1
|
Little JI, Singh PK, Samsó M, Donnenberg MS. Cryo-Electron Microscopy of BfpB Reveals a Type IVb Secretin Multimer Adapted to Accommodate the Exceptionally Wide Bundle-Forming Pilus. Pathogens 2025; 14:471. [PMID: 40430791 PMCID: PMC12114550 DOI: 10.3390/pathogens14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Type IV pili (T4Ps) are multifunctional surface fibers essential for bacterial motility, adhesion, and virulence, found across Gram-negative and Gram-positive bacteria and archaea. Detailed descriptions of T4P structural biology are allowing progress in understanding T4P biogenesis. Secretins, large outer membrane channels, are crucial for T4P extrusion in Gram-negative bacteria. Using cryo-EM and AlphaFold, we modeled the structure of BfpB, the secretin of the Bundle-Forming Pilus (BFP) of enteropathogenic Escherichia coli. BfpB exhibits a unique 17-fold symmetry, correlating with the thicker BFP filaments, and diverging from the 12-15 subunits typical of T4P, type 2 secretion (T2S), and type 3 secretion (T3S) systems. Additionally, we identified an extended β-hairpin loop in the N3 domain, resembling features of distantly related T3SS secretins, and an N-terminal helix where a C-terminal S-domain is seen in some T2S and T3S secretins. These findings reveal evolutionary parallels and structural adaptations in secretins, highlighting the link between oligomerization and pilus structure. This work advances our understanding of T4P biogenesis, secretin evolution, and bacterial secretion systems, offering insights into pathogenic diversity and future research directions.
Collapse
Affiliation(s)
| | | | | | - Michael S. Donnenberg
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (J.I.L.); (P.K.S.); (M.S.)
| |
Collapse
|
2
|
Karan S, Choudhury D, Dixit A. Enhanced expression of recombinant proteins in Escherichia coli by co-expression with Vibrio parahaemolyticus CsgG, a pore-forming protein of the curli biogenesis pathway. J Appl Microbiol 2020; 130:1611-1629. [PMID: 33025668 DOI: 10.1111/jam.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
AIM To test whether engineered nanopores on the outer membrane (OM) of Escherichia coli can increase expression of heterologous proteins by making additional nutrients available to the host. METHODS AND RESULTS Outer membrane nanopores were generated by expressing recombinant Vibrio parahaemolyticus CsgG (rVpCsgG), which spontaneously assembles into a pore-forming channel on the OM, allowing spontaneous diffusion of small chemical entities from the exterior. Protein expression was probed using a reporter protein, sfGFP, expressed on a second compatible plasmid. OM pore formation was shown by acquired erythromycin sensitivity in cells transformed with rVpCsgG, influx of propidium iodide as well as by surface localization of recombinant CsgG by immunogold-labeled transmission electron microscopy. Expression of recombinant CsgG showed increased growth and also enhanced expression of sfGFP in minimal medium and is due to both enhanced transcription as well as translation. Similar enhancement of expression was also observed for a number of different proteins of different origin, sizes and nature. CONCLUSIONS Our findings clearly demonstrate that engineered nanopores on the OM of E. coli enhance expression of different heterologous proteins in minimal medium. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio parahaemolyticus CsgG β-nanopore mediated co-expression strategy to improve recombinant protein expression is fully compatible with other methods of protein expression enhancement, and therefore can be a useful tool in biotechnology particularly for whole-cell bio-transformations for production of secondary metabolite.
Collapse
Affiliation(s)
- S Karan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - D Choudhury
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - A Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Natarajan J, Moitra A, Zabel S, Singh N, Wagner S, Rapaport D. Yeast can express and assemble bacterial secretins in the mitochondrial outer membrane. MICROBIAL CELL 2019; 7:15-27. [PMID: 31921930 PMCID: PMC6946019 DOI: 10.15698/mic2020.01.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Secretins form large multimeric pores in the outer membrane (OM) of Gram-negative bacteria. These pores are part of type II and III secretion systems (T2SS and T3SS, respectively) and are crucial for pathogenicity. Recent structural studies indicate that secretins form a structure rich in β-strands. However, little is known about the mechanism by which secretins assemble into the OM. Based on the conservation of the biogenesis of β-barrel proteins in bacteria and mitochondria, we used yeast cells as a model system to study the assembly process of secretins. To that end, we analyzed the biogenesis of PulD (T2SS), SsaC (T3SS) and InvG (T3SS) in wild type cells or in cells mutated for known mitochondrial import and assembly factors. Our results suggest that secretins can be expressed in yeast cells, where they are enriched in the mitochondrial fraction. Interestingly, deletion of mitochondrial import receptors like Tom20 and Tom70 reduces the mitochondrial association of PulD but does not affect that of InvG. SsaC shows another dependency pattern and its membrane assembly is enhanced by the absence of Tom70 and compromised in cells lacking Tom20 or the topogenesis of outer membrane β-barrel proteins (TOB) complex component, Mas37. Collectively, these findings suggest that various secretins can follow different pathways to assemble into the bacterial OM.
