression of survival and colony formation ability, as well as induction of apoptosis, in AML cells. RNA pull-down assay and computational revealed that DUBR could sponge with miRNA-142-3P and interact with FUS protein. MiRNA-142-3P have a negative correlation with DUBR and overexpression of miRNA-142-3P inhibited cell growth in AML. Meanwhile, DUBR promoted the expression of FUS protein, targeting inhibition of FUS significantly promoted cell apoptosis in AML cell lines. In conclusion, these results revealed new mechanism of lncRNA DUBR in AML malignant behavior, and suggested that the manipulation of DUBR expression could serve as a potential strategy in AML therapy.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - HuiJuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun Ming Gu
- Clinical Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ming Qi Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yizhen Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
5
|
Two distinct skeletal muscle microRNA signatures revealing the complex mechanism of sporadic ALS. Acta Neurol Belg 2021; 122:1499-1509. [PMID: 34241798 DOI: 10.1007/s13760-021-01743-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Skeletal muscle pathology is thought to have an important role in the onset and/or progression of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by progressive muscle weakness. Since miRNAs are recognized as important regulatory factors of essential biological processes, we aimed to identify differentially expressed miRNAs in the skeletal muscle of sporadic ALS patients through the combination of molecular-omic technologies and bioinformatic tools. We analyzed the miRnome profiles of skeletal muscle biopsies acquired from ten sALS patients and five controls with Affymetrix GeneChip miRNA 4.0 Array. To find out differentially expressed miRNAs in patients, data were analyzed by The Institute for Genomic Research-Multi Experiment Viewer (MeV) and miRNAs whose expression difference were statistically significant were identified as candidates. The potential target genes of these miRNAs were predicted by miRWalk 2.0 and were functionally enriched by gene ontology (GO) analysis. The expression level of priority candidates was validated by quantitative real-time PCR (qRT-PCR) analysis. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. We identified ten differentially expressed miRNAs in patients with a fold change threshold ≥ 2.0, FDR = 0. Nine out of the ten miRNAs were found to be related to top three enriched ALS-related terms. Based on the qRT-PCR validation of candidate miRNAs, patients were separated into two groups: those with upregulated miR-4429 and miR-1825 expression and those with downregulated miR-638 expression. The different muscle-specific miRNA profiles in sALS patients may indicate the involvement of etiologic heterogeneity, which may allow the development of novel therapeutic strategies.
Collapse
|
6
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
7
|
Sukhanova MV, Singatulina AS, Pastré D, Lavrik OI. Fused in Sarcoma (FUS) in DNA Repair: Tango with Poly(ADP-ribose) Polymerase 1 and Compartmentalisation of Damaged DNA. Int J Mol Sci 2020; 21:E7020. [PMID: 32987654 PMCID: PMC7582374 DOI: 10.3390/ijms21197020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U1204, Université Paris-Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (A.S.S.); (O.I.L.)
| |
Collapse
|
8
|
Histone lysine demethylase KDM5B maintains chronic myeloid leukemia via multiple epigenetic actions. Exp Hematol 2020; 82:53-65. [PMID: 32007477 DOI: 10.1016/j.exphem.2020.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/23/2022]
Abstract
The histone lysine demethylase KDM5 family is implicated in normal development and stem cell maintenance by epigenetic modulation of histone methylation status. Deregulation of the KDM5 family has been reported in various types of cancers, including hematological malignancies. However, their transcriptional regulatory roles in the context of leukemia remain unclear. Here, we find that KDM5B is strongly expressed in normal CD34+ hematopoietic stem/progenitor cells and chronic myeloid leukemia (CML) cells. Knockdown of KDM5B in K562 CML cells reduced leukemia colony-forming potential. Transcriptome profiling of KDM5B knockdown K562 cells revealed the deregulation of genes involved in myeloid differentiation and Toll-like receptor signaling. Through the integration of transcriptome and ChIP-seq profiling data, we show that KDM5B is enriched at the binding sites of the GATA and AP-1 transcription factor families, suggesting their collaborations in the regulation of transcription. Even though the binding of KDM5B substantially overlapped with H3K4me1 or H3K4me3 mark at gene promoters, only a small subset of the KDM5B targets showed differential expression in association with the histone demethylation activity. By characterizing the interacting proteins in K562 cells, we discovered that KDM5B recruits protein complexes involved in the mRNA processing machinery, implying an alternative epigenetic action mediated by KDM5B in gene regulation. Our study highlights the oncogenic functions of KDM5B in CML cells and suggests that KDM5B is vital to the transcriptional regulation via multiple epigenetic mechanisms.
Collapse
|
9
|
Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int J Mol Sci 2019; 20:ijms20246141. [PMID: 31817512 PMCID: PMC6940932 DOI: 10.3390/ijms20246141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.
Collapse
|
10
|
Carrà G, Russo I, Guerrasio A, Morotti A. Nuclear-cytoplasmic Shuttling in Chronic Myeloid Leukemia: Implications in Leukemia Maintenance and Therapy. Cells 2019; 8:E1248. [PMID: 31614958 PMCID: PMC6830087 DOI: 10.3390/cells8101248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/09/2023] Open
Abstract
Nuclear-cytoplasmic shuttling is a highly regulated and complex process, which involves both proteins and nucleic acids. Changes in cellular compartmentalization of various proteins, including oncogenes and tumor suppressors, affect cellular behavior, promoting or inhibiting proliferation, apoptosis and sensitivity to therapies. In this review, we will recapitulate the role of various shuttling components in Chronic Myeloid Leukemia and we will provide insights on the potential role of shuttling proteins as therapeutic targets.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy.
| | - Isabella Russo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy.
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy.
