1
|
Vuong LT, Mlodzik M. The complex relationship of Wnt-signaling pathways and cilia. Curr Top Dev Biol 2023; 155:95-125. [PMID: 38043953 PMCID: PMC11287783 DOI: 10.1016/bs.ctdb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
Cao H, Wang D, Gao R, Chen L, Feng Y. Down regulation of U2AF1 promotes ARV7 splicing and prostate cancer progression. Biochem Biophys Res Commun 2021; 541:56-62. [PMID: 33477033 DOI: 10.1016/j.bbrc.2020.12.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
The present study aims to investigate the roles of U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) in the resistance to anti-androgen treatment in prostate cancer and its underlying mechanism. U2AF1 and androgen receptor variant 7 (ARV7) knockdown and overexpression were introduced in PC3 and DU145 cells. In addition, a bicalutamide-resistant PC3 (PC3 BR) cell line was also constructed. Cell count, MTT and soft agar colony formation assays were performed to evaluate cell proliferation. qRT-PCR was applied to determine the mRNA levels of U2AF1, ARV7 and Mitogen-Activated Protein Kinase 1 (MAPK1). Western blot was used to determine the MAPK1 protein expression. A negative correlation between ARV7 and U2AF1 in prostate tumor tissues was observed. U2AF1 downregulation was correlated with poor prognosis in prostate cancer patients. U2AF1 exhibited a negative correlation with ARV7 and its downregulation promoted prostate cancer cell proliferation and bicalutamide resistance. The regulatory effects of U2AF1 on ARV7 splicing were associated with MAPK1. U2AF1 affected prostate cancer proliferation and anti-androgen resistance by regulating ARV7 splicing.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| | - Dan Wang
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| | - Renjie Gao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China.
| | - Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
3
|
Gabián M, Morán P, Fernández AI, Villanueva B, Chtioui A, Kent MP, Covelo-Soto L, Fernández A, Saura M. Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data. BMC Genomics 2019; 20:764. [PMID: 31640542 PMCID: PMC6805462 DOI: 10.1186/s12864-019-6104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.
Collapse
Affiliation(s)
- María Gabián
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amel Chtioui
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Matthew P Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Lara Covelo-Soto
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Zhou C, Gao X, Hu S, Gan W, Xu J, Ma YC, Ma L. RBM-5 modulates U2AF large subunit-dependent alternative splicing in C. elegans. RNA Biol 2018; 15:1295-1308. [PMID: 30295127 PMCID: PMC6284560 DOI: 10.1080/15476286.2018.1526540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
A key step in pre-mRNA splicing is the recognition of 3' splicing sites by the U2AF large and small subunits, a process regulated by numerous trans-acting splicing factors. How these trans-acting factors interact with U2AF in vivo is unclear. From a screen for suppressors of the temperature-sensitive (ts) lethality of the C. elegans U2AF large subunit gene uaf-1(n4588) mutants, we identified mutations in the RNA binding motif gene rbm-5, a homolog of the tumor suppressor gene RBM5. rbm-5 mutations can suppress uaf-1(n4588) ts-lethality by loss of function and neuronal expression of rbm-5 was sufficient to rescue the suppression. Transcriptome analyses indicate that uaf-1(n4588) affected the expression of numerous genes and rbm-5 mutations can partially reverse the abnormal gene expression to levels similar to that of wild type. Though rbm-5 mutations did not obviously affect alternative splicing per se, they can suppress or enhance, in a gene-specific manner, the altered splicing of genes in uaf-1(n4588) mutants. Specifically, the recognition of a weak 3' splice site was more susceptible to the effect of rbm-5. Our findings provide novel in vivo evidence that RBM-5 can modulate UAF-1-dependent RNA splicing and suggest that RBM5 might interact with U2AF large subunit to affect tumor formation.
Collapse
Affiliation(s)
- Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyang Gao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Surong Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wenjing Gan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongchao C. Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang Q, Fan X, Wang Y, Sun MA, Shao J, Guo D. BPP: a sequence-based algorithm for branch point prediction. Bioinformatics 2018. [PMID: 28633445 DOI: 10.1093/bioinformatics/btx401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Motivation Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. Results We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. Contact djguo@cuhk.edu.hk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qing Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ming-An Sun
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| | - Jianlin Shao
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dianjing Guo
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| |
Collapse
|
6
|
Chiliveri SC, Deshmukh MV. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J Biosci 2017; 41:787-803. [PMID: 27966496 DOI: 10.1007/s12038-016-9640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroELGroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1(rho)) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the (mu)s-ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today's biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.
