1
|
Ikeda Y, Miyazaki R, Tsukazaki T, Akiyama Y, Mori H. Translation arrest cancellation of VemP, a secretion monitor in Vibrio, is regulated by multiple cis and trans factors, including SecY. J Biol Chem 2024; 300:107735. [PMID: 39233231 PMCID: PMC11470409 DOI: 10.1016/j.jbc.2024.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
VemP is a secretory protein in the Vibrio species that monitors cellular protein-transport activity through its translation arrest, allowing expression of the downstream secD2-secF2 genes in the same operon, which encode components of the protein translocation machinery. When cellular protein-transport function is fully active, secD2/F2 expression remains repressed as VemP translation arrest is canceled immediately. The VemP arrest cancellation occurs on the SecY/E/G translocon in a late stage in the translocation process and requires both trans factors, SecD/F and PpiD/YfgM, and a cis element, Arg-85 in VemP; however, the detailed molecular mechanism remains elusive. This study aimed to elucidate how VemP passing through SecY specifically monitors SecD/F function. Genetic and biochemical studies showed that SecY is involved in the VemP arrest cancellation and that the arrested VemP is stably associated with a specific site in the protein-conducting pore of SecY. VemP-Bla reporter analyses revealed that a short hydrophobic segment adjacent to Arg-85 plays a critical role in the regulated arrest cancellation with its hydrophobicity correlating with the stability of the VemP arrest. We identified Gln-65 and Pro-67 in VemP as novel elements important for the regulation. We propose a model for the regulation of the VemP arrest cancellation by multiple cis elements and trans factors with different roles.
Collapse
Affiliation(s)
- Yuki Ikeda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Whitley P, Grau B, Gumbart JC, Martínez-Gil L, Mingarro I. Folding and Insertion of Transmembrane Helices at the ER. Int J Mol Sci 2021; 22:ijms222312778. [PMID: 34884581 PMCID: PMC8657811 DOI: 10.3390/ijms222312778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation. These stretches are typically around 20 amino acids long and are known as transmembrane (TM) helices. In this review, we will consider how transmembrane helices achieve membrane integration. We will address questions such as: Where do the stretches of amino acids fold into a helical conformation? What is/are the route/routes that these stretches take from synthesis at the ribosome to integration through the ER translocon? How do these stretches ‘know’ to integrate and in which orientation? How do marginally hydrophobic stretches of amino acids integrate and survive as transmembrane helices?
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, UK;
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - James C. Gumbart
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
- Correspondence: ; Tel.: +34-963543796
| |
Collapse
|
3
|
Characterization of the Features of Water Inside the SecY Translocon. J Membr Biol 2021; 254:133-139. [PMID: 33811496 DOI: 10.1007/s00232-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic. After briefly describing the role of water and the hydrophobic effect on cellular processes, I will discuss the physical chemistry of water confined inside the SecY translocon pore. I conclude with a review of recent literature that attempts to answer fundamental questions on the pathway and energetics of translocon-guided membrane protein insertion.
Collapse
|
4
|
Young J, Duong F. Investigating the stability of the SecA-SecYEG complex during protein translocation across the bacterial membrane. J Biol Chem 2019; 294:3577-3587. [PMID: 30602566 DOI: 10.1074/jbc.ra118.006447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/21/2018] [Indexed: 11/06/2022] Open
Abstract
During posttranslational translocation in Escherichia coli, polypeptide substrates are driven across the membrane through the SecYEG protein-conducting channel using the ATPase SecA, which binds to SecYEG and couples nucleotide hydrolysis to polypeptide movement. Recent studies suggest that SecA is a highly dynamic enzyme, able to repeatedly bind and dissociate from SecYEG during substrate translocation, but other studies indicate that these dynamics, here referred to as "SecA processivity," are not a requirement for transport. We employ a SecA mutant (PrlD23) that associates more tightly to membranes than WT SecA, in addition to a SecA-SecYEG cross-linked complex, to demonstrate that SecA-SecYEG binding and dissociation events are important for efficient transport of the periplasmic protein proPhoA. Strikingly however, we find that transport of the precursor of the outer membrane protein proOmpA does not depend on SecA processivity. By exchanging signal sequence and protein domains of similar size between PhoA and OmpA, we find that SecA processivity is not influenced by the sequence of the protein substrate. In contrast, using an extended proOmpA variant and a truncated derivative of proPhoA, we show that SecA processivity is affected by substrate length. These findings underscore the importance of the dynamic nature of SecA-SecYEG interactions as a function of the preprotein substrate, features that have not yet been reported using other biophysical or in vivo methods.