Collapse
Affiliation(s)
- Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Anasuya Moitra
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sussanne Zabel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.,Current address: Center for Bioinformatics (ZBIT), University of Tübingen, Tübingen, Germany
| | - Nidhi Singh
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner-site Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
5
|
Natarajan J, Singh N, Rapaport D. Assembly and targeting of secretins in the bacterial outer membrane. Int J Med Microbiol 2019; 309:151322. [PMID: 31262642 DOI: 10.1016/j.ijmm.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, secretion of toxins ensure the survival of the bacterium. Such toxins are secreted by sophisticated multiprotein systems. The most conserved part in some of these secretion systems are components, called secretins, which form the outer membrane ring in these systems. Recent structural studies shed some light on the oligomeric organization of secretins. However, the mechanisms by which these proteins are targeted to the outer membrane and assemble there into ring structures are still not fully understood. This review discusses the various species-specific targeting and assembly pathways that are taken by secretins in order to form their functional oligomers.
Collapse
Affiliation(s)
- Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Nidhi Singh
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str.6, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Majewski DD, Worrall LJ, Strynadka NCJ. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr Opin Struct Biol 2018; 51:61-72. [DOI: 10.1016/j.sbi.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 01/19/2023]
|
7
|
Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 2017; 12:2391-2410. [DOI: 10.1038/nprot.2017.100] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1255-1266. [PMID: 28733198 DOI: 10.1016/j.bbapap.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Vladimir E Shevchik
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | - Rosie Shaw
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Richard W Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| | - James A Garnett
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| |
Collapse
|
9
|
Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 2017; 105:211-226. [DOI: 10.1111/mmi.13704] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jenny-Lee Thomassin
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Javier Santos Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Paris France
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Ingrid Guilvout
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Olivera Francetic
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| |
Collapse
|
10
|
Alterations in Peptidoglycan Cross-Linking Suppress the Secretin Assembly Defect Caused by Mutation of GspA in the Type II Secretion System. J Bacteriol 2017; 199:JB.00617-16. [PMID: 28138102 DOI: 10.1128/jb.00617-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
In Gram-negative bacteria, the peptidoglycan (PG) cell wall is a significant structural barrier for outer membrane protein assembly. In Aeromonas hydrophila, outer membrane multimerization of the type II secretion system (T2SS) secretin ExeD requires the function of the inner membrane assembly factor complex ExeAB. The putative mechanism of the complex involves the reorganization of PG and localization of ExeD, whereby ExeA functions by interacting with PG to form a site for secretin assembly and ExeB forms an interaction with ExeD. This mechanism led us to hypothesize that increasing the pore size of PG would circumvent the requirement for ExeA in the assembly of the ExeD secretin. Growth of A. hydrophila in 270 mM Gly reduced PG cross-links by approximately 30% and led to the suppression of secretin assembly defects in exeA strains and in those expressing ExeA mutants by enabling localization of the secretin in the outer membrane. We also established a heterologous ExeD assembly system in Escherichia coli and showed that ExeAB and ExeC are the only A. hydrophila proteins required for the assembly of the ExeD secretin in E. coli and that ExeAB-independent assembly of ExeD can occur upon overexpression of the d,d-carboxypeptidase PBP 5. These results support an assembly model in which, upon binding to PG, ExeA induces multimerization and pore formation in the sacculus, which enables ExeD monomers to interact with ExeB and assemble into a secretin that both is inserted in the outer membrane and crosses the PG layer to interact with the inner membrane platform of the T2SS.IMPORTANCE The PG layer imposes a strict structural impediment for the assembly of macromolecular structures that span the cell envelope and serve as virulence factors in Gram-negative species. This work revealed that by decreasing PG cross-linking by growth in Gly, the absolute requirement for the PG-binding activity of ExeA in the assembly of the ExeD secretin was alleviated in A. hydrophila In a heterologous assembly model in E. coli, expression of the carboxypeptidase PBP 5 could relieve the requirement for ExeAB in the assembly of the ExeD secretin. These results provide some mechanistic details of the ExeAB assembly complex function, in which the PG-binding and oligomerization functions of ExeAB are used to create a pore in the PG that is required for secretin assembly.
Collapse
|
11
|
Guilvout I, Brier S, Chami M, Hourdel V, Francetic O, Pugsley AP, Chamot-Rooke J, Huysmans GHM. Prepore Stability Controls Productive Folding of the BAM-independent Multimeric Outer Membrane Secretin PulD. J Biol Chem 2016; 292:328-338. [PMID: 27903652 DOI: 10.1074/jbc.m116.759498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4-5 kJ/mol/protomer in the N3 domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy. Formation of native PulD-multimers by mixing protomers that differ in N3 domain stability, suggested that the N3 domain forms a thermodynamic seal onto the prepore. This highlights the role of modest free energy changes in the folding of pre-integration forms of a hyperstable outer membrane complex and reveals a key driving force for assembly independently of the β-barrel assembly machinery.