Collapse
|
7
|
Ozgur B, Ozdemir ES, Gursoy A, Keskin O. Relation between Protein Intrinsic Normal Mode Weights and Pre-Existing Conformer Populations. J Phys Chem B 2017; 121:3686-3700. [DOI: 10.1021/acs.jpcb.6b10401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beytullah Ozgur
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - E. Sila Ozdemir
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics, ‡Chemical and Biological
Engineering, and §Computer Engineering,
College of Engineering, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
8
|
An extended U2AF(65)-RNA-binding domain recognizes the 3' splice site signal. Nat Commun 2016; 7:10950. [PMID: 26952537 PMCID: PMC4786784 DOI: 10.1038/ncomms10950] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. The pre-mRNA splicing factor U2AF65 recognizes 3′ splice sites in human gene transcripts, but the details are not fully understood. Here, the authors report U2AF65 structures and single molecule FRET that reveal mechanistic insights into splice site recognition.
Collapse
|
9
|
Huang JR, Warner LR, Sanchez C, Gabel F, Madl T, Mackereth CD, Sattler M, Blackledge M. Transient electrostatic interactions dominate the conformational equilibrium sampled by multidomain splicing factor U2AF65: a combined NMR and SAXS study. J Am Chem Soc 2014; 136:7068-76. [PMID: 24734879 DOI: 10.1021/ja502030n] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multidomain proteins containing intrinsically disordered linkers exhibit large-scale dynamic modes that play key roles in a multitude of molecular recognition and signaling processes. Here, we determine the conformational space sampled by the multidomain splicing factor U2AF65 using complementary nuclear magnetic resonance spectroscopy and small-angle scattering data. Available degrees of conformational freedom are initially stochastically sampled and experimental data then used to delineate the potential energy landscape in terms of statistical probability. The spatial distribution of U2AF65 conformations is found to be highly anisotropic, comprising significantly populated interdomain contacts that appear to be electrostatic in origin. This hypothesis is supported by the reduction of signature PREs reporting on expected interfaces with increasing salt concentration. The described spatial distribution reveals the complete spectrum of the unbound forms of U2AF65 that coexist with the small percentage of a preformed RNA-bound domain arrangement required for polypyrimidine-tract recognition by conformational selection. More generally, the proposed approach to describing conformational equilibria of multidomain proteins can be further combined with other experimental data that are sensitive to domain dynamics.
Collapse
Affiliation(s)
- Jie-rong Huang
- University Grenoble Alpes, ‡CNRS, and §CEA, Protein Dynamics and Flexibility, Institut de Biologie Structurale , 38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:229-46. [PMID: 22278943 DOI: 10.1002/wrna.1107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules.
Collapse
Affiliation(s)
- Yutaka Muto
- Systems and Structural Biology Center, RIKEN, Tsurumi, Japan.
| | | |
Collapse
|
11
|
Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 2011; 475:408-11. [PMID: 21753750 DOI: 10.1038/nature10171] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
Abstract
Many cellular functions involve multi-domain proteins, which are composed of structurally independent modules connected by flexible linkers. Although it is often well understood how a given domain recognizes a cognate oligonucleotide or peptide motif, the dynamic interaction of multiple domains in the recognition of these ligands remains to be characterized. Here we have studied the molecular mechanisms of the recognition of the 3'-splice-site-associated polypyrimidine tract RNA by the large subunit of the human U2 snRNP auxiliary factor (U2AF65) as a key early step in pre-mRNA splicing. We show that the tandem RNA recognition motif domains of U2AF65 adopt two remarkably distinct domain arrangements in the absence or presence of a strong (that is, high affinity) polypyrimidine tract. Recognition of sequence variations in the polypyrimidine tract RNA involves a population shift between these closed and open conformations. The equilibrium between the two conformations functions as a molecular rheostat that quantitatively correlates the natural variations in polypyrimidine tract nucleotide composition, length and functional strength to the efficiency to recruit U2 snRNP to the intron during spliceosome assembly. Mutations that shift the conformational equilibrium without directly affecting RNA binding modulate splicing activity accordingly. Similar mechanisms of cooperative multi-domain conformational selection may operate more generally in the recognition of degenerate nucleotide or amino acid motifs by multi-domain proteins.
Collapse
|
12
|
Leeper TC, Qu X, Lu C, Moore C, Varani G. Novel protein-protein contacts facilitate mRNA 3'-processing signal recognition by Rna15 and Hrp1. J Mol Biol 2010; 401:334-49. [PMID: 20600122 DOI: 10.1016/j.jmb.2010.06.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 12/22/2022]
Abstract
Precise 3'-end processing of mRNA is essential for correct gene expression, yet in yeast, 3'-processing signals consist of multiple ambiguous sequence elements. Two neighboring elements upstream of the cleavage site are particularly important for the accuracy (positioning element) and efficiency (efficiency element) of 3'-processing and are recognized by the RNA-binding proteins Rna15 and Hrp1, respectively. In vivo, these interactions are strengthened by the scaffolding protein Rna14 that stabilizes their association. The NMR structure of the 34 -kDa ternary complex of the RNA recognition motif (RRM) domains of Hrp1 and Rna15 bound to this pair of RNA elements was determined by residual dipolar coupling and paramagnetic relaxation experiments. It reveals how each of the proteins binds to RNA and introduces a novel class of protein-protein contact in regions of previously unknown function. These interdomain contacts had previously been overlooked in other multi-RRM structures, although a careful analysis suggests that they may be frequently present. Mutations in the regions of these contacts disrupt 3'-end processing, suggesting that they may structurally organize the ribonucleoprotein complexes responsible for RNA processing.