Collapse
Affiliation(s)
- John Young
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
5
|
Gumbart JC, Chipot C. Decrypting protein insertion through the translocon with free-energy calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1663-71. [PMID: 26896694 DOI: 10.1016/j.bbamem.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Protein insertion into a membrane is a complex process involving numerous players. The most prominent of these players is the Sec translocon complex, a conserved protein-conducting channel present in the cytoplasmic membrane of bacteria and the membrane of the endoplasmic reticulum in eukaryotes. The last decade has seen tremendous leaps forward in our understanding of how insertion is managed by the translocon and its partners, coming from atomic-detailed structures, innovative experiments, and well-designed simulations. In this review, we discuss how experiments and simulations, hand-in-hand, teased out the secrets of the translocon-facilitated membrane insertion process. In particular, we focus on the role of free-energy calculations in elucidating membrane insertion. Amazingly, despite all its apparent complexity, protein insertion into membranes is primarily driven by simple thermodynamic and kinetic principles. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Abstract
The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359-E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a "primed" open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182-17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications.
Collapse
|
7
|
Rajagopalan V, Canals D, Luberto C, Snider J, Voelkel-Johnson C, Obeid LM, Hannun YA. Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim Biophys Acta Gen Subj 2014; 1850:628-39. [PMID: 25484313 DOI: 10.1016/j.bbagen.2014.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND A novel murine mitochondria-associated neutral sphingomyelinase (MA-nSMase) has been recently cloned and partially characterized. The subcellular localization of the enzyme was found to be predominant in mitochondria. In this work, the determinants of mitochondrial localization and its topology were investigated. METHODS MA-nSMase mutants lacking consecutive regions and fusion proteins of GFP with truncated MA-nSMase regions were constructed and expressed in MCF-7 cells. Its localization was analyzed using confocal microscopy and sub-cellular fractionation methods. The sub-mitochondrial localization of MA-nSMase was determined using protease protection assay on isolated mitochondria. RESULTS The results initially showed that a putative mitochondrial localization signal (MLS), homologous to an MLS in the zebra-fish mitochondrial SMase is not necessary for the mitochondrial localization of the murine MA-nSMase. Evidence is provided to the presence of two regions in MA-nSMase that are sufficient for mitochondrial localization: a signal sequence (amino acids 24-56) that is responsible for the mitochondrial localization and an additional 'signal-anchor' sequence (amino acids 77-99) that anchors the protein to the mitochondrial membrane. This protein is topologically located in the outer mitochondrial membrane where both the C and N-termini remain exposed to the cytosol. CONCLUSIONS MA-nSMase is a membrane anchored protein with a MLS and a signal-anchor sequence at its N-terminal to localize it to the outer mitochondrial membrane. GENERAL SIGNIFICANCE Mitochondrial sphingolipids have been reported to play a critical role in cellular viability. This study opens a new window to investigate their cellular functions, and to define novel therapeutic targets.
Collapse
Affiliation(s)
- Vinodh Rajagopalan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173, Ashley Avenue, Charleston, SC 29425, USA
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center and the Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Justin Snider
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Christina Voelkel-Johnson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173, Ashley Avenue, Charleston, SC 29425, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Dou D, da Silva DV, Nordholm J, Wang H, Daniels R. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion. Mol Biol Cell 2014; 25:3363-74. [PMID: 25165139 PMCID: PMC4214783 DOI: 10.1091/mbc.e14-04-0874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular hydrophobicity threshold for the inversion of Sec-dependent Nin-Cout (type II) transmembrane domains is dictated by whether their membrane integration occurs cotranslationally or posttranslationally. Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion.
Collapse
Affiliation(s)
- Dan Dou
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Diogo V da Silva
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Johan Nordholm
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Hao Wang
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Robert Daniels
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Gumbart JC, Teo I, Roux B, Schulten K. Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. J Am Chem Soc 2013; 135:2291-7. [PMID: 23298280 PMCID: PMC3573731 DOI: 10.1021/ja310777k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
For the vast majority of membrane proteins, insertion
into a membrane
is not direct, but rather is catalyzed by a protein-conducting channel,
the translocon. This channel provides a lateral exit into the bilayer
while simultaneously offering a pathway into the aqueous lumen. The
determinants of a nascent protein’s choice between these two
pathways are not comprehensively understood, although both energetic
and kinetic factors have been observed. To elucidate the specific
roles of some of these factors, we have carried out extensive all-atom
molecular dynamics simulations of different nascent transmembrane
segments embedded in a ribosome-bound bacterial translocon, SecY.