Collapse
Affiliation(s)
- Ingrid Guilvout
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | - Sébastien Brier
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Mohamed Chami
- the BioEM lab, Biozentrum, University of Basel, CH 4058 Basel, Switzerland
| | - Véronique Hourdel
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Olivera Francetic
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | | | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | | |
Collapse
|
12
|
Bush M, Setiaputra D, Yip CK, Molday RS. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis. PLoS One 2016; 11:e0147653. [PMID: 26812435 PMCID: PMC4728063 DOI: 10.1371/journal.pone.0147653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
RS1, also known as retinoschisin, is a disulphide-linked, discoidin domain containing homo-oligomeric protein that plays a crucial role in maintaining the cellular and synaptic organization of the retina. This is highlighted by the finding that over 130 mutations in RS1 cause X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers, disruption of the photoreceptor-bipolar synapses, degeneration of photoreceptors, and severe loss in central vision. In this study, we investigated the arrangement of the RS1 subunits within the oligomer complex using single particle electron microscopy. RS1 was seen as two stacked rings with each ring displaying a symmetrical cog wheel-like structure with eight teeth or projections corresponding to the RS1 subunits. Three dimensional reconstruction and molecular modelling indicated that the discoidin domain, the principal functional unit of RS1, projects outward, and the Rs1 domain and C-terminal segment containing intermolecular disulphide bonds are present in the inner ring to form the core octameric structure. These studies provide a basis for further understanding the role of the novel core RS1 octameric complex in retinal cell biology and X-linked retinoschisis.
Collapse
Affiliation(s)
- Martin Bush
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dheva Setiaputra
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin K. Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
14
|
Tosi T, Estrozi L, Job V, Guilvout I, Pugsley A, Schoehn G, Dessen A. Structural Similarity of Secretins from Type II and Type III Secretion Systems. Structure 2014; 22:1348-1355. [DOI: 10.1016/j.str.2014.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
|
15
|
Vanderlinde EM, Zhong S, Li G, Martynowski D, Grochulski P, Howard SP. Assembly of the type two secretion system in Aeromonas hydrophila involves direct interaction between the periplasmic domains of the assembly factor ExeB and the secretin ExeD. PLoS One 2014; 9:e102038. [PMID: 25025769 PMCID: PMC4098917 DOI: 10.1371/journal.pone.0102038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/14/2014] [Indexed: 12/25/2022] Open
Abstract
The type two secretion system is a large, trans-envelope apparatus that secretes toxins across the outer membrane of many Gram-negative bacteria. In Aeromonas hydrophila, ExeA interacts with peptidoglycan and forms a heteromultimeric complex with ExeB that is required for assembly of the ExeD secretin of the secretion system in the outer membrane. While the peptidoglycan-ExeAB (PG-AB) complex is required for ExeD assembly, the assembly mechanism remains unresolved. We analyzed protein-protein interactions to address the hypothesis that ExeD assembly in the outer membrane requires direct interaction with the PG-AB complex. Yeast and bacterial two hybrid analyses demonstrated an interaction between the periplasmic domains of ExeB and ExeD. Two-codon insertion mutagenesis of exeD disrupted lipase secretion, and immunoblotting of whole cells demonstrated significantly reduced secretin in mutant cells. Mapping of the two-codon insertions and deletion analysis showed that the ExeB-ExeD interaction involves the N0 and N1 subdomains of ExeD. Rotational anisotropy using the purified periplasmic domains of ExeB and ExeD determined that the apparent dissociation constant of the interaction is 1.19±0.16 µM. These results contribute important support for a putative mechanism by which the PG-AB complex facilitates assembly of ExeD through direct interaction between ExeB and ExeD. Furthermore, our results provide novel insight into the assembly function of ExeB that may contribute to elucidating the role of homologous proteins in secretion of toxins from other Gram negative pathogens.
Collapse
Affiliation(s)
- Elizabeth M. Vanderlinde
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Su Zhong
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gang Li
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dariusz Martynowski
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pawel Grochulski
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S. Peter Howard
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
16
|
Guilvout I, Chami M, Disconzi E, Bayan N, Pugsley AP, Huysmans GHM. Independent domain assembly in a trapped folding intermediate of multimeric outer membrane secretins. Structure 2014; 22:582-9. [PMID: 24657091 DOI: 10.1016/j.str.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 11/28/2022]
Abstract
The outer membrane portal of the Klebsiella oxytoca type II secretion system, PulD, is a prototype of a family of proteins, the secretins, which are essential components of many bacterial secretion and pilus assembly machines. PulD is a homododecamer with a periplasmic vestibule and an outer chamber on either side of a membrane-spanning region that is poorly resolved by electron microscopy. Membrane insertion involves the formation of a dodecameric membrane-embedded intermediate. Here, we describe an amino acid substitution in PulD that blocks its assembly at this intermediate "prepore" stage. Electron microscopy indicated that the prepore has an apparently normal periplasmic vestibule but a poorly organized outer chamber. A peptide loop around this amino acid appears to be important for the formation/stability of the fully folded complex. A similar assembly intermediate results from creation of the same amino acid substitution in the Pseudomonas aeruginosa secretin XcpQ.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Mohamed Chami
- C-CINA Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Elena Disconzi
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France; Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France; CNRS UMR 8619, 91405 Orsay, France
| | - Nicolas Bayan
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France; CNRS UMR 8619, 91405 Orsay, France
| | - Anthony P Pugsley
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Gerard H M Huysmans
- Molecular Genetics Unit, Departments of Microbiology and of Structural Biology and Chemistry, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS ERL3526, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
17
|
Abstract
In situ proteolysis is the method of proactively adding tiny amounts of nonspecific proteases to aid in the crystallization of proteins and protein macromolecular complexes. The simplicity of the procedure and high recovery rate make it a method of first choice for recalcitrant targets. An improved and updated in situ proteolysis protocol used in high-throughput structural biology platforms is described.