Collapse
Affiliation(s)
- Thomas C Leeper
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | | | | | |
Collapse
|
13
|
Simon B, Madl T, Mackereth C, Nilges M, Sattler M. An Efficient Protocol for NMR-Spectroscopy-Based Structure Determination of Protein Complexes in Solution. Angew Chem Int Ed Engl 2010; 49:1967-70. [DOI: 10.1002/anie.200906147] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Simon B, Madl T, Mackereth C, Nilges M, Sattler M. An Efficient Protocol for NMR-Spectroscopy-Based Structure Determination of Protein Complexes in Solution. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Vazquez MP, Mualem D, Bercovich N, Stern MZ, Nyambega B, Barda O, Nasiga D, Gupta SK, Michaeli S, Levin MJ. Functional characterization and protein-protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1. Mol Biochem Parasitol 2009; 164:137-46. [PMID: 19320097 DOI: 10.1016/j.molbiopara.2008.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Early in the assembly of eukaryotes the branch-point binding protein (BBP, also called SF1) recognizes the branch point sequence, whereas the heterodimer U2AF, consisting of a 65 and a 35 kDa subunit, contacts the polypyrimidine tract and the AG splice site, respectively. Herein, we identified, cloned and expressed the Trypanosoma cruzi and Trypanosoma brucei U2AF35, U2AF65 and SF1. Trypanosomatid U2AF65 strongly diverged from yeast and human homologues. On the contrary, trypanosomatid SF1 was conserved but lacked the C-terminal sequence present in the mammalian protein. Yeast two hybrid approaches were used to assess their interactions. The interaction between U2AF35 and U2AF65 was very weak or not detectable. However, as in other eukaryotes, the interaction between U2AF65 and SF1 was strong. At the cellular level, these results were confirmed by fractionation and affinity-selection experiments in which SF1 and U2AF65 were affinity-selected with TAP tagged SF1, but not with TAP tagged U2AF35. Silencing one of the three factors affected growth and trans-splicing in the first step of this reaction. Trypanosomes are the first described example of eukaryotic cells in which the interaction of two expressed U2AF factors seemed to be very weak, or not detectable.
Collapse
Affiliation(s)
- Martin P Vazquez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, INGEBI-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure 2009; 16:1605-15. [PMID: 19000813 DOI: 10.1016/j.str.2008.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/22/2008] [Accepted: 08/27/2008] [Indexed: 12/14/2022]
Abstract
Most eukaryotic pre-mRNAs contain non-coding sequences (introns) that must be removed in order to accurately place the coding sequences (exons) in the correct reading frame. This critical regulatory pre-mRNA splicing event is fundamental in development and cancer. It occurs within a mega-Dalton multicomponent machine composed of RNA and proteins, which undergoes dynamic changes in RNA-RNA, RNA-protein, and protein-protein interactions during the splicing reaction. Recent years have seen progress in functional and structural analyses of the splicing machine and its subcomponents, and this review is focused on structural aspects of the pre-mRNA splicing machine and their mechanistic implications on the splicing of multi-intronic pre-mRNAs. It brings together, in a comparative manner, structural information on spliceosomes and their intermediates in the stepwise assembly process in vitro, and on the preformed supraspliceosomes, which are isolated from living cell nuclei, with a view of portraying a consistent picture.
Collapse
Affiliation(s)
- Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
17
|
Zhang Q, Li J, Li Q, Li X, Liu Z, Song D, Xie Z. Cloning and characterization of the gene encoding the bovine BOULE protein. Mol Genet Genomics 2008; 281:67-75. [PMID: 18987886 DOI: 10.1007/s00438-008-0394-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
The Deleted in Azoospermia (DAZ) genes encode potential RNA-binding proteins that are expressed exclusively in the germ-line. The bovine Deleted in Azoospermia-like gene is a strong candidate for male cattle-yak infertility. In this work, with the goe goal to further reveal the genetic cause of male cattle-yak sterility, another bovine DAZ family gene, b-boule, was isolated and characterized. The b-boule gene is predicted to encode a polypeptide of 295 amino acids with an RNP-type RNA recognition domain. Tertiary structure analysis shows that b-boule binds specifically to polypyrimidine RNAs and might act as a nuclear ribonucleoprotein particle auxiliary factor during germ cell formation and morphological changes of germ cells. RT-PCR assays revealed that b-boule was expressed specifically in the adult testis. However, an extremely low level of expression was detected in the testis of sterile male cattle-yaks. Microstructure of the testes from sterile males showed that type A spermatogonia were the only germ cells present and that few germ cells developed further than the stage of pachytene spermatocytes. These results suggest that b-boule may function in bovine spermatogenesis, and that low levels of b-boule expression might lead to male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Qingbo Zhang
- Laboratory of Animal Reproductive Genetics and Molecular Evolution, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Control of Dead end localization and activity--implications for the function of the protein in antagonizing miRNA function. Mech Dev 2008; 126:270-7. [PMID: 19013519 DOI: 10.1016/j.mod.2008.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 09/30/2008] [Accepted: 10/19/2008] [Indexed: 01/14/2023]
Abstract
Dead end (dnd) is a vertebrate-specific component of the germ plasm and germ-cell granules that is crucial for germ-cell development in zebrafish and mouse. Dnd counteracts the inhibitory function of miRNAs, thereby facilitating the expression of proteins such as Nanos and Tdrd7 in the germ cells. Here, we show that cis-acting elements within dnd mRNA and the RNA recognition motive (RRM) of the protein are essential for targeting protein expression to the germ cells and to the perinuclear granules, respectively. We demonstrate that as it executes its function, Dnd translocates between the germ-cell nucleus and germ-cell granules. This phenomenon is not observed in proteins mutated in the RRM motif, correlating with loss of function of Dnd. Based on molecular modeling, we identify the putative RNA binding domain of Dnd as a canonical RRM and propose that this domain is important for protein subcellular localization and function.