Simulations on the μs time scale reveal a spontaneous motion
of the substrate segment into the membrane or back into the channel,
depending on its hydrophobicity. Potential of mean force (PMF) calculations
confirm that the observed motion is the result of local free-energy
differences between channel and membrane. Based on these and other
PMFs, the time-dependent probability of membrane insertion is determined
and is shown to mimic a two-state partition scheme with an apparent
free energy that is compressed relative to the molecular-level PMFs.
It is concluded that insertion kinetics underlies the experimentally
observed thermodynamic partitioning process.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30363, USA
| | | | | | | |
Collapse
|
10
|
Zhang B, Miller TF. Long-timescale dynamics and regulation of Sec-facilitated protein translocation. Cell Rep 2012; 2:927-37. [PMID: 23084746 PMCID: PMC3483636 DOI: 10.1016/j.celrep.2012.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/21/2012] [Accepted: 08/31/2012] [Indexed: 01/11/2023] Open
Abstract
We present a coarse-grained modeling approach that spans the nanosecond- to minute-timescale dynamics of cotranslational protein translocation. The method enables direct simulation of both integral membrane protein topogenesis and transmembrane domain (TM) stop-transfer efficiency. Simulations reveal multiple kinetic pathways for protein integration, including a mechanism in which the nascent protein undergoes slow-timescale reorientation, or flipping, in the confined environment of the translocon channel. Competition among these pathways gives rise to the experimentally observed dependence of protein topology on ribosomal translation rate and protein length. We further demonstrate that sigmoidal dependence of stop-transfer efficiency on TM hydrophobicity arises from local equilibration of the TM across the translocon lateral gate, and it is predicted that slowing ribosomal translation yields decreased stop-transfer efficiency in long proteins. This work reveals the balance between equilibrium and nonequilibrium processes in protein targeting, and it provides insight into the molecular regulation of the Sec translocon.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
11
|
Yang C, Xie H, Zhang JK, Su BL. Anchoring proteins to Escherichia coli cell membranes using hydrophobic anchors derived from a Bacillus subtilis integral membrane protein. Protein Expr Purif 2012; 85:60-5. [DOI: 10.1016/j.pep.2012.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/01/2022]
|
12
|
Zhang B, Miller TF. Direct simulation of early-stage Sec-facilitated protein translocation. J Am Chem Soc 2012; 134:13700-7. [PMID: 22852862 DOI: 10.1021/ja3034526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct simulations reveal key mechanistic features of early-stage protein translocation and membrane integration via the Sec-translocon channel. We present a novel computational protocol that combines non-equilibrium growth of the nascent protein with microsecond timescale molecular dynamics trajectories. Analysis of multiple, long timescale simulations elucidates molecular features of protein insertion into the translocon, including signal-peptide docking at the translocon lateral gate (LG), large lengthscale conformational rearrangement of the translocon LG helices, and partial membrane integration of hydrophobic nascent-protein sequences. Furthermore, the simulations demonstrate the role of specific molecular interactions in the regulation of protein secretion, membrane integration, and integral membrane protein topology. Salt-bridge contacts between the nascent-protein N-terminus, cytosolic translocon residues, and phospholipid head groups are shown to favor conformations of the nascent protein upon early-stage insertion that are consistent with the Type II (N(cyt)/C(exo)) integral membrane protein topology, and extended hydrophobic contacts between the nascent protein and the membrane lipid bilayer are shown to stabilize configurations that are consistent with the Type III (N(exo)/C(cyt)) topology. These results provide a detailed, mechanistic basis for understanding experimentally observed correlations between integral membrane protein topology, translocon mutagenesis, and nascent-protein sequence.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | |
Collapse
|
13
|
Liang FC, Bageshwar UK, Musser SM. Position-dependent effects of polylysine on Sec protein transport. J Biol Chem 2012; 287:12703-14. [PMID: 22367204 DOI: 10.1074/jbc.m111.240903] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.
Collapse
Affiliation(s)
- Fu-Cheng Liang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA
| | | | | |
Collapse
|
14
|
Wu ZC, de Keyzer J, Kedrov A, Driessen AJM. Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 2012; 287:7885-95. [PMID: 22267723 DOI: 10.1074/jbc.m111.297911] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.
Collapse
Affiliation(s)
- Zht Cheng Wu
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
The Sec61 or SecY channel, a universally conserved protein-conducting channel, translocates proteins across and integrates proteins into the eukaryotic endoplasmic reticulum (ER) membrane and the prokaryotic plasma membrane. Depending on channel-binding partners, polypeptides are moved by different mechanisms. In cotranslational translocation, the ribosome feeds the polypeptide chain directly into the channel. In posttranslational translocation, a ratcheting mechanism is used by the ER-lumenal chaperone BiP in eukaryotes, and a pushing mechanism is utilized by the SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is facilitated through the function of the SecD/F protein. Recent structural and biochemical data show how the channel opens during translocation, translocates soluble proteins, releases hydrophobic segments of membrane proteins into the lipid phase, and maintains the barrier for small molecules.