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy.
| |
Collapse
|
11
|
Oncogenic heterogeneous nuclear ribonucleoprotein D-like modulates the growth and imatinib response of human chronic myeloid leukemia CD34 + cells via pre-B-cell leukemia homeobox 1. Oncogene 2019; 39:443-453. [PMID: 31488872 DOI: 10.1038/s41388-019-0998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Chronic myeloid leukemia (CML) originates from normal hematopoietic stem cells acquiring BCR-ABL fusion gene, specific BCR-ABL inhibitors (e.g., imatinib mesylate, IM) have greatly improved patient management. However, some patients are still suffering from relapse and drug resistance, which urges better understanding of the growth/survival mechanisms of CML stem/progenitor cells. In the present study, the role and its underlying mechanism of heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) in CML cells were investigated. Firstly, overexpression of HNRPDL promoted the growth of murine BaF3 cells in vitro and induced leukemia in vivo, which was enhanced by co-expression of BCR-ABL. Conversely, HNRPDL silencing inhibited colony-forming cell (CFC) production of CML CD34+ cells and attenuated BCR-ABL induced leukemia. In addition, HNRPDL modulated imatinib response of K562 cells and HNRPDL silencing sensitized CML CD34+ cells to imatinib treatment. Mechanistically, we found the stability of pre-B-cell leukemia homeobox 1 (PBX1) mRNA was sustained by HNRPDL through its binding to a specific motif (ACUAGC) in 3'-untranslated region (3'-UTR) of PBX1. The expression of PBX1 was significantly higher in CML CD34+ cells than that in control cells and PBX silencing inhibited the growth of CML cells and sensitized them to imatinib treatment. In contrast, overexpression of PBX1 elevated the CFC production of normal hematopoietic CD34+ cells and "rescued" HNRPDL silencing induced growth inhibition and imatinib sensitization. Taken together, our data have demonstrated that HNRPDL transforms hematopoietic cells and a novel HNRPDL/PBX1 axis plays an important role in human CML CD34+ cells.
Collapse
|
12
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
13
|
de Rooij LPMH, Chan DCH, Keyvani Chahi A, Hope KJ. Post-transcriptional regulation in hematopoiesis: RNA binding proteins take control 1. Biochem Cell Biol 2018; 97:10-20. [PMID: 29898370 DOI: 10.1139/bcb-2017-0310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP-RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.
Collapse
Affiliation(s)
- Laura P M H de Rooij
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Derek C H Chan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Lee CR, Kang JA, Kim HE, Choi Y, Yang T, Park SG. Secretion of IL-1β from imatinib-resistant chronic myeloid leukemia cells contributes toBCR-ABLmutation-independent imatinib resistance. FEBS Lett 2016; 590:358-68. [DOI: 10.1002/1873-3468.12057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/18/2015] [Accepted: 01/03/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Cho-Rong Lee
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| | - Jung-Ah Kang
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| | - Hye-Eun Kim
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| | - Yegyun Choi
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| | - Taewoo Yang
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| | - Sung-Gyoo Park
- School of Life Sciences; Gwangju Institute of Science and Technology; Korea
| |
Collapse
|
15
|
Luo Y, Blechingberg J, Fernandes AM, Li S, Fryland T, Børglum AD, Bolund L, Nielsen AL. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions. BMC Genomics 2015; 16:929. [PMID: 26573619 PMCID: PMC4647676 DOI: 10.1186/s12864-015-2125-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Results To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes involved in pathways at the RNA regulatory level with potential to mediate normal and disease-associated functions of the FUS and EWS proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark.
| | - Jenny Blechingberg
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Present address: Clinical Microbiological Section, Lillebælt Hospital, Vejle, Denmark.
| | - Ana Miguel Fernandes
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Present address: Epigenetic Regulation and Chromatin Architecture group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.
| | - Shengting Li
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| | - Tue Fryland
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark. .,Psychiatric Department P, Aarhus University Hospital, Aarhus, Denmark.
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,BGI-Shenzhen, Shenzhen, China.
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Raczynska KD, Ruepp MD, Brzek A, Reber S, Romeo V, Rindlisbacher B, Heller M, Szweykowska-Kulinska Z, Jarmolowski A, Schümperli D. FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Res 2015; 43:9711-28. [PMID: 26250115 PMCID: PMC4787759 DOI: 10.1093/nar/gkv794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/26/2015] [Indexed: 12/13/2022] Open
Abstract
Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3′ end processing. The non-polyadenylated histone mRNA 3′ ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3′ end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression.
Collapse
Affiliation(s)
- Katarzyna Dorota Raczynska
- Institute of Cell Biology, University of Bern, Bern, Switzerland Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Marc-David Ruepp
- Institute of Cell Biology, University of Bern, Bern, Switzerland Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Aleksandra Brzek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stefan Reber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Valentina Romeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Manfred Heller
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
17
|
Matsumoto A, Suzuki H, Fukatsu R, Shimizu H, Suzuki Y, Hisanaga K. An autopsy case of frontotemporal lobar degeneration with the appearance of fused in sarcoma inclusions (basophilic inclusion body disease) clinically presenting corticobasal syndrome. Neuropathology 2015; 36:77-87. [PMID: 26227957 DOI: 10.1111/neup.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 12/14/2022]
Abstract
We describe an autopsy case of basophilic inclusion body disease (BIBD), a subtype of frontotemporal lobar degeneration (FTLD) with the appearance of fused in sarcoma (FUS) inclusions (FTLD-FUS), clinically presenting corticobasal syndrome (CBS). A 54-year-old man initially developed worsening of stuttering and right hand clumsiness. Neurological examinations revealed rigidity in the right upper and lower extremities, buccofacial apraxia, and right-side dominant limb-kinetic and ideomotor apraxia. Neuroimaging showed asymmetric left-dominant brain atrophy and a cerebral blood flow reduction in the ipsilateral frontal region. At 56 years, his apraxia had advanced, and ideational apraxia was observed. Furthermore, the asymmetry in the limb-kinetic and ideomotor apraxia had disappeared, and both conditions had become bilateral. He had a new onset of aphasia. His symptoms progressed and he died 9 years after the initial symptoms. The brain weighed 955 g. Diffuse brain atrophy was most obvious in the bilateral frontotemporal regions. The atrophy of the left superior frontal and precentral gyri and bilateral basal ganglia was remarkable. Histologically, there was a marked loss of neurons with gliosis in the affected areas, where basophilic neuronal cytoplasmic inclusions were observed. The inclusions were immunoreactive for FUS, p62, and TATA-binding protein-associated factor 15 (TAF15), but not for phosphorylated tau, transactive response DNA-binding protein of 43 kDa (TDP-43), neurofilament protein, or Ewing sarcoma (EWS). From these pathological findings, this case was diagnosed as having BIBD as an FTLD-FUS variant. Spinal cord lower motor neurons were spared in number, similar to primary lateral sclerosis. Mutations in FUS were undetectable. Common background pathologies for CBS include corticobasal degeneration, Alzheimer's disease, PSP, FTLD with phosphorylated TDP-43 inclusions (FTLD-TDP), Pick's disease, Lewy body disease and CJD. However, FTLD-FUS (BIBD) has been rarely reported. Our case suggested further pathological heterogeneity in CBS than had previously been reported. It is necessary to consider FTLD-FUS (BIBD) as a background pathology for CBS in the future.