Collapse
Affiliation(s)
- Yufeng Tong
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Suite 700, Toronto, ON, Canada, M5G 1L7,
| | | | | | | |
Collapse
|
18
|
Huysmans GHM, Guilvout I, Pugsley AP. Sequential steps in the assembly of the multimeric outer membrane secretin PulD. J Biol Chem 2013; 288:30700-30707. [PMID: 24019525 DOI: 10.1074/jbc.m113.489112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system. Analysis of the folding kinetics, measured by the acquisition of distinct determinants of the native state, provides unprecedented evidence for a sequential multistep process initiated by membrane-driven oligomerization. The effects of varying the lipid composition of the liposomes indicate that PulD first forms a "prepore" structure that attains the native state via a conformational switch.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ingrid Guilvout
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Anthony P Pugsley
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
19
|
Bergeron JRC, Worrall LJ, Sgourakis NG, DiMaio F, Pfuetzner RA, Felise HB, Vuckovic M, Yu AC, Miller SI, Baker D, Strynadka NCJ. A refined model of the prototypical Salmonella SPI-1 T3SS basal body reveals the molecular basis for its assembly. PLoS Pathog 2013; 9:e1003307. [PMID: 23633951 PMCID: PMC3635987 DOI: 10.1371/journal.ppat.1003307] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/02/2013] [Indexed: 12/22/2022] Open
Abstract
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism. Gram-negative bacteria such as E. coli, Salmonella, Shigella, Pseudomonas aeruginosa, and Yersinia pestis are responsible for a wide range of diseases, from pneumonia to lethal diarrhea and plague. A common trait shared by these bacteria is their capacity to inject toxins directly inside the cells of infected individuals, thanks to a syringe-shaped “nano-machine” called the Type III Secretion System injectisome. These toxins lead to modifications of the host cell, allowing the bacteria to replicate efficiently and/or to evade the immune system, and are necessary to establish an infection. As a consequence, the injectisome is an important potential target for the development of novel therapeutics against bacterial infection. In this study, we focus on the basal body, an essential region of the injectisome that forms the continuous hollow channel across both membranes of the bacteria. We have used an array of biophysical methods to obtain an atomic model of the basal body. This model provides new insights as to how the basal body assembles at the surface of bacteria, and could be used for the design of novel antibiotics.
Collapse
Affiliation(s)
- Julien R. C. Bergeron
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikolaos G. Sgourakis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Richard A. Pfuetzner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Heather B. Felise
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angel C. Yu
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (DB); (NCJS)
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (DB); (NCJS)
| |
Collapse
|
20
|
Masi M, Pagès JM. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22-33. [PMID: 23569467 PMCID: PMC3617542 DOI: 10.2174/1874285801307010022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps’ overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport.
Collapse
Affiliation(s)
- Muriel Masi
- CNRS-UMR 8619, Institut de Biophysique et de Biochimie Moléculaire et Cellulaire (IBBMC), Université Paris Sud, Orsay, France
| | | |
Collapse
|
21
|
Berry JL, Phelan MM, Collins RF, Adomavicius T, Tønjum T, Frye SA, Bird L, Owens R, Ford RC, Lian LY, Derrick JP. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 2012; 8:e1002923. [PMID: 23028322 PMCID: PMC3441751 DOI: 10.1371/journal.ppat.1002923] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/07/2012] [Indexed: 01/24/2023] Open
Abstract
Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two β-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second β-domain revealed an eight-stranded β-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/β fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/β domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/β domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the β-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Marie M. Phelan
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard F. Collins
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Tomas Adomavicius
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Stefan A. Frye
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Louise Bird
- Oxford Protein Production Facility, Research Complex at Harwell, Harwell, Oxford, United Kingdom
| | - Ray Owens
- Oxford Protein Production Facility, Research Complex at Harwell, Harwell, Oxford, United Kingdom
| | - Robert C. Ford
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Lu-Yun Lian
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Kosarewicz A, Königsmaier L, Marlovits TC. The blueprint of the type-3 injectisome. Philos Trans R Soc Lond B Biol Sci 2012; 367:1140-54. [PMID: 22411984 DOI: 10.1098/rstb.2011.0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type-3 secretion systems are sophisticated syringe-like nanomachines present in many animal and plant Gram-negative pathogens. They are capable of translocating an arsenal of specific bacterial toxins (effector proteins) from the prokaryotic cytoplasm across the three biological membranes directly into the eukaryotic cytosol, some of which modulate host cell mechanisms for the benefit of the pathogen. They populate a particular biological niche, which is maintained by specific, pathogen-dependent effectors. In contrast, the needle complex, which is the central component of this specialized protein delivery machine, is structurally well-conserved. It is a large supramolecular cylindrical structure composed of multiple copies of a relatively small subset of proteins, is embedded in the bacterial membranes and protrudes from the pathogen's surface with a needle filament. A central channel traverses the entire needle complex, and serves as a hollow conduit for proteins destined to travel this secretion pathway. In the past few years, there has been a tremendous increase in an understanding on both the structural and the mechanistic level. This review will thus focus on new insights of this remarkable molecular machine.