Collapse
|
19
|
Thickman KR, Sickmier EA, Kielkopf. CL. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J Mol Biol 2006; 366:703-10. [PMID: 17188295 PMCID: PMC1828206 DOI: 10.1016/j.jmb.2006.11.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/31/2006] [Accepted: 11/26/2006] [Indexed: 11/16/2022]
Abstract
The essential pre-mRNA splicing factor, U2 auxiliary factor 65KD (U2AF(65)) recognizes the polypyrimidine tract (Py-tract) consensus sequence of the pre-mRNA using two RNA recognition motifs (RRMs), the most prevalent class of eukaryotic RNA-binding domain. The Py-tracts of higher eukaryotic pre-mRNAs are often interrupted with purines, yet U2AF(65) must identify these degenerate Py-tracts for accurate pre-mRNA splicing. Previously, the structure of a U2AF(65) variant in complex with poly(U) RNA suggested that rearrangement of flexible side-chains or bound water molecules may contribute to degenerate Py-tract recognition by U2AF(65). Here, the X-ray structure of the N-terminal RRM domain of U2AF(65) (RRM1) is described at 1.47 A resolution in the absence of RNA. Notably, RNA-binding by U2AF(65) selectively stabilizes pre-existing alternative conformations of three side-chains located at the RNA interface (Arg150, Lys225, and Arg227). Additionally, a flexible loop connecting the beta2/beta3 strands undergoes a conformational change to interact with the RNA. These pre-existing alternative conformations may contribute to the ability of U2AF(65) to recognize a variety of Py-tract sequences. This rare, high-resolution view of an important member of the RRM class of RNA-binding domains highlights the role of alternative side-chain conformations in RNA recognition.
Collapse
Affiliation(s)
- Karen R. Thickman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Clara L. Kielkopf.
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- *Correspondence e-mail:
| |
Collapse
|
20
|
Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell 2006; 23:49-59. [PMID: 16818232 PMCID: PMC2043114 DOI: 10.1016/j.molcel.2006.05.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/18/2022]
Abstract
The essential pre-mRNA splicing factor, U2AF(65), guides the early stages of splice site choice by recognizing a polypyrimidine (Py) tract consensus sequence near the 3' splice site. Since Py tracts are relatively poorly conserved in higher eukaryotes, U2AF(65) is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF(65) RNA binding domain bound to a Py tract composed of seven uridines has been determined at 2.5 A resolution. Specific hydrogen bonds between U2AF(65) and the uracil bases provide an explanation for polyuridine recognition. Flexible side chains and bound water molecules form the majority of the base contacts and potentially could rearrange when the U2AF(65) structure adapts to different Py tract sequences. The energetic importance of conserved residues for Py tract binding is established by analysis of site-directed mutant U2AF(65) proteins using surface plasmon resonance.
Collapse
Affiliation(s)
- E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katherine E. Frato
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Haihong Shen
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Shanthi R. Paranawithana
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Michael R. Green
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Sickmier EA, Frato KE, Kielkopf CL. Crystallization and preliminary X-ray analysis of a U2AF65 variant in complex with a polypyrimidine-tract analogue by use of protein engineering. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:457-9. [PMID: 16682775 PMCID: PMC2219975 DOI: 10.1107/s1744309106012504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 04/06/2006] [Indexed: 11/10/2022]
Abstract
The large subunit of the essential pre-mRNA splicing factor U2 auxiliary factor (U2AF65) binds the polypyrimidine tract near the 3' splice site of pre-mRNA introns and directs the association of the U2 small nuclear ribonucleoprotein particle (U2 snRNP) of the spliceosome with the pre-mRNA. Protein engineering, in which the flexible linker region connecting tandem RNA-recognition motifs (RRMs) within the U2AF65 RNA-binding domain was partially deleted, allowed successful crystallization of the protein-nucleic acid complex. Cocrystals of a U2AF65 variant with a deoxyuridine dodecamer diffract X-rays to 2.9 angstroms resolution and contain one complex per asymmetric unit.