Collapse
Affiliation(s)
- Arifumi Matsumoto
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization, Sendai Medical Center
| | - Reiko Fukatsu
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, Tokorozawa City, Saitama, Japan
| | - Hiroshi Shimizu
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| | - Yasushi Suzuki
- Department of Neurology, National Hospital Organization, Sendai Medical Center, Sendai
| | - Kinya Hisanaga
- Departments of Neurology and Clinical Research Center, National Hospital Organization, Miyagi Hospital, Watari-gun, Miyagi
| |
Collapse
|
18
|
Lashley T, Rohrer JD, Mead S, Revesz T. Review: An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 2015; 41:858-81. [DOI: 10.1111/nan.12250] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders; Department of Molecular Neuroscience; UCL Institute of Neurology; London UK
| | | | - Simon Mead
- Department of Neurodegenerative Disease; UCL Institute of Neurology; London UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders; Department of Molecular Neuroscience; UCL Institute of Neurology; London UK
| |
Collapse
|
19
|
Inekci D, Jonesco DS, Kennard S, Karsdal MA, Henriksen K. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Front Neurol 2015; 6:90. [PMID: 26029153 PMCID: PMC4426721 DOI: 10.3389/fneur.2015.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early intervention. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates. The cerebrospinal fluid (CSF) has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood–brain barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.
Collapse
Affiliation(s)
- Dilek Inekci
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark ; Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | | | - Sophie Kennard
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| | | | - Kim Henriksen
- Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| |
Collapse
|
20
|
Yamanaka Y, Faghihi MA, Magistri M, Alvarez-Garcia O, Lotz M, Wahlestedt C. Antisense RNA controls LRP1 Sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep 2015; 11:967-976. [PMID: 25937287 DOI: 10.1016/j.celrep.2015.04.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/06/2015] [Accepted: 04/03/2015] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), including natural antisense transcripts (NATs), are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1), referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2) and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer's disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.
Collapse
Affiliation(s)
- Yasunari Yamanaka
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marco Magistri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oscar Alvarez-Garcia
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Martin Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Abstract
Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.
Collapse
Affiliation(s)
- Jacob C Schwartz
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309; , ,
| | | | | |
Collapse
|
22
|
Dhar SK, Zhang J, Gal J, Xu Y, Miao L, Lynn BC, Zhu H, Kasarskis EJ, St Clair DK. FUsed in sarcoma is a novel regulator of manganese superoxide dismutase gene transcription. Antioxid Redox Signal 2014; 20:1550-66. [PMID: 23834335 PMCID: PMC3942683 DOI: 10.1089/ars.2012.4984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles, such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. RESULTS Here we demonstrate that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and confirmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly, overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a significantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD promoter-binding activity and interaction with Sp1. INNOVATION AND CONCLUSION This study identifies FUS as playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between MnSOD and mutant FUS in fALS.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou H, Ge Y, Sun L, Ma W, Wu J, Zhang X, Hu X, Eaves CJ, Wu D, Zhao Y. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth. PLoS One 2014; 9:e86195. [PMID: 24465953 PMCID: PMC3897655 DOI: 10.1371/journal.pone.0086195] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.
Collapse
MESH Headings
- Animals
- Calpain/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Nude
- Microfilament Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcriptome/genetics
- Transduction, Genetic
- Tumor Stem Cell Assay
- Up-Regulation
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Haixia Zhou
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Yue Ge
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Lili Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Wenjuan Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Jie Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xiaohui Hu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Depei Wu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, Jiangsu Province, P.R. China
- * E-mail: (DW); (YZ)
| | - Yun Zhao
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu Province, P.R. China
- * E-mail: (DW); (YZ)
| |
Collapse
|
24
|
Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Liu W, Ikeda Y, Feng J, Abe K. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia. J Neurosci Res 2013; 92:54-63. [PMID: 24265138 DOI: 10.1002/jnr.23301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
The 43-kDa transactivation response DNA binding protein (TDP43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), heat shock protein 70 (HSP70), and β-amyloid (Aβ) are induced and involved in cerebral ischemia, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD), but their relationships in ischemic tolerance have never been examined, although they could be involved in endogenous neuroprotection under ischemic preconditioning. In the present study, Mongolian gerbils were subjected to one or three incidents of basically nonlethal 2-min transient common carotid arteries occlusion (tCCAO). Hippocampal CA1 neurons were lost only in the 2-min three times group at 3 and 7 days, which then gradually recovered from 1 to 6 months. Inductions of TDP43 and FUS/TLS were accelerated from 3 months to 7 days or from 7 days to 1 day, respectively, after 2-min three times ischemia compared with once. The cytoplasmic stainings of TDP43 and FUS/TLS showed a further acceleration of the peaks from 1 months to 3 days or from 1 months to 7 days, respectively, after 2-min three times ischemia compared with once. In contrast, HSP70 was induced only at 7 days after 2-min tCCAO for three times, with no expression for Aβ. These data show that ischemic preconditioning offers a way to induce endogenous neuroprotection and neurogenesis in gerbils, with TDP43, FUS/TLS, and HSP70 involved in this function.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hanumanthu VS, Pirruccello SJ. GCSF-R expression in myelodysplastic and myeloproliferative disorders and blast dysmaturation in CML. Am J Clin Pathol 2013; 140:155-64. [PMID: 23897249 DOI: 10.1309/ajcpclhzr5kuhubm] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To characterize granulocyte colony-stimulating factor receptor (CD114) expression in normal (n = 20), myelodysplastic (n = 34), and chronic myelogenous leukemia (CML; n = 5) bone marrow by flow cytometry. METHODS Clinical bone marrow samples were analyzed using CD33/CD114/CD34/CD117/CD45. CD114 density (mean fluorescence intensity) and cellular distribution were evaluated on early blasts (CD33-), late blasts (CD33+), promyelocytes, and granulocytes. RESULTS Normal CD114 acquisition occurred on early blasts, peaked on promyelocytes, and decreased on granulocytes. Forty percent of CD34+ blasts expressed CD114 and one-third were early blasts. In myelodysplastic syndromes, altered CD114 distribution was more informative than density changes. In CML, CD114 density was significantly decreased on early blasts and expression was essentially limited to late blasts. We observed a specific blast dysmaturation pattern in CML involving CD33, CD34, and CD114 that was 83% sensitive and 100% specific in initial diagnosis. CONCLUSIONS CD114 provides useful additional detail in phenotypic assessment of hematopoietic precursor maturation.