Collapse
Affiliation(s)
- Eunyong Park
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
17
|
Affiliation(s)
- Christine L. Hagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; ,
| |
Collapse
|
18
|
Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A 2011; 108:3596-601. [PMID: 21317362 DOI: 10.1073/pnas.1012758108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nascent membrane proteins typically insert in a sequential fashion into the membrane via a protein-conducting channel, the Sec translocon. How this process occurs is still unclear, although a thermodynamic partitioning between the channel and the membrane environment has been proposed. Experiment- and simulation-based scales for the insertion free energy of various amino acids are, however, at variance, the former appearing to lie in a narrower range than the latter. Membrane insertion of arginine, for instance, requires 14-17 kcal/mol according to molecular dynamics simulations, but only 2-3 kcal/mol according to experiment. We suggest that this disagreement is resolved by assuming a two-stage insertion process wherein the first step, the insertion into the translocon, is energized by protein synthesis and, therefore, has an effectively zero free-energy cost; the second step, the insertion into the membrane, invokes the translocon as an intermediary between the fully hydrated and the fully inserted locations. Using free-energy perturbation calculations, the effective transfer free energies from the translocon to the membrane have been determined for both arginine and leucine amino acids carried by a background polyleucine helix. Indeed, the insertion penalty for arginine as well as the insertion gain for leucine from the translocon to the membrane is found to be significantly reduced compared to direct insertion from water, resulting in the same compression as observed in the experiment-based scale.
Collapse
|
19
|
du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:851-65. [PMID: 20801097 DOI: 10.1016/j.bbamem.2010.08.016] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- David J F du Plessis
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
20
|
Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc Natl Acad Sci U S A 2010; 107:5399-404. [PMID: 20203009 DOI: 10.1073/pnas.0914752107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sec translocon is a central component of cellular pathways for protein translocation and membrane integration. Using both atomistic and coarse-grained molecular simulations, we investigate the conformational landscape of the translocon and explore the role of peptide substrates in the regulation of the translocation and integration pathways. Inclusion of a hydrophobic peptide substrate in the translocon stabilizes the opening of the lateral gate for membrane integration, whereas a hydrophilic peptide substrate favors the closed lateral gate conformation. The relative orientation of the plug moiety and a peptide substrate within the translocon channel is similarly dependent on whether the substrate is hydrophobic or hydrophilic in character, and the energetics of the translocon lateral gate opening in the presence of a peptide substrate is governed by the energetics of the peptide interface with the membrane. Implications of these results for the regulation of Sec-mediated pathways for protein translocation vs. membrane integration are discussed.
Collapse
|
21
|
Mapping polypeptide interactions of the SecA ATPase during translocation. Proc Natl Acad Sci U S A 2009; 106:20800-5. [PMID: 19933328 DOI: 10.1073/pnas.0910550106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial proteins, including most secretory proteins, are translocated across the plasma membrane by the interplay of the cytoplasmic SecA ATPase and a protein-conducting channel formed by the SecY complex. SecA catalyzes the sequential movement of polypeptide segments through the SecY channel. How SecA interacts with a broad range of polypeptide segments is unclear, but structural data raise the possibility that translocation substrates bind into a "clamp" of SecA. Here, we have used disulfide bridge cross-linking to test this hypothesis. To analyze polypeptide interactions of SecA during translocation, two cysteines were introduced into a translocation intermediate: one that cross-links to the SecY channel and the other one for cross-linking to a cysteine placed at various positions in SecA. Our results show that a translocating polypeptide is indeed captured inside SecA's clamp and moves in an extended conformation through the clamp into the SecY channel. These results define the polypeptide path during SecA-mediated protein translocation and suggest a mechanism by which ATP hydrolysis by SecA is used to move a polypeptide chain through the SecY channel.