Collapse
Affiliation(s)
- E. Allen Sickmier
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katherine E. Frato
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Clara L. Kielkopf
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Correspondence e-mail:
| |
Collapse
|
22
|
Mackereth CD, Simon B, Sattler M. Extending the Size of Protein-RNA Complexes Studied by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2005; 6:1578-84. [PMID: 16075426 DOI: 10.1002/cbic.200500106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Blanchette M, Labourier E, Green RE, Brenner SE, Rio DC. Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Mol Cell 2005; 14:775-86. [PMID: 15200955 DOI: 10.1016/j.molcel.2004.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/28/2022]
Abstract
The protein factor U2AF is an essential component required for pre-mRNA splicing. Mutations identified in the S. pombe large U2AF subunit were used to engineer transgenic Drosophila carrying temperature-sensitive U2AF large subunit alleles. Mutant recombinant U2AF heterodimers showed reduced polypyrimidine tract RNA binding at elevated temperatures. Genome-wide RNA profiling comparing wild-type and mutant strains identified more than 400 genes differentially expressed in the dU2AF50 mutant flies grown at the restrictive temperature. Surprisingly, almost 40% of the downregulated genes lack introns. Microarray analyses revealed that nuclear export of a large number of intronless mRNAs is impaired in Drosophila-cultured cells RNAi knocked down for dU2AF50. Immunopurification of nuclear RNP complexes showed that dU2AF50 associates with intronless mRNAs. These results reveal an unexpected role for the splicing factor dU2AF50 in the nuclear export of intronless mRNAs.
Collapse
Affiliation(s)
- Marco Blanchette
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
24
|
Webb CJ, Lakhe-Reddy S, Romfo CM, Wise JA. Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AF in vivo. Mol Biol Cell 2004; 16:584-96. [PMID: 15548596 PMCID: PMC545896 DOI: 10.1091/mbc.e04-09-0768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The heterodimeric splicing factor U2AF plays an important role in 3' splice site selection, but the division of labor between the two subunits in vivo remains unclear. In vitro assays led to the proposal that the human large subunit recognizes 3' splice sites with extensive polypyrimidine tracts independently of the small subunit. We report in vivo analysis demonstrating that all five domains of spU2AFLG are essential for viability; a partial deletion of the linker region, which forms the small subunit interface, produces a severe growth defect and an aberrant morphology. A small subunit zinc-binding domain mutant confers a similar phenotype, suggesting that the heterodimer functions as a unit during splicing in Schizosaccharomyces pombe. As this is not predicted by the model for metazoan 3' splice site recognition, we sought introns for which the spU2AFLG and spU2AFSM make distinct contributions by analyzing diverse splicing events in strains harboring mutations in each partner. Requirements for the two subunits are generally parallel and, moreover, do not correlate with the length or strength of the 3' pyrimidine tract. These and other studies performed in fission yeast support a model for 3' splice site recognition in which the two subunits of U2AF functionally collaborate in vivo.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
25
|
Webb CJ, Wise JA. The splicing factor U2AF small subunit is functionally conserved between fission yeast and humans. Mol Cell Biol 2004; 24:4229-40. [PMID: 15121844 PMCID: PMC400479 DOI: 10.1128/mcb.24.10.4229-4240.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 12/17/2003] [Accepted: 02/25/2004] [Indexed: 01/22/2023] Open
Abstract
The small subunit of U2AF, which functions in 3' splice site recognition, is more highly conserved than its heterodimeric partner yet is less thoroughly investigated. Remarkably, we find that the small subunit of Schizosaccharomyces pombe U2AF (U2AF(SM)) can be replaced in vivo by its human counterpart, demonstrating that the conservation extends to function. Precursor mRNAs accumulate in S. pombe following U2AF(SM) depletion in a time frame consistent with a role in splicing. A comprehensive mutational analysis reveals that all three conserved domains are required for viability. Notably, however, a tryptophan in the pseudo-RNA recognition motif implicated in a key contact with the large subunit by crystallographic data is dispensable whereas amino acids implicated in RNA recognition are critical. Mutagenesis of the two zinc-binding domains demonstrates that they are neither equivalent nor redundant. Finally, two- and three-hybrid analyses indicate that mutations with effects on large-subunit interactions are rare whereas virtually all alleles tested diminished RNA binding by the heterodimer. In addition to demonstrating extraordinary conservation of U2AF small-subunit function, these results provide new insights into the roles of individual domains and residues.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
26
|
Abstract
The N-terminal RNA-binding domain (RBD1) of the human U1A protein is evolutionarily designed to bind its RNA targets with great affinity and specificity. The physical mechanisms that modulate the coupling (local cooperativity) among amino acid residues on the extensive binding surface of RBD1 are investigated here, using mutants that replace a highly conserved glycine residue. This glycine residue, at the strand/loop junction of beta3/loop3, is found in U1A RBD1, and in most RBD domains, suggesting it has a specific role in modulation of RNA binding. Here, two RBD1 proteins are constructed in which that residue (Gly53) is replaced by either alanine or valine. These new proteins are shown by NMR methods and molecular dynamics simulations to be very similar to the wild-type RBD1, both in structure and in their backbone dynamics. However, RNA-binding assays show that affinity for the U1 snRNA stem-loop II RNA target is reduced by nearly 200-fold for the RBD1-G53A protein, and by 1.6 x 10(4)-fold for RBD1-G53V. The mode of RNA binding by RBD1-G53A is similar to that of RBD1-WT, displaying its characteristic non-additive free energies of base recognition and its salt-dependence. The binding mode of RBD1-G53V is altered, having lost its salt-dependence and displaying site-independence of base recognition. The molecular basis for this alteration in RNA-binding properties is proposed to result from the inability of the RNA to induce a change in the structure of the free protein to produce a high-affinity complex.