Collapse
Affiliation(s)
- Vidya Sagar Hanumanthu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Samuel J. Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
26
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|
27
|
Mastrocola AS, Kim SH, Trinh AT, Rodenkirch LA, Tibbetts RS. The RNA-binding protein fused in sarcoma (FUS) functions downstream of poly(ADP-ribose) polymerase (PARP) in response to DNA damage. J Biol Chem 2013; 288:24731-41. [PMID: 23833192 DOI: 10.1074/jbc.m113.497974] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The list of factors that participate in the DNA damage response to maintain genomic stability has expanded significantly to include a role for proteins involved in RNA processing. Here, we provide evidence that the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS) is a novel component of the DNA damage response. We demonstrate that FUS is rapidly recruited to sites of laser-induced DNA double-strand breaks (DSBs) in a manner that requires poly(ADP-ribose) (PAR) polymerase activity, but is independent of ataxia-telangiectasia mutated kinase function. FUS recruitment is mediated by the arginine/glycine-rich domains, which interact directly with PAR. In addition, we identify a role for the prion-like domain in promoting accumulation of FUS at sites of DNA damage. Finally, depletion of FUS diminished DSB repair through both homologous recombination and nonhomologous end-joining, implicating FUS as an upstream participant in both pathways. These results identify FUS as a new factor in the immediate response to DSBs that functions downstream of PAR polymerase to preserve genomic integrity.
Collapse
Affiliation(s)
- Adam S Mastrocola
- Department of Human Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | |
Collapse
|
28
|
Liu X, Niu C, Ren J, Zhang J, Xie X, Zhu H, Feng W, Gong W. The RRM domain of human fused in sarcoma protein reveals a non-canonical nucleic acid binding site. Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23200923 DOI: 10.1016/j.bbadis.2012.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fused in sarcoma (FUS) is involved in many processes of RNA metabolism. FUS and another RNA binding protein, TDP-43, are implicated in amyotrophic lateral sclerosis (ALS). It is significant to characterize the RNA recognition motif (RRM) of FUS as its nucleic acid binding properties are unclear. More importantly, abolishing the RNA binding ability of the RRM domain of TDP43 was reported to suppress the neurotoxicity of TDP-43 in Drosophila. The sequence of FUS-RRM varies significantly from canonical RRMs, but the solution structure of FUS-RRM determined by NMR showed a similar overall folding as other RRMs. We found that FUS-RRM directly bound to RNA and DNA and the binding affinity was in the micromolar range as measured by surface plasmon resonance and NMR titration. The nucleic acid binding pocket in FUS-RRM is significantly distorted since several critical aromatic residues are missing. An exceptionally positively charged loop in FUS-RRM, which is not found in other RRMs, is directly involved in the RNA/DNA binding. Substituting the lysine residues in the unique KK loop impaired the nucleic acid binding and altered FUS subcellular localization. The results provide insights into the nucleic acid binding properties of FUS-RRM and its potential relevance to ALS.
Collapse
Affiliation(s)
- Xuehui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tolino M, Köhrmann M, Kiebler MA. RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur J Neurosci 2012; 35:1818-36. [PMID: 22708593 DOI: 10.1111/j.1460-9568.2012.08160.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Very often, developmental abnormalities or subtle disturbances of neuronal function may yield brain diseases even if they become obvious only late in life. It is therefore our intention to highlight fundamental mechanisms of neuronal cell biology with a special emphasis on dendritic mRNA localization including local protein synthesis at the activated synapse. Furthermore, we would like to point out possible links to neuronal or synaptic dysfunction. In particular, we will focus on a series of well-known RNA-binding proteins that are involved in these processes and outline how their dysfunction might yield neurodevelopmental, neurodegenerative or neuropsychiatric disorders. We are convinced that increasing our understanding of RNA biology in general and the mechanisms underlying mRNA transport and subsequent translation at the synapse will ultimately generate important novel RNA-based tools in the near future that will allow us to hopefully treat some of these devastating diseases.