Collapse
Affiliation(s)
- Agata Kosarewicz
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
23
|
Wang X, Pineau C, Gu S, Guschinskaya N, Pickersgill RW, Shevchik VE. Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD protomers within the type 2 secretion system. J Biol Chem 2012; 287:19082-93. [PMID: 22523076 DOI: 10.1074/jbc.m112.346338] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type II secretion system (T2SS) secretes enzymes and toxins across the outer membrane of Gram-negative bacteria. The precise assembly of T2SS, which consists of at least 12 core-components called Gsp, remains unclear. The outer membrane secretin, GspD, forms the channels, through which folded proteins are secreted, and interacts with the inner membrane component, GspC. The periplasmic regions of GspC and GspD consist of several structural domains, HR(GspC) and PDZ(GspC), and N0(GspD) to N3(GspD), respectively, and recent structural and functional studies have proposed several interaction sites between these domains. We used cysteine mutagenesis and disulfide bonding analysis to investigate the organization of GspC and GspD protomers and to map their interaction sites within the secretion machinery of the plant pathogen Dickeya dadantii. At least three distinct GspC-GspD interactions were detected, and they involve two sites in HR(GspC), two in N0(GspD), and one in N2(GspD). None of these interactions occurs through static interfaces because the same sites are also involved in self-interactions with equivalent neighboring domains. Disulfide self-bonding of critical interaction sites halts secretion, indicating the transient nature of these interactions. The secretion substrate diminishes certain interactions and provokes an important rearrangement of the HR(GspC) structure. The T2SS components OutE/L/M affect various interaction sites differently, reinforcing some but diminishing the others, suggesting a possible switching mechanism of these interactions during secretion. Disulfide mapping shows that the organization of GspD and GspC subunits within the T2SS could be compatible with a hexamer of dimers arrangement rather than an organization with 12-fold rotational symmetry.
Collapse
Affiliation(s)
- Xiaohui Wang
- Université de Lyon, F-69003, Université Lyon 1, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | | | | | | | | | | |
Collapse
|
24
|
Montioli R, Fargue S, Lewin J, Zamparelli C, Danpure CJ, Borri Voltattorni C, Cellini B. The N-terminal extension is essential for the formation of the active dimeric structure of liver peroxisomal alanine:glyoxylate aminotransferase. Int J Biochem Cell Biol 2011; 44:536-46. [PMID: 22198249 DOI: 10.1016/j.biocel.2011.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/26/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Alanine:glyoxylate aminotransferase (AGT) is a pyridoxal-phosphate (PLP)-dependent enzyme. Its deficiency causes the hereditary kidney stone disease primary hyperoxaluria type 1. AGT is a highly stable compact dimer and the first 21 residues of each subunit form an extension which wraps over the surface of the neighboring subunit. Naturally occurring and artificial amino acid replacements in this extension create changes in the functional properties of AGT in mammalian cells, including relocation of the enzyme from peroxisomes to mitochondria. In order to elucidate the structural and functional role of this N-terminal extension, we have analyzed the consequences of its removal using a variety of biochemical and cell biological methods. When expressed in Escherichia coli, the N-terminal deleted form of AGT showed the presence of the protein but in an insoluble form resulting in only a 10% soluble yield as compared to the full-length version. The purified soluble fraction showed reduced affinity for PLP and greatly reduced catalytic activity. Although maintaining a dimer form, it was highly prone to self-aggregation. When expressed in a mammalian cell line, the truncated construct was normally targeted to peroxisomes, where it formed large stable but catalytically inactive aggregates. These results suggest that the N-terminal extension plays an essential role in allowing AGT to attain its correct conformation and functional activity. The precise mechanism of this effect is still under investigation.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Yu L, Lu W, Wei Y. AcrB trimer stability and efflux activity, insight from mutagenesis studies. PLoS One 2011; 6:e28390. [PMID: 22163011 PMCID: PMC3230630 DOI: 10.1371/journal.pone.0028390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022] Open
Abstract
The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrBP223G was the least active. Detailed characterization of AcrBP223G revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a “wedge” close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity.