Collapse
Affiliation(s)
- Scott A Showalter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
27
|
Banerjee H, Rahn A, Gawande B, Guth S, Valcarcel J, Singh R. The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF 65) is essential in vivo but dispensable for activity in vitro. RNA (NEW YORK, N.Y.) 2004; 10:240-53. [PMID: 14730023 PMCID: PMC1370536 DOI: 10.1261/rna.5153204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/13/2003] [Indexed: 05/09/2023]
Abstract
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kent OA, Reayi A, Foong L, Chilibeck KA, MacMillan AM. Structuring of the 3′ Splice Site by U2AF65. J Biol Chem 2003; 278:50572-7. [PMID: 14506271 DOI: 10.1074/jbc.m307976200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recognition of the 3' splice site in mammalian introns is accomplished by association of the splicing factor U2AF with the precursor mRNA (pre-mRNA) in a multiprotein splicing commitment complex. It is well established that this interaction involves binding of the large U2AF65 subunit to sequences upstream of the 3' splice site, but the orientation of the four domains of this protein with respect to the RNA and hence their role in structuring the commitment complex remain unclear and the basis of contradictory models. We have examined the interaction of U2AF65 with an RNA representing the 3' splice site using a series of U2AF deletion mutants modified at the N terminus with the directed hydroxyl radical probe iron-EDTA. These studies, combined with an analysis of extant high resolution x-ray structures of protein.RNA complexes, suggest a model whereby U2AF65 bends the pre-mRNA to juxtapose reactive functionalities of the pre-mRNA substrate and organize these structures for subsequent spliceosome assembly.
Collapse
Affiliation(s)
- Oliver A Kent
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
29
|
Pérez Cañadillas JM, Varani G. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 2003; 22:2821-30. [PMID: 12773396 PMCID: PMC156756 DOI: 10.1093/emboj/cdg259] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate polyadenylation sites are identified by the AAUAAA signal and by GU-rich sequences downstream of the cleavage site. These are recognized by a heterotrimeric protein complex (CstF) through its 64 kDa subunit (CstF-64); the strength of this interaction affects the efficiency of poly(A) site utilization. We present the structure of the RNA-binding domain of CstF-64 containing an RNA recognition motif (RRM) augmented by N- and C-terminal helices. The C-terminal helix unfolds upon RNA binding and extends into the hinge domain where interactions with factors responsible for assembly of the polyadenylation complex occur. We propose that this conformational change initiates assembly. Consecutive Us are required for a strong CstF-GU interaction and we show how UU dinucleotides are recognized. Contacts outside the UU pocket fine tune the protein-RNA interaction and provide different affinities for distinct GU-rich elements. The protein-RNA interface remains mobile, most likely a requirement to bind many GU-rich sequences and yet discriminate against other RNAs. The structural distinction between sequences that form stable and unstable complexes provides an operational distinction between weakly and strongly processed poly(A) sites.
Collapse
|
30
|
Selenko P, Gregorovic G, Sprangers R, Stier G, Rhani Z, Krämer A, Sattler M. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell 2003; 11:965-76. [PMID: 12718882 DOI: 10.1016/s1097-2765(03)00115-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The essential splicing factors SF1 and U2AF play an important role in the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. The structure of the C-terminal RRM (RRM3) of human U2AF(65) complexed to an N-terminal peptide of SF1 reveals an extended negatively charged helix A and an additional helix C. Helix C shields the potential RNA binding surface. SF1 binds to the opposite, helical face of RRM3. It inserts a conserved tryptophan into a hydrophobic pocket between helices A and B in a way that strikingly resembles part of the molecular interface in the U2AF heterodimer. This molecular recognition establishes a paradigm for protein binding by a subfamily of noncanonical RRMs.