Collapse
Affiliation(s)
- Marco Tolino
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
30
|
Mori F, Tanji K, Kon T, Odagiri S, Hattori M, Hoshikawa Y, Kono C, Yasui K, Yokoi S, Hasegawa Y, Yoshida M, Wakabayashi K. FUS immunoreactivity of neuronal and glial intranuclear inclusions in intranuclear inclusion body disease. Neuropathol Appl Neurobiol 2012; 38:322-8. [PMID: 21883376 DOI: 10.1111/j.1365-2990.2011.01217.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Recent studies have shown that fused-in-sarcoma (FUS) protein is a component of 'neuronal' intranuclear inclusion bodies (INIBs) in the brains of patients with intranuclear inclusion body disease (INIBD). However, the extent and frequency of FUS-immunoreactive structures in INIBD are uncertain. METHODS We immunohistochemically examined the brain, spinal cord and peripheral ganglia from five patients with INIBD and five control subjects, using anti-FUS antibodies. RESULTS In controls, the nuclei of both neurones and glial cells were intensely immunolabelled with anti-FUS and neuronal cytoplasm was weakly positive for FUS. In INIBD, neuronal and glial INIBs in the brain and spinal cord were positive for FUS. FUS-positive INIBs were also found in the peripheral ganglia. The proportion of FUS-positive neuronal INIBs relative to the total number of inclusion-bearing neurones ranged from 55.6% to 83.3% (average 73.2%) and that of FUS-positive glial INIBs ranged from 45.9% to 85.7% (average 62.7%). The nucleus and cytoplasm of inclusion-bearing neurones and glial cells showed no FUS immunoreactivity. CONCLUSIONS These findings suggest that FUS is incorporated into INIBs in both neurones and glial cells and that loss of normal FUS immunoreactivity may result from reduced protein expression and/or sequestration within inclusions.
Collapse
Affiliation(s)
- F Mori
- Departments of Neuropathology Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012; 8:423-34. [PMID: 22732773 DOI: 10.1038/nrneurol.2012.117] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Until recently, the underlying cause was known in only a minority of cases that were associated with abnormalities of the tau protein or gene. In 2006, however, mutations in the progranulin gene were discovered as another important cause of familial FTD. That same year, TAR DNA-binding protein 43 (TDP-43) was identified as the pathological protein in the most common subtypes of FTD and amyotrophic lateral sclerosis (ALS). Since then, substantial efforts have been made to understand the functions and regulation of progranulin and TDP-43, as well as their roles in neurodegeneration. More recently, other DNA/RNA binding proteins (FET family proteins) have been identified as the pathological proteins in most of the remaining cases of FTD. In 2011, abnormal expansion of a hexanucleotide repeat in the gene C9orf72 was found to be the most common genetic cause of both FTD and ALS. All common FTD-causing genes have seemingly now been discovered and the main pathological proteins identified. In this Review, we highlight recent advances in understanding the molecular aspects of FTD, which will provide the basis for improved patient care through the development of more-targeted diagnostic tests and therapies.
Collapse
Affiliation(s)
- Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
32
|
Brazão TF, Demmers J, van IJcken W, Strouboulis J, Fornerod M, Romão L, Grosveld FG. A new function of ROD1 in nonsense-mediated mRNA decay. FEBS Lett 2012; 586:1101-10. [PMID: 22575643 DOI: 10.1016/j.febslet.2012.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
RNA-binding proteins play a crucial role in the post-transcriptional regulation of gene expression. Polypyrimidine tract binding protein (PTB in humans) has been extensively characterized as an important splicing factor, and has additional functions in 3' end processing and translation. ROD1 is a PTB paralog containing four RRM (RNA recognition motif) domains. Here, we discover a function of ROD1 in nonsense-mediated mRNA decay (NMD). We show that ROD1 and the core NMD factor UPF1 interact and co-regulate an extensive number of target genes. Using a reporter system, we demonstrate that ROD1, similarly to UPF1 and UPF2, is required for the destabilization of a known NMD substrate. Finally, we show through RIP-seq that ROD1 and UPF1 associate with a significant number of common transcripts.
Collapse
Affiliation(s)
- T F Brazão
- Department of Cell Biology & Genetics, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Thomsen C, Udhane S, Runnberg R, Wiche G, Ståhlberg A, Aman P. Fused in sarcoma (FUS) interacts with the cytolinker protein plectin: implications for FUS subcellular localization and function. Exp Cell Res 2012; 318:653-61. [PMID: 22240165 DOI: 10.1016/j.yexcr.2011.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 12/21/2022]
Abstract
Fused in sarcoma (FUS) is a multifunctional protein involved in transcriptional control, pre-mRNA processing, RNA transport and translation. The domain structure of FUS reflects its functions in gene regulation and its ability to interact with other proteins, RNA and DNA. By use of a recombinant fragment of FUS in pull-down experiments followed by mass spectrometry analysis we have identified a novel interaction between the FUS N-terminal and the cytolinker plectin. An in situ proximity ligation assay confirmed that FUS-plectin interactions take place in the cytoplasm of cells. Furthermore, plectin deficient cells showed an altered subcellular localization of FUS and a deregulated expression of mRNAs bound to FUS. Our results show that plectin is important for normal FUS localization and function. Mutations involving FUS are causative factors in sarcomas and leukemias and also hereditary forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Plectin deficiency causes epidermolysis bullosa, a disease involving the skin and neuromuscular system. The novel FUS-plectin interaction offers new perspectives for understanding the role of FUS and plectin mutations in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Christer Thomsen
- Sahlgrenska Cancer Center, Department of Pathology, Sahlgrenska Academy at the University of Gothenburg, Box 425, 40530, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Blechingberg J, Holm IE, Nielsen AL. Characterization and expression analysis in the developing embryonic brain of the porcine FET family: FUS, EWS, and TAF15. Gene 2012; 493:27-35. [DOI: 10.1016/j.gene.2011.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/31/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
|
35
|
Page T, Gitcho MA, Mosaheb S, Carter D, Chakraverty S, Perry RH, Bigio EH, Gearing M, Ferrer I, Goate AM, Cairns NJ, Thorpe JR. FUS immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy. J Mol Neurosci 2011; 45:409-21. [PMID: 21603978 PMCID: PMC3374931 DOI: 10.1007/s12031-011-9549-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of α-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the "loosely aggregated cytoplasmic inclusions," 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer "compact cytoplasmic inclusions" and "tangled twine ball inclusions" were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations.