Collapse
Affiliation(s)
- Linliang Yu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wei Lu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Costa J, d'Avó AF, da Costa MS, Veríssimo A. Molecular evolution of key genes for type II secretion in Legionella pneumophila. Environ Microbiol 2011; 14:2017-33. [PMID: 22118294 DOI: 10.1111/j.1462-2920.2011.02646.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts.
Collapse
Affiliation(s)
- Joana Costa
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
27
|
Nickerson NN, Tosi T, Dessen A, Baron B, Raynal B, England P, Pugsley AP. Outer membrane targeting of secretin PulD protein relies on disordered domain recognition by a dedicated chaperone. J Biol Chem 2011; 286:38833-43. [PMID: 21878629 PMCID: PMC3234708 DOI: 10.1074/jbc.m111.279851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Indexed: 12/29/2022] Open
Abstract
Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.
Collapse
Affiliation(s)
- Nicholas N. Nickerson
- From the Institut Pasteur, Molecular Genetics Unit, Microbiology Department, rue du Dr. Roux, 75015 Paris
- the CNRS URA2172, rue du Dr. Roux, 75015 Paris
| | - Tommaso Tosi
- the Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université de Grenoble I, Rue Jules Horowitz, 38027 Grenoble
- the CNRS UMR 5075, Rue Jules Horowitz, 38027 Grenoble
- the Commissariat à l'Enérgie Atomique, Rue Jules Horowitz, 38027 Grenoble
| | - Andréa Dessen
- the Institut de Biologie Structurale, Bacterial Pathogenesis Group, Université de Grenoble I, Rue Jules Horowitz, 38027 Grenoble
- the CNRS UMR 5075, Rue Jules Horowitz, 38027 Grenoble
- the Commissariat à l'Enérgie Atomique, Rue Jules Horowitz, 38027 Grenoble
| | - Bruno Baron
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Bertrand Raynal
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Patrick England
- the Institut Pasteur, Biophysics of Macromolecules and their Interactions Platform, Proteopole and Structural Biology and Chemistry Department, rue du Dr. Roux, 75015 Paris, and
- the CNRS URA2185, rue du Dr. Roux, 75015 Paris, France
| | - Anthony P. Pugsley
- From the Institut Pasteur, Molecular Genetics Unit, Microbiology Department, rue du Dr. Roux, 75015 Paris
- the CNRS URA2172, rue du Dr. Roux, 75015 Paris
| |
Collapse
|
28
|
Korotkov KV, Gonen T, Hol WGJ. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 2011; 36:433-43. [PMID: 21565514 PMCID: PMC3155655 DOI: 10.1016/j.tibs.2011.04.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/16/2022]
Abstract
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.
Collapse
Affiliation(s)
| | - Tamir Gonen
- Department of Biochemistry, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP, Hultgren SJ, Chapman MR. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 2011; 81:486-99. [PMID: 21645131 PMCID: PMC3134098 DOI: 10.1111/j.1365-2958.2011.07706.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Curli are extracellular amyloid fibres produced by Escherichia coli that are critical for biofilm formation and adhesion to biotic and abiotic surfaces. CsgA and CsgB are the major and minor curli subunits, respectively, while CsgE, CsgF and CsgG direct the extracellular localization and assembly of curli subunits into fibres. The secretion and stability of CsgA and CsgB are dependent on the outer membrane lipoprotein CsgG. Here, we identified functional interactions between CsgG and CsgE during curli secretion. We discovered that CsgG overexpression restored curli production to a csgE strain under curli-inducing conditions. In antibiotic sensitivity and protein secretion assays, CsgG expression alone allowed translocation of erythromycin and small periplasmic proteins across the outer membrane. Coexpression of CsgE with CsgG blocked non-specific protein and antibiotic passage across the outer membrane. However, CsgE did not block secretion of proteins containing a 22-amino-acid putative outer membrane secretion signal of CsgA (A22). Finally, using purified proteins, we found that CsgE prohibited the self-assembly of CsgA into amyloid fibres. Collectively, these data indicate that CsgE provides substrate specificity to the curli secretion pore CsgG, and acts directly on the secretion substrate CsgA to prevent premature subunit assembly.
Collapse
Affiliation(s)
- Ashley A. Nenninger
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Lloyd S. Robinson
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Neal D. Hammer
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Elisabeth Ashman Epstein
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew P. Badtke
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Collin S, Guilvout I, Nickerson NN, Pugsley AP. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol Microbiol 2011; 80:655-65. [PMID: 21338419 DOI: 10.1111/j.1365-2958.2011.07596.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane.