Collapse
Affiliation(s)
- Philipp Selenko
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Banerjee H, Rahn A, Davis W, Singh R. Sex lethal and U2 small nuclear ribonucleoprotein auxiliary factor (U2AF65) recognize polypyrimidine tracts using multiple modes of binding. RNA (NEW YORK, N.Y.) 2003; 9:88-99. [PMID: 12554879 PMCID: PMC1370373 DOI: 10.1261/rna.2131603] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 10/08/2002] [Indexed: 05/20/2023]
Abstract
The molecular basis for specific recognition of simple homopolymeric sequences like the polypyrimidine tract (Py tract) by multiple RNA recognition motifs (RRMs) is not well understood. The Drosophila splicing repressor Sex lethal (SXL), which has two RRMs, can directly compete with the essential splicing factor U2AF(65), which has three RRMs, for binding to specific Py tracts. We have combined site-specific photocross-linking and chemical cleavage of the proteins to biochemically map cross-linking of each of the uracils within the Py tract to specific RRMs. For both proteins, RRM1 and RRM2 together constitute the minimal Py-tract recognition domain. The RRM3 of U2AF(65) shows no cross-linking to the Py tract. Both RRM1 and RRM2 of U2AF(65) and SXL can be cross-linked to certain residues, with RRM2 showing a surprisingly high number of residues cross-linked. The cross-linking data eliminate the possibility that shorter Py tracts are bound by fewer RRMs. We present a model to explain how the binding affinity can nonetheless change as a function of the length of the Py tract. The results indicate that multiple modes of binding result in an ensemble of RNA-protein complexes, which could allow tuning of the binding affinity without changing sequence specificity.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The human essential splicing factor U2AF (U2 auxiliary factor) consists of 35 and 65 kDa subunits which form a highly stable heterodimer in solution. Copurification of the recombinant U2AF35 RNA recognition motif (U2AF35 RRM) and full-length U2AF65 yields a soluble and functionally active minimal U2AF heterodimer. Recombinant U2AF35 RRM protein free and in complex with three different regions of U2AF65 was characterized by nuclear magnetic resonance spectroscopy. We found that the recombinant U2AF35 RRM is unstructured in solution but its tertiary structure is induced upon binding to U2AF65. This interaction is mediated by the N-terminal proline-rich region of U2AF65 and does not involve the U2AF65 RRMs.
Collapse
Affiliation(s)
- Esther Kellenberger
- Structural and Computational Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
33
|
Björk P, Baurén G, Jin S, Tong YG, Bürglin TR, Hellman U, Wieslander L. A novel conserved RNA-binding domain protein, RBD-1, is essential for ribosome biogenesis. Mol Biol Cell 2002; 13:3683-95. [PMID: 12388766 PMCID: PMC129975 DOI: 10.1091/mbc.e02-03-0138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 06/18/2002] [Accepted: 07/22/2002] [Indexed: 11/11/2022] Open
Abstract
Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20-30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Katsamba PS, Bayramyan M, Haworth IS, Myszka DG, Laird-Offringa IA. Complex role of the beta 2-beta 3 loop in the interaction of U1A with U1 hairpin II RNA. J Biol Chem 2002; 277:33267-74. [PMID: 12082087 DOI: 10.1074/jbc.m200304200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA recognition motifs (RRMs) are characterized by highly conserved regions located centrally on a beta-sheet, which forms the RNA binding surface. Variable flanking regions, such as the loop connecting beta-strands 2 and 3, are thought to be important in determining the RNA-binding specificities of individual RRMs. The N-terminal RRM of the spliceosomal U1A protein mediates binding to an RNA hairpin (U1hpII) in the U1 small nuclear RNA. In this complex, the beta(2)-beta(3) loop protrudes through the 10-nucleotide RNA loop. Shortening of the RNA loop strongly perturbs binding, suggesting that an optimal "fit" of the beta(2)-beta(3) loop into the RNA loop is an important factor in complexation. To understand this interaction further, we mutated or deleted loop residues Lys(50) and Met(51), which protrude centrally into the RNA loop but do not make any direct contacts to the bases. Using BIACORE, we analyzed the ability of these U1A mutants to bind to wild type RNAs, or RNAs with shortened loops. Alanine replacement mutations only modestly affected binding to wild type U1hpII. Interestingly, simultaneous replacement of Lys(50) and Met(51) with alanine appeared to alleviate the loss of binding caused by shortening of the RNA loop. Deletion of Lys(50) or Met(51) caused a dramatic loss in stability of the U1A.U1hpII complex. However, deletion of both residues simultaneously was much less deleterious. Simulated annealing molecular dynamics analyses suggest this is due to the ability of this mutant to rearrange flanking amino acids to substitute for the two deleted residues. The double deletion mutant also exhibited substantially reduced negative effects of RNA loop shortening, suggesting the rearranged loop is better able to accommodate a short RNA loop. Our results indicate that one of the roles of the beta(2)-beta(3) loop is to provide a steric fit into the RNA loop, thereby stabilizing the RNA.protein complex.