Collapse
Affiliation(s)
- Tristan Page
- Electron Microscope Division, Sussex Centre for Advanced Microscopy, School of Life Sciences, University of Sussex, Brighton, Sussex, UK
| | - Michael A. Gitcho
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Sabrina Mosaheb
- Department of Clinical Biochemistry, Royal Berkshire NHS Foundation Trust, Reading, Berkshire, UK
| | - Deborah Carter
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumi Chakraverty
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H. Perry
- Department of Neuropathology, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | - Eileen H. Bigio
- Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Isidre Ferrer
- Institut de Neuropatologia, Idibell-Hospital Universityari de Bellvitge, Universitat de Barcelona, Hospitalet de LLobregat, Spain
| | - Alison M. Goate
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nigel J. Cairns
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julian R. Thorpe
- Electron Microscope Division, Sussex Centre for Advanced Microscopy, School of Life Sciences, University of Sussex, Brighton, Sussex, UK
| |
Collapse
|
36
|
Lashley T, Rohrer JD, Bandopadhyay R, Fry C, Ahmed Z, Isaacs AM, Brelstaff JH, Borroni B, Warren JD, Troakes C, King A, Al-Saraj S, Newcombe J, Quinn N, Ostergaard K, Schrøder HD, Bojsen-Møller M, Braendgaard H, Fox NC, Rossor MN, Lees AJ, Holton JL, Revesz T. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain 2011; 134:2548-64. [PMID: 21752791 PMCID: PMC3170529 DOI: 10.1093/brain/awr160] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural variant frontotemporal dementia, while the clinical presentation in neuronal intermediate filament inclusion disease was more heterogeneous, including cases with motor neuron disease and extrapyramidal syndromes. Neuroimaging revealed atrophy of the frontal and anterior temporal lobes as well as the caudate in the cases with atypical frontotemporal lobar degeneration with ubiquitinated inclusions, but was more heterogeneous in the cases with neuronal intermediate filament inclusion disease, often being normal to visual inspection early on in the disease. The distribution and severity of fused in sarcoma-positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and neurites were recorded and fused in sarcoma was biochemically analysed in both subgroups. Fused in sarcoma-positive neuronal cytoplasmic and intranuclear inclusions were found in the hippocampal granule cell layer in variable numbers. Cortical fused in sarcoma-positive neuronal cytoplasmic inclusions were often 'Pick body-like' in neuronal intermediate filament inclusion disease, and annular and crescent-shaped inclusions were seen in both conditions. Motor neurons contained variable numbers of compact, granular or skein-like cytoplasmic inclusions in all fused in sarcoma-positive cases in which brainstem and spinal cord motor neurons were available for study (five and four cases, respectively). No fused in sarcoma mutations were found in any cases. Biochemically, two major fused in sarcoma species were found and shown to be more insoluble in the atypical frontotemporal lobar degeneration with ubiquitinated inclusions subgroup compared with neuronal intermediate filament inclusion disease. There is considerable overlap and also significant differences in fused in sarcoma-positive pathology between the two subgroups, suggesting they may represent a spectrum of the same disease. The co-existence of fused in sarcoma-positive inclusions in both motor neurons and extramotor cerebral structures is a characteristic finding in sporadic fused in sarcoma proteinopathies, indicating a multisystem disorder.
Collapse
Affiliation(s)
- Tammaryn Lashley
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Jonathan D. Rohrer
- 2 Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Rina Bandopadhyay
- 3 Reta Lila Weston Institute, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Charles Fry
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Zeshan Ahmed
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Adrian M. Isaacs
- 4 Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jack H. Brelstaff
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
- 3 Reta Lila Weston Institute, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Barbara Borroni
- 2 Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jason D. Warren
- 2 Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Claire Troakes
- 5 MRC Neurodegenerative Brain Bank, Institute of Psychiatry, King′s College London, London SE5 8AF, UK
| | - Andrew King
- 6 Department of Clinical Neuropathology, King′s College Hospital, London SE5 8AF, UK
| | - Safa Al-Saraj
- 6 Department of Clinical Neuropathology, King′s College Hospital, London SE5 8AF, UK
| | - Jia Newcombe
- 7 NeuroResource, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Niall Quinn
- 8 The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Karen Ostergaard
- 9 Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | - Henrik Daa Schrøder
- 9 Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Hans Braendgaard
- 10 Arhus Kommunehospital, Neuropathology Department, 8000 Arhus C, Denmark
| | - Nick C. Fox
- 2 Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Martin N. Rossor
- 2 Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew J. Lees
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
- 3 Reta Lila Weston Institute, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Janice L. Holton
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Tamas Revesz
- 1 Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
| |
Collapse
|
37
|
Sánchez-Ramos C, Tierrez A, Fabregat-Andrés O, Wild B, Sánchez-Cabo F, Arduini A, Dopazo A, Monsalve M. PGC-1α regulates translocated in liposarcoma activity: role in oxidative stress gene expression. Antioxid Redox Signal 2011; 15:325-37. [PMID: 21338289 DOI: 10.1089/ars.2010.3643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Translocated in liposarcoma (TLS) is a poorly characterized multifunctional protein involved in the genotoxic response. TLS regulates gene expression at several steps, including splicing and mRNA transport, possibly connecting transcriptional and posttranscriptional events. AIMS In this study we aimed to idenfity molecular targets and regulatory partners of TLS. RESULTS AND INNOVATION Here we report that TLS transcriptionally regulates the expression of oxidative stress protection genes. This regulation requires interaction with the transcriptional coactivator peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α), a master regulator of mitochondrial function that coordinately induces the expression of genes involved in detoxification of mitochondrial reactive oxygen species (ROS). Microarray gene expression analysis showed that TLS transcriptional activity is impaired in the absence of PGC-1α, and is thus largely dependent on PGC-1α. CONCLUSION These results suggest the existence of a regulatory circuit linking the control of ROS detoxification to the coordinated cross-talk between oxidative metabolism and the cellular response to genomic DNA damage.