Collapse
Affiliation(s)
- Séverine Collin
- Institut Pasteur, Molecular Genetics Unit, Microbiology Department, 75015 Paris, France
| | | | | | | |
Collapse
|
31
|
Guilvout I, Nickerson NN, Chami M, Pugsley AP. Multimerization-defective variants of dodecameric secretin PulD. Res Microbiol 2011; 162:180-90. [DOI: 10.1016/j.resmic.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/14/2011] [Indexed: 10/18/2022]
|
32
|
Burkhardt J, Vonck J, Averhoff B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J Biol Chem 2011; 286:9977-84. [PMID: 21285351 DOI: 10.1074/jbc.m110.212688] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.
Collapse
Affiliation(s)
- Janin Burkhardt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | | |
Collapse
|
33
|
Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria. PLoS One 2011; 6:e16624. [PMID: 21304951 PMCID: PMC3031610 DOI: 10.1371/journal.pone.0016624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/08/2011] [Indexed: 11/26/2022] Open
Abstract
Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N. gonorrhoeae showed a double ring structure with a 14–15-fold symmetry in the central ring, and a 14-fold symmetry of the peripheral ring with 7 spikes protruding. In secretin complexes of N. meningitidis, the spikes were absent and the peripheral ring was partly or completely lacking. When present, it had a 19-fold symmetry. The structures of the complexes in several pil mutants were determined. Structures obtained from the pilC1/C2 adhesin and the pilW minor pilin deletion strains were similar to wild-type, whereas deletion of the homologue of N. meningitidis PilW resulted in the absence of secretin structures. Remarkably, the pilE pilin subunit and pilP lipoprotein deletion mutants showed a change in the symmetry of the peripheral ring from 14 to 19 and loss of spikes. The pilF ATPase mutant also lost the spikes, but maintained 14-fold symmetry. These results show that secretin complexes contain previously unidentified large and flexible extra domains with a probable role in stabilization or assembly of type IV pili.
Collapse
|
34
|
Outer membrane translocons: structural insights into channel formation. Trends Microbiol 2010; 19:40-8. [PMID: 21130656 DOI: 10.1016/j.tim.2010.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/18/2010] [Accepted: 10/29/2010] [Indexed: 01/26/2023]
Abstract
Gram-negative bacteria need to maintain the integrity of their outer membrane while also regulating the secretion of toxins and other macromolecules. A variety of dedicated outer membrane proteins (OMPs) facilitate this process. Recent structural work has shown that some of these proteins adopt classical β-barrel transmembrane structures and rely on structural changes within the barrel lumen to allow passage of substrate proteins. Other secretion systems have OMP components which use transmembrane α-helices and appear to function in a different way. Here we review a selection of recent structural studies which have major ramifications for our understanding of the passage of macromolecules across the outer membrane.
Collapse
|
35
|
Ayers M, Howell PL, Burrows LL. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 2010; 5:1203-18. [PMID: 20722599 DOI: 10.2217/fmb.10.76] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Motility and protein secretion are key processes contributing to bacterial virulence. A wealth of phylogenetic, biochemical and structural evidence support the hypothesis that the widely distributed type IV pilus (T4P) system, involved in twitching motility, and the type II secretion (T2S) system, involved in exoprotein release, are descended from a common progenitor. Both are composed of dedicated but dynamic assemblages, which have been proposed to function through alternate polymerization and depolymerization or degradation of pilin-like subunits. While ongoing studies aimed at understanding the details of assembly and function of these systems are leading to new insights, there are still large knowledge gaps with respect to several fundamental aspects of their biology, including the localization and stoichiometry of critical assembly components, and the nature of their interactions. This article highlights recent advances in understanding the architectures of the T4P and T2S systems, and the organization of their inner and outer membrane components. As structural data accumulates, it is becoming increasingly apparent that even components with little-to-no sequence similarity have similar folds, further supporting the idea that both systems function by a similar mechanism.
Collapse
Affiliation(s)
- Melissa Ayers
- Department of Biochemistry & Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
36
|
Abstract
The type II secretion system (T2SS) is used by Escherichia coli and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most E. coli appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known E. coli T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.
Collapse
|
37
|
Zhang L, Aleksandrov LA, Riordan JR, Ford RC. Domain location within the cystic fibrosis transmembrane conductance regulator protein investigated by electron microscopy and gold labelling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:399-404. [PMID: 20727849 DOI: 10.1016/j.bbamem.2010.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 11/25/2022]
Abstract
The domain organisation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein was studied using electron microscopy of detergent-solubilised dimeric complexes. Ni-NTA nanogold labelling data suggest that in the nonphosphorylated, nucleotide-free state, the C-terminus is intimately associated with the cytoplasmic ATP-binding regions, whilst part of the regulatory domain occupies a position close to the cytoplasmic surface of the lipid membrane. Removal of the entire second nucleotide binding domain (NBD2) results in a deficit in the CFTR structure that is consistent with the size and shape of a single NBD. The data suggest that NBD2 lies closer to the C2 symmetry axis than the first nucleotide binding domain (NBD1) and that NBD2 from one CFTR monomer also contacts NBD1 from the opposing one. These data suggest that current homology models for CFTR based on other ATP-binding cassette proteins appear to be reasonable, at least to low resolution. We also find that Ni-NTA nanogold labelling of an internal hexa-Histidine sequence is a valuable approach to locate individual protein domains.