Collapse
Affiliation(s)
- Phinikoula S Katsamba
- Norris Cancer Center/University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | |
Collapse
|
35
|
Gama-Carvalho M, Carvalho MP, Kehlenbach A, Valcarcel J, Carmo-Fonseca M. Nucleocytoplasmic shuttling of heterodimeric splicing factor U2AF. J Biol Chem 2001; 276:13104-12. [PMID: 11118443 DOI: 10.1074/jbc.m008759200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is a heterodimeric splicing factor composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. The large subunit of U2AF recognizes the intronic polypyrimidine tract, a sequence located adjacent to the 3' splice site that serves as an important signal for both constitutive and regulated pre-mRNA splicing. The small subunit U2AF(35) interacts with the 3' splice site dinucleotide AG and is essential for regulated splicing. Like several other proteins involved in constitutive and regulated splicing, both U2AF(65) and U2AF(35) contain an arginine/serine-rich (RS) domain. In the present study we determined the role of RS domains in the subcellular localization of U2AF. Both U2AF(65) and U2AF(35) are shown to shuttle continuously between the nucleus and the cytoplasm by a mechanism that involves carrier receptors and is independent from binding to mRNA. The RS domain on either U2AF(65) or U2AF(35) acts as a nuclear localization signal and is sufficient to target a heterologous protein to the nuclear speckles. Furthermore, the results suggest that the presence of an RS domain in either U2AF subunit is sufficient to trigger the nucleocytoplasmic import of the heterodimeric complex. Shuttling of U2AF between nucleus and cytoplasm possibly represents a means to control the availability of this factor to initiate spliceosome assembly and therefore contribute to regulate splicing.
Collapse
Affiliation(s)
- M Gama-Carvalho
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
36
|
Allain FH, Gilbert DE, Bouvet P, Feigon J. Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. J Mol Biol 2000; 303:227-41. [PMID: 11023788 DOI: 10.1006/jmbi.2000.4118] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleolin is an abundant 70 kDa nucleolar protein involved in many aspects of ribosomal RNA biogenesis. The central region of nucleolin contains four tandem consensus RNA-binding domains (RBD). The two most N-terminal domains (RBD12) bind with nanomolar affinity to an RNA stem-loop containing the consensus sequence UCCCGA in the loop. We have determined the solution structure of nucleolin RBD12 in its free form and have studied its interaction with a 22 nt RNA stem-loop using multidimensional NMR spectroscopy. The two RBDs adopt the expected beta alpha beta beta alpha beta fold, but the position of the beta 2 strand in both domains differs from what was predicted from sequence alignments. RBD1 and RBD2 are significantly different from each others and this is likely important in their sequence specific recognition of the RNA. RBD1 has a longer alpha-helix 1 and a shorter beta 2-beta 3 loop than RBD2, and differs from most other RBDs in these respects. The two RBDs are separated by a 12 amino acid flexible linker and do not interact with one another in the free protein. This linker becomes ordered when RBD12 binds to the RNA. Analysis of the observed NOEs between the protein and the RNA indicates that both RBDs interact with the RNA loop via their beta-sheet. Each domain binds residues on one side of the loop; specifically, RBD2 contacts the 5' side and RBD1 contacts the 3'.
Collapse
Affiliation(s)
- F H Allain
- Department of Chemistry and Biochemistry, University of California, 405 Hilgard Avenue, Los Angeles, 90095-1569, USA
| | | | | | | |
Collapse
|
37
|
Conte MR, Grüne T, Ghuman J, Kelly G, Ladas A, Matthews S, Curry S. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J 2000; 19:3132-41. [PMID: 10856256 PMCID: PMC203357 DOI: 10.1093/emboj/19.12.3132] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2000] [Revised: 04/20/2000] [Accepted: 04/20/2000] [Indexed: 11/14/2022] Open
Abstract
Polypyrimidine tract binding protein (PTB), an RNA binding protein containing four RNA recognition motifs (RRMs), is involved in both pre-mRNA splicing and translation initiation directed by picornaviral internal ribosome entry sites. Sequence comparisons previously indicated that PTB is a non-canonical RRM protein. The solution structure of a PTB fragment containing RRMs 3 and 4 shows that the protein consists of two domains connected by a long, flexible linker. The two domains tumble independently in solution, having no fixed relative orientation. In addition to the betaalphabetabetaalphabeta topology, which is characteristic of RRM domains, the C-terminal extension of PTB RRM-3 incorporates an unanticipated fifth beta-strand, which extends the RNA binding surface. The long, disordered polypeptide connecting beta4 and beta5 in RRM-3 is poised above the RNA binding surface and is likely to contribute to RNA recognition. Mutational analyses show that both RRM-3 and RRM-4 contribute to RNA binding specificity and that, despite its unusual sequence, PTB binds RNA in a manner akin to that of other RRM proteins.
Collapse
Affiliation(s)
- M R Conte
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, UK
| | | | | | | | | | | | | |
Collapse
|