Collapse
|
38
|
Takahama K, Kino K, Arai S, Kurokawa R, Oyoshi T. Identification of Ewing’s sarcoma protein as a G-quadruplex DNA- and RNA-binding protein. FEBS J 2011; 278:988-98. [DOI: 10.1111/j.1742-4658.2011.08020.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Perrotti D, Harb JG. BCR-ABL1 kinase-dependent alteration of mRNA metabolism: potential alternatives for therapeutic intervention. Leuk Lymphoma 2011; 52 Suppl 1:30-44. [PMID: 21299458 DOI: 10.3109/10428194.2010.546914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of first- and second-generation tyrosine kinase inhibitors (TKIs) significantly improves prognosis for patients with early chronic phase chronic myeloid leukemia (CML) and efficiently counteracts leukemia in most patients with CML bearing a disease characterized by the expression of BCR-ABL1 mutants. However, the so-called 'tinib' TKIs (e.g. imatinib, nilotinib, dasatinib, and bosutinib) are both ineffective in patients who undergo blastic transformation and unable to eradicate CML at the stem cell level. This raises a few important questions. Is BCR-ABL1 expression and/or activity essential for blastic transformation? Is blastic transformation the result of genetic or epigenetic events that occur at the stem cell level which only become apparent in the granulocyte-macrophage progenitor (GMP) cell pool, or does it arise directly at the GMP level? As altered mRNA metabolism contributes to the phenotype of blast crisis CML progenitors (decreased translation of tumor suppressor genes and transcription factors essential for terminal differentiation and increased translation of anti-apoptotic genes), one attractive concept is to restore levels of these essential molecules to their normal levels. In this review, we discuss the mechanisms by which mRNA processing, translation, and degradation are deregulated in BCR-ABL1 myeloid blast crisis CML progenitors, and present encouraging results from studies with pharmacologic inhibitors which support their inclusion in the clinic.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Depatment of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
40
|
Kino Y, Washizu C, Aquilanti E, Okuno M, Kurosawa M, Yamada M, Doi H, Nukina N. Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res 2010; 39:2781-98. [PMID: 21109527 PMCID: PMC3074126 DOI: 10.1093/nar/gkq1162] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TLS (translocated in liposarcoma), also known as FUS (fused in sarcoma), is an RNA/DNA-binding protein that plays regulatory roles in transcription, pre-mRNA splicing and mRNA transport. Mutations in TLS are responsible for familial amyotrophic lateral sclerosis (ALS) type 6. Furthermore, TLS-containing intracellular inclusions are found in polyglutamine diseases, sporadic ALS, non-SOD1 familial ALS and a subset of frontotemporal lobar degeneration, indicating a pathological significance of TLS in a wide variety of neurodegenerative diseases. Here, we identified TLS domains that determine intracellular localization of the murine TLS. Among them, PY-NLS located in the C-terminus is a strong determinant of intracellular localization as well as splicing regulation of an E1A-derived minigene. Disruption of PY-NLS promoted the formation of cytoplasmic granules that were partially overlapped with stress granules and P-bodies. Some of the ALS-linked mutations altered both intracellular localization and splicing regulation of TLS, while most mutations alone did not affect splicing regulation. However, phospho-mimetic substitution of Ser505 (or Ser513 in human) could enhance the effects of ALS mutations, highlighting interplay between post-translational modification and ALS-linked mutations. These results demonstrate that ALS-linked mutations can variably cause loss of nuclear functions of TLS depending on the degree of impairment in nuclear localization.
Collapse
Affiliation(s)
- Yoshihiro Kino
- Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and functional properties. Although the traditional grouping of the hnRNPs as a collection of proteins provided a practical framework, which has guided much of the research on them, this approach is becoming increasingly incompatible with current knowledge about their structural and functional divergence. Hence, we review the current literature to examine hnRNP diversity, and discuss how this impacts upon approaches to the classification of RNA-binding proteins in general.
Collapse
|
42
|
Rademakers R, Stewart H, Dejesus-Hernandez M, Krieger C, Graff-Radford N, Fabros M, Briemberg H, Cashman N, Eisen A, Mackenzie IRA. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve 2010; 42:170-6. [PMID: 20544928 PMCID: PMC2969843 DOI: 10.1002/mus.21665] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations in the fused in sarcoma (FUS) gene have recently been found to cause familial amyotrophic lateral sclerosis (FALS). We screened FUS in a cohort of 200 ALS patients [32 FALS and 168 sporadic ALS (SALS)]. In one FALS proband, we identified a mutation (p.R521C) that was also present in her affected daughter. Their clinical phenotype was remarkably similar and atypical of classic ALS, with symmetric proximal pelvic and pectoral weakness. Distal weakness and upper motor neuron features only developed late. Neuropathological examination demonstrated FUS-immunoreactive neuronal and glial inclusions in the spinal cord and many extramotor regions, but no TDP-43 pathology. We also identified a novel mutation (p.G187S) in one SALS patient. Overall, FUS mutations accounted for 3% of our non-SOD1, non-TARDBP FALS cases and 0.6% of SALS. This study demonstrates that the phenotype with FUS mutations extends beyond classical ALS cases. Our findings suggest there are specific clinicogenetic correlations and provide the first detailed neuropathological description.
Collapse
Affiliation(s)
- Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
FET family proto-oncogene Fus contributes to self-renewal of hematopoietic stem cells. Exp Hematol 2010; 38:696-706. [DOI: 10.1016/j.exphem.2010.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 01/03/2023]
|
44
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
45
|
Neumann M, Roeber S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IRA. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 2009; 118:605-16. [PMID: 19669651 PMCID: PMC2864784 DOI: 10.1007/s00401-009-0581-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Neuronal intermediate filament inclusion disease (NIFID) is an uncommon neurodegenerative condition that typically presents as early-onset, sporadic frontotemporal dementia (FTD), associated with a pyramidal and/or extrapyramidal movement disorder. The neuropathology is characterized by frontotemporal lobar degeneration with neuronal inclusions that are immunoreactive for all class IV intermediate filaments (IF), light, medium and heavy neurofilament subunits and alpha-internexin. However, not all the inclusions in NIFID are IF-positive and the primary molecular defect remains uncertain. Mutations in the gene encoding the fused in sarcoma (FUS) protein have recently been identified as a cause of familial amyotrophic lateral sclerosis (ALS). Because of the recognized clinical, genetic and pathological overlap between FTD and ALS, we investigated the possible role of FUS in NIFID. We found abnormal intracellular accumulation of FUS to be a consistent feature of our NIFID cases (n = 5). More neuronal inclusions were labeled using FUS immunohistochemistry than for IF. Several types of inclusions were consistently FUS-positive but IF-negative, including neuronal intranuclear inclusions and glial cytoplasmic inclusions. Double-label immunofluorescence confirmed that many cells had only FUS-positive inclusions and that all cells with IF-positive inclusions also contained pathological FUS. No mutation in the FUS gene was identified in a single case with DNA available. These findings suggest that FUS may play an important role in the pathogenesis of NIFID.