Collapse
|
22
|
Nouwen N, Berrelkamp G, Driessen AJM. Charged amino acids in a preprotein inhibit SecA-dependent protein translocation. J Mol Biol 2009; 386:1000-10. [PMID: 19244616 DOI: 10.1016/j.jmb.2009.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sec translocase catalyzes membrane protein insertion and translocation. We have introduced stretches of charged amino acid residues into the preprotein proOmpA and have analyzed their effect on in vitro protein translocation into Escherichia coli inner membrane vesicles. Both negatively and positively charged amino acid residues inhibit translocation of proOmpA, yielding a partially translocated polypeptide chain that blocks the translocation site and no longer activates preprotein-stimulated SecA ATPase activity. Stretches of positively charged residues are much stronger translocation inhibitors and suppressors of the preprotein-stimulated SecA ATPase activity than negatively charged residues. These results indicate that both clusters of positively and negatively charged amino acids are poor substrates for the Sec translocase and that this is reflected by their inability to stimulate the ATPase activity of SecA.
Collapse
Affiliation(s)
- Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
23
|
Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 2008; 455:936-43. [PMID: 18923516 DOI: 10.1038/nature07335] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/27/2008] [Indexed: 11/09/2022]
Abstract
Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 ångström (A), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a 'clamp'. Polypeptide movement through the SecY channel could be achieved by the motion of a 'two-helix finger' of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA's clamp above the SecY pore. SecA binding generates a 'window' at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.
Collapse
Affiliation(s)
- Jochen Zimmer
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
25
|
Bol R, de Wit JG, Driessen AJM. The Active Protein-conducting Channel of Escherichia coli Contains an Apolar Patch. J Biol Chem 2007; 282:29785-93. [PMID: 17699162 DOI: 10.1074/jbc.m702140200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by translocase, a complex of a protein-conducting channel, SecYEG, and a peripheral motor domain, SecA. SecYEG has been proposed to constitute an aqueous path for proteins to pass the membrane in an unfolded state. To probe the solvation state of the active channel, the polarity sensitive fluorophore N-((2-(iodoacetoxy)ethyl)-N-methyl) amino-7-nitrobenz-2-oxa-1,3-diazole was introduced at specific positions in the C-terminal region of the secretory protein proOmpA. Fluorescence measurements with defined proOmpA-DHFR translocation intermediates indicate mostly a water-exposed environment with a hydrophobic region in the center of the channel.
Collapse
Affiliation(s)
- Redmar Bol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, The Netherlands
| | | | | |
Collapse
|
26
|
Abstract
The conserved protein-conducting channel, referred to as the Sec61 channel in eukaryotes or the SecY channel in eubacteria and archaea, translocates proteins across cellular membranes and integrates proteins containing hydrophobic transmembrane segments into lipid bilayers. Structural studies illustrate how the protein-conducting channel accomplishes these tasks. Three different mechanisms, each requiring a different set of channel binding partners, are employed to move polypeptide substrates: The ribosome feeds the polypeptide chain directly into the channel, a ratcheting mechanism is used by the eukaryotic endoplasmic reticulum chaperone BiP, and a pushing mechanism is utilized by the bacterial ATPase SecA. We review these translocation mechanisms, relating biochemical and genetic observations to the structures of the protein-conducting channel and its binding partners.
Collapse
Affiliation(s)
- Andrew R Osborne
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
27
|
Bostina M, Mohsin B, Kühlbrandt W, Collinson I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J Mol Biol 2005; 352:1035-43. [PMID: 16154141 DOI: 10.1016/j.jmb.2005.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/15/2022]
Abstract
The Sec complex forms the core of a conserved machinery transporting proteins across or into membranes. In Escherichia coli SecYEG is active as an oligomer, but the structure predicts that the protein-conducting channel is formed by the monomer. A homology model of the E.coli complex was built using the atomic structure of Methanococcus jannaschii SecYEbeta. Another structure of the membrane-bound dimer was then determined by fitting the homology model to an 8A map of SecYEG determined by electron microscopy. We found that the substrate-binding site of the dimer has opened slightly and the plug domain moved toward the outside. This new position retains the channel in a closed state. These differences partially reflect the movements that have been proposed to occur during channel gating. Further opening of the substrate-binding pocket to bind and release bound substrate and displacement of the plug during secretion, presumably rely on the action of the partner proteins. The contacts arising at the dimer interface in the environment of the lipid bilayer may have activated the assembly.
Collapse
Affiliation(s)
- Mihnea Bostina
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
28
|
Dalbey RE, Chen M. Sec-translocase mediated membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:37-53. [DOI: 10.1016/j.bbamcr.2004.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
|
29
|
Belin D, Guzman LM, Bost S, Konakova M, Silva F, Beckwith J. Functional activity of eukaryotic signal sequences in Escherichia coli: the ovalbumin family of serine protease inhibitors. J Mol Biol 2004; 335:437-53. [PMID: 14672654 DOI: 10.1016/j.jmb.2003.10.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is widely assumed that the functional activity of signal sequences has been conserved throughout evolution, at least between Gram-negative bacteria and eukaryotes. The ovalbumin family of serine protease inhibitors (serpins) provides a unique tool to test this assumption, since individual members can be secreted (ovalbumin), cytosolic (leukocyte elastase inhibitor, LEI), or targeted to both compartments (plasminogen activator inhibitor 2, PAI-2). The facultative secretion of PAI-2 is mediated by a signal sequence proposed to be inefficient by design. We show here that the same internal domain that promotes an inefficient translocation of murine PAI-2 in mammalian cells is a weak signal sequence in Escherichia coli. In contrast, the ovalbumin signal sequence is much more efficient, whereas the corresponding sequence elements from LEI, maspin and PI-10 are entirely devoid of signal sequence activity in E.coli. Mutations that improve the activity of the PAI-2 signal sequence and that convert the N-terminal regions of maspin and PI-10 into efficient signal sequences have been characterized. Taken together, these results indicate that several structural features contribute to the weak activity of the PAI-2 signal sequence and provide new insights into the plasticity of the "hydrophobic core" of signal sequences. High-level expression of two chimeric proteins containing the PAI-2 signal sequence is toxic, and the reduced viability is accompanied by a rapid decrease in the membrane proton motive force, in ATP levels and in translation. In unc- cells, which lack the F0F1 ATP-synthase, the chimeric proteins retain their toxicity and their expression only affected the proton motive force. Thus, the properties of these toxic signal sequences offer a new tool to dissect the interactions of signal sequences with the protein export machinery.
Collapse
Affiliation(s)
- D Belin
- Département de Pathologie, Université de Genève, CH-1211 Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Drew D, Fröderberg L, Baars L, de Gier JWL. Assembly and overexpression of membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:3-10. [PMID: 12586374 DOI: 10.1016/s0005-2736(02)00707-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.
Collapse
Affiliation(s)
- David Drew
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Hessa T, Monné M, von Heijne G. Stop-transfer efficiency of marginally hydrophobic segments depends on the length of the carboxy-terminal tail. EMBO Rep 2003; 4:178-83. [PMID: 12612608 PMCID: PMC1315826 DOI: 10.1038/sj.embor.embor728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 11/07/2002] [Accepted: 11/20/2002] [Indexed: 11/09/2022] Open
Abstract
Hydrophobic stop-transfer sequences generally serve to halt the translocation of polypeptide chains across the endoplasmic reticulum membrane and become integrated as transmembrane alpha-helices. Using engineered glycosylation sites as topology reporters, we show that the length of the nascent chain between a hydrophobic segment and the carboxy terminus of the protein can affect stop-transfer efficiency. We also show that glycosylation sites located close to a protein's C terminus are modified in two distinct kinetic phases, one fast and one slow. Our findings suggest that membrane integration of a hydrophobic segment is not simply a question of thermodynamic equilibrium, but can be influenced by details of the translocation mechanism.
Collapse
Affiliation(s)
- Tara Hessa
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Magnus Monné
- Present address: MRC-Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Tel: +46 8 16 25 90; Fax: +46 8 15 36 79;
| |
Collapse
|
32
|
Adams H, Scotti PA, Luirink J, Tommassen J. Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5572-80. [PMID: 12423356 DOI: 10.1046/j.1432-1033.2002.03263.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
33
|
Abstract
Over recent years, much progress has been made in the identification and characterization of factors involved in the biosynthesis of integral membrane proteins of the helix-bundle type. In addition, our knowledge of membrane protein structure and the forces stabilizing helix-helix interactions in a lipid environment is expanding rapidly. However, it is still not clear how a membrane protein folds into its final form in vivo, nor what constraints there are on the folded structure that results from the mechanistic details of translocon-mediated assembly rather than simply from the thermodynamics of protein-lipid interactions.
Collapse
Affiliation(s)
- Chen-Ni Chin
- Department Molecular Biophysics and Biochemistry, Yale University, Bass 429, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | |
Collapse
|
34
|
Abstract
SecA performs a critical function in the recognition, targeting, and transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. In this study we investigate the substrate specificity of SecA, including the influence of the early mature region of the preprotein on SecA interactions, and the extent to which SecA recognizes targeting signals from different transport pathways. A series of fusion proteins were generated which involved the tandem expression of GST, signal peptide, and the first 30 residues from alkaline phosphatase. These were purified and evaluated for their ability to promote SecA ATPase activity. No significant difference in the stimulation of SecA-lipid ATPase activity between the synthetic wild-type alkaline phosphatase signal peptide and a fusion that also contains the first 30 residues of alkaline phosphatase was observed. The incorporation of sequence motifs in the mature region, which confer SecB dependence in vivo, had no impact on SecA activation in vitro. These results suggest that the early mature region of alkaline phosphatase does not affect the interactions between SecA and the signal peptide. Sec, Tat, and YidC signal peptide fusions were also assayed for their ability to stimulate SecA ATPase activity in vitro and further analyzed in vivo for the Sec dependence of the transport of the corresponding signal peptide mutants of alkaline phosphatase. Our results demonstrate that E. coli Sec signals give the highest level of SecA activation; however, SecA-signal peptide interactions in vitro are not the only arbiter of whether the preprotein utilizes the Sec pathway in vivo.