Collapse
Affiliation(s)
- Manuela Neumann
- Institute of Neuropathology, University Hospital of Zürich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Detection of FUS–ERG chimeric transcript in two cases of acute myeloid leukemia with t(16;21)(p11.2;q22) with unusual characteristics. ACTA ACUST UNITED AC 2009; 194:111-8. [DOI: 10.1016/j.cancergencyto.2009.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
|
47
|
Chang WR, Park IJ, Lee HW, Park JS, Kim HC, Kim HJ, Han JH, Cho SR. Two Cases of Acute Myeloid Leukemia with t(16;21)(p11;q22) and TLS/FUS-ERG Fusion Transcripts. Ann Lab Med 2009; 29:390-5. [DOI: 10.3343/kjlm.2009.29.5.390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Woong Rin Chang
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Il Joong Park
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Hugh Chul Kim
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Hyon Joo Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Sung Ran Cho
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
48
|
Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1:82-92. [PMID: 19783543 DOI: 10.1093/jmcb/mjp025] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translocated in liposarcoma, Ewing's sarcoma and TATA-binding protein-associated factor 15 constitute an interesting and important family of proteins known as the TET proteins. The proteins function in several aspects of cell growth control, including multiple different steps in gene expression, and they are also found mutated in a number of specific diseases. For example, all contain domains for binding nucleic acids and have been shown to function in both RNA polymerase II-mediated transcription and pre-mRNA splicing, possibly connecting these two processes. Chromosomal translocations in human sarcomas result in a fusion of the amino terminus of these proteins, which contains a transcription activation domain, to the DNA-binding domain of a transcription factor. Although the fusion proteins have been characterized in a clinical environment, the function of the cognate full-length protein in normal cells is a more recent topic of study. The first part of this review will describe the TET proteins, followed by detailed descriptions of their multiple roles in cells. The final sections will examine changes that occur in gene regulation in cells expressing the fusion proteins. The clinical implications and treatment of sarcomas will not be addressed but have recently been reviewed.
Collapse
Affiliation(s)
- Adelene Y Tan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
49
|
BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34+38- cells, through activation of protein kinase Cbeta. Blood 2009; 114:4186-96. [PMID: 19738029 DOI: 10.1182/blood-2009-05-219550] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder maintained by cancer stem cells. To target this population, we investigated the mechanism of action of BMS-214662, developed as a farnesyl transferase inhibitor (FTI) and unique in inducing apoptosis in these cells. By contrast, a related congener and equally effective FTI, BMS-225975 does not induce apoptosis, indicating a novel mechanism of action. BMS-214662 significantly and selectively induced apoptosis in primitive CD34(+)38(-) CML compared with normal cells. Apoptosis proceeded via the intrinsic pathway: Bax conformational changes, loss of mitochondrial membrane potential, generation of reactive oxygen species, release of cytochrome c, and caspase-9/3 activation were noted. Up-regulation of protein kinase Cbeta (PKCbeta), down-regulation of E2F1, and phosphorylation of cyclin A-associated cyclin-dependent kinase 2 preceded these changes. Cotreatment of CML CD34(+) and CD34(+)38(-) cells with PKC modulators, bryostatin-1, or hispidin markedly decreased these early events and the subsequent apoptosis. None of these events was elicited by BMS-214662 in normal CD34(+) cells or by BMS-225975 in CML CD34(+) cells. These data suggest that BMS-214662 selectively elicits a latent apoptotic pathway in CML stem cells that is initiated by up-regulation of PKCbeta and mediated by Bax activation, providing a molecular framework for development of novel therapeutics.
Collapse
|
50
|
Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IRA. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009; 132:2922-31. [PMID: 19674978 DOI: 10.1093/brain/awp214] [Citation(s) in RCA: 548] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. The neuropathology associated with most FTD is characterized by abnormal cellular aggregates of either transactive response DNA-binding protein with Mr 43 kDa (TDP-43) or tau protein. However, we recently described a subgroup of FTD patients, representing around 10%, with an unusual clinical phenotype and pathology characterized by frontotemporal lobar degeneration with neuronal inclusions composed of an unidentified ubiquitinated protein (atypical FTLD-U; aFTLD-U). All cases were sporadic and had early-onset FTD with severe progressive behavioural and personality changes in the absence of aphasia or significant motor features. Mutations in the fused in sarcoma (FUS) gene have recently been identified as a cause of familial amyotrophic lateral sclerosis, with these cases reported to have abnormal cellular accumulations of FUS protein. Because of the recognized clinical, genetic and pathological overlap between FTD and amyotrophic lateral sclerosis, we investigated whether FUS might also be the pathological protein in aFTLD-U. In all our aFTLD-U cases (n = 15), FUS immunohistochemistry labelled all the neuronal inclusions and also demonstrated previously unrecognized glial pathology. Immunoblot analysis of protein extracted from post-mortem aFTLD-U brain tissue demonstrated increased levels of insoluble FUS. No mutations in the FUS gene were identified in any of our patients. These findings suggest that FUS is the pathological protein in a significant subgroup of sporadic FTD and reinforce the concept that FTD and amyotrophic lateral sclerosis are closely related conditions.
Collapse
Affiliation(s)
- Manuela Neumann
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|