Collapse
Affiliation(s)
- Maha O Kebir
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
35
|
Bessonneau P, Besson V, Collinson I, Duong F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 2002; 21:995-1003. [PMID: 11867527 PMCID: PMC125904 DOI: 10.1093/emboj/21.5.995] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli preprotein translocase comprises a membrane-embedded trimeric complex of SecY, SecE and SecG. Previous studies have shown that this complex forms ring-like assemblies, which are thought to represent the preprotein translocation channel across the membrane. We have analyzed the functional state and the quaternary structure of the SecYEG translocase by employing cross-linking and blue native gel electrophoresis. The results show that the SecYEG monomer is a highly dynamic structure, spontaneously and reversibly associating into dimers. SecG-dependent tetramers and higher order SecYEG multimers can also exist in the membrane, but these structures form at high SecYEG concentration or upon overproduction of the complex only. The translocation process does not affect the oligomeric state of the translocase and arrested preproteins can be trapped with SecYEG or SecYE dimers. Dissociation of the dimer into a monomer by detergent induces release of the trapped preprotein. These results provide direct evidence that preproteins cross the bacterial membrane, associated with a translocation channel formed by a dimer of SecYEG.
Collapse
Affiliation(s)
| | | | - Ian Collinson
- Laboratoire Transports et Signalisations Cellulaires, IBBMC-CNRS UMR 8619, Université de Paris XI, Bâtiment 430, Orsay 91405, France and
Department of Structural Biology, Max-Planck Institut für Biophysik, D-60528 Frankfurt, Germany Corresponding author e-mail:
| | - Franck Duong
- Laboratoire Transports et Signalisations Cellulaires, IBBMC-CNRS UMR 8619, Université de Paris XI, Bâtiment 430, Orsay 91405, France and
Department of Structural Biology, Max-Planck Institut für Biophysik, D-60528 Frankfurt, Germany Corresponding author e-mail:
| |
Collapse
|
36
|
Mori H, Cline K. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:80-90. [PMID: 11750664 DOI: 10.1016/s0167-4889(01)00150-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two distinct protein translocation pathways that employ hydrophobic signal peptides function in the plant thylakoid membrane. These two systems are precursor specific and distinguished by their energy and component requirements. Recent studies have shown that one pathway is homologous to the bacterial general export system called Sec. The other one, called the DeltapH-dependent pathway, was originally considered to be unique to plant thylakoids. However, it is now known that homologous transport systems are widely present in prokaryotes and even present in archaea. Here we review these protein transport pathways and discuss their capabilities and mechanisms of operation.
Collapse
Affiliation(s)
- H Mori
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, 1137 Fifield Hall, Gainesville, FL 32611, USA
| | | |
Collapse
|
37
|
Abstract
We show that the peptide backbone of an alpha-helix places a severe thermodynamic constraint on transmembrane (TM) stability. Neglect of this constraint by commonly used hydrophobicity scales underlies the notorious uncertainty of TM helix prediction by sliding-window hydropathy plots of membrane protein (MP) amino acid sequences. We find that an experiment-based whole-residue hydropathy scale (WW scale), which includes the backbone constraint, identifies TM helices of membrane proteins with an accuracy greater than 99 %. Furthermore, it correctly predicts the minimum hydrophobicity required for stable single-helix TM insertion observed in Escherichia coli. In order to improve membrane protein topology prediction further, we introduce the augmented WW (aWW) scale, which accounts for the energetics of salt-bridge formation. An important issue for genomic analysis is the ability of the hydropathy plot method to distinguish membrane from soluble proteins. We find that the method falsely predicts 17 to 43 % of a set of soluble proteins to be MPs, depending upon the hydropathy scale used.
Collapse
Affiliation(s)
- S Jayasinghe
- Department of Physiology and Biophysics and the Program in Macromolecular Structure, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | |
Collapse
|
38
|
Abstract
The Sec machinery (or translocase) provides a major pathway of protein translocation from the cytosol across the cytoplasmic membrane in bacteria. The SecA ATPase interacts dynamically with the SecYEG integral membrane components to drive the transmembrane movement of newly synthesized preproteins. This pathway is also used for integration of some membrane proteins and the Sec translocase interacts with other cellular components to achieve its cellular roles. The detailed protein interactions involved in these processes are being actively studied and a structural understanding of the protein-conducting channel has started to emerge.
Collapse
Affiliation(s)
- H Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
39
|
Abstract
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.
Collapse
Affiliation(s)
- J W de Gier
- Department of Biochemistry, Stockholm University, 106 91 Stockholm, Sweden.
| | | |
Collapse
|
40
|
Dalbey RE, Kuhn A. Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol 2001; 16:51-87. [PMID: 11031230 DOI: 10.1146/annurev.cellbio.16.1.51] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
41
|
van Voorst F, Vereyken IJ, de Kruijff B. The high affinity ATP binding site modulates the SecA-precursor interaction. FEBS Lett 2000; 486:57-62. [PMID: 11108843 DOI: 10.1016/s0014-5793(00)02209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA is the central component of the protein-translocation machinery of Escherichia coli. It is able to interact with the precursor protein, the chaperone SecB, the integral membrane protein complex SecYEG, acidic phospholipids and its own mRNA. We studied the interaction between prePhoE and SecA by using a site-specific photocrosslinking strategy. We found that SecA is able to interact with both the signal sequence and the mature domain of prePhoE. Furthermore, this interaction was dependent on the type of nucleotide bound. SecA in the ADP-bound conformation was unable to crosslink with the precursor, whereas the ATP-bound conformation was active in precursor crosslinking. The SecA-precursor interaction was maintained in the presence of E. coli phospholipids but was loosened by the presence of phosphatidylglycerol bilayers. Examining SecA ATP binding site mutants demonstrated that ATP hydrolysis at the N-terminal high affinity binding site is responsible for the changed interaction with the preprotein.
Collapse
Affiliation(s)
- F van Voorst
- CBLE, Institute of Biomembranes, Department of Biochemistry of Membranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | |
Collapse
|
42
|
Abstract
SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.
Collapse
Affiliation(s)
- T L Yahr
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | |
Collapse
|
43
|
Abstract
Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
44
|
Abstract
The architecture of cells, with various membrane-bound compartments and with the protein synthesizing machinery confined to one location, dictates that many proteins have to be transported through one or more membranes during their biogenesis. A lot of progress has been made on the identification of protein translocation machineries and their sorting signals in various organelles and organisms. Biochemical characterization has revealed the functions of several individual protein components. Interestingly, lipid components were also found to be essential for the correct functioning of these translocases. This led to the idea that there is a very intimate relationship between the lipid and protein components that enables them to fulfil their intriguing task of transporting large biopolymers through a lipid bilayer without leaking their contents. In this review we focus on the Sec translocases in the endoplasmic reticulum and the bacterial inner membrane. We also highlight the interactions of lipids and proteins during the process of translocation and integrate this into a model that enables us to understand the role of membrane lipid composition in translocase function.
Collapse
Affiliation(s)
- F Van Voorst
- Department of Biochemistry of Membranes, CBLE, Institute Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
45
|
Manting EH, van Der Does C, Remigy H, Engel A, Driessen AJ. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 2000; 19:852-61. [PMID: 10698927 PMCID: PMC305625 DOI: 10.1093/emboj/19.5.852] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology, Groningen Biomolecular Sciences, Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Manting EH, Kaufmann A, van der Does C, Driessen AJ. A single amino acid substitution in SecY stabilizes the interaction with SecA. J Biol Chem 1999; 274:23868-74. [PMID: 10446151 DOI: 10.1074/jbc.274.34.23868] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
47
|
Houben E. Insertion of leader peptidase into the thylakoid membrane during synthesis in a chloroplast translation system. THE PLANT CELL 1999; 11:1553-1564. [PMID: 10449587 PMCID: PMC144287 DOI: 10.1105/tpc.11.8.1553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.
Collapse
Affiliation(s)
- E Houben
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10 691 Stockholm, Sweden
| |
Collapse
|
48
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
49
|
de Gier JW, Scotti PA, Sääf A, Valent QA, Kuhn A, Luirink J, von Heijne G. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:14646-51. [PMID: 9843943 PMCID: PMC24503 DOI: 10.1073/pnas.95.25.14646] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 09/11/1998] [Indexed: 11/18/2022] Open
Abstract
Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.
Collapse
Affiliation(s)
- J W de Gier
- Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm University, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
|