Collapse
Affiliation(s)
- Liang Zhang
- Faculty of Life Sciences, The University of Manchester, MIB, 131 Princess St., Manchester M1 7DN, UK
| | | | | | | |
Collapse
|
38
|
Login FH, Fries M, Wang X, Pickersgill RW, Shevchik VE. A 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi. Mol Microbiol 2010; 76:944-55. [PMID: 20444086 DOI: 10.1111/j.1365-2958.2010.07149.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20-residue peptide named OutCsip (secretin interacting peptide, residues 139-158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2-N3' subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.
Collapse
Affiliation(s)
- Frédéric H Login
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne, F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon, F-69622, France
| | | | | | | | | |
Collapse
|
39
|
Li G, Howard SP. ExeA binds to peptidoglycan and forms a multimer for assembly of the type II secretion apparatus in Aeromonas hydrophila. Mol Microbiol 2010; 76:772-81. [PMID: 20345654 DOI: 10.1111/j.1365-2958.2010.07138.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aeromonas hydrophila uses the type II secretion system (T2SS) to transport protein toxins across the outer membrane. The inner membrane complex ExeAB is required for assembly of the ExeD secretion channel multimer, called the secretin, into the outer membrane. A putative peptidoglycan-binding domain (Pfam number PF01471) conserved in many peptidoglycan-related proteins is present in the periplasmic region of ExeA (P-ExeA). In this study, co-sedimentation analysis revealed that P-ExeA was able to bind to highly pure peptidoglycan. The protein assembled into large multimers in the presence of peptidoglycan fragments, as shown in native PAGE, gel filtration and cross-linking experiments. The requirement of peptidoglycan for multimerization was abrogated when the protein was incubated at 30 degrees C and above. These results provide evidence that the putative peptidoglycan-binding domain of ExeA is involved in physical contact with peptidoglycan. The interactions facilitate the multimerization of ExeA, favouring a model in which the protein forms a multimeric structure on the peptidoglycan during the ExeAB-dependent assembly of the secretin multimer in the outer membrane.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
40
|
Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S, da Fonseca PCA, Morris EP, Wall JS, Lea SM, Blocker AJ. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 2009; 16:477-85. [PMID: 19396171 PMCID: PMC2681179 DOI: 10.1038/nsmb.1599] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/03/2009] [Indexed: 01/03/2023]
Abstract
Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base that bridges both bacterial membranes, into which a hollow, external needle is embedded. When isolated, the latter two parts are termed the 'needle complex'. An incomplete understanding of the structure of the needle complex has hampered studies of T3SS function. To estimate the stoichiometry of its components, we measured the mass of its subdomains by scanning transmission electron microscopy (STEM). We determined subunit symmetries by analysis of top and side views within negatively stained samples in low-dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21-25-A resolution, three-dimensional reconstruction of the needle complex base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component.
Collapse
Affiliation(s)
- Julie L. Hodgkinson
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
- Department of Molecular and Cell Physiology, Medical School Hanover, 30625 Hanover, Germany
| | - Ashley Horsley
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - David Stabat
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Martha Simon
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States of America
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Paula C. A. da Fonseca
- Structural Biology Section, Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Edward P. Morris
- Structural Biology Section, Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Joseph S. Wall
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States of America
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ariel J. Blocker
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
- Departments of Cellular and Molecular Medicine and Biochemistry, University of Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
41
|
Ford RC, Brunkan-LaMontagne AL, Collins RF, Clarke BR, Harris R, Naismith JH, Whitfield C. Structure-function relationships of the outer membrane translocon Wza investigated by cryo-electron microscopy and mutagenesis. J Struct Biol 2009; 166:172-82. [PMID: 19236919 PMCID: PMC3498625 DOI: 10.1016/j.jsb.2009.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/23/2009] [Accepted: 02/15/2009] [Indexed: 11/21/2022]
Abstract
The outer membrane protein Wza, from Escherichia coli K30, forms an octameric complex that is essential for capsular polysaccharide export. Homologs of Wza are widespread in gram-negative bacterial pathogens where capsules are critical virulence determinants. Wza is unusual in that it spans the outer membrane using a barrel composed of amphipathic alpha-helices, rather than being a beta-barrel like almost all other outer membrane channels. The transmembrane helical barrel of Wza also forms the external opening to a hydrophilic translocation pathway that spans the periplasm. Here, we have probed the structure and function of the Wza complex using both cryo-electron microscopy and mutagenesis. The helical barrel structure is stable in detergent micelles under mildly acidic conditions but is destabilized at basic pH, although the overall quaternary structure is retained. Truncation of the C-terminal region that forms the helical barrel by 4 residues has no effect on the ability of Wza to oligomerize and support capsule export, but larger truncations of 18, 24 or 35 amino acids abolish its function. The bulk of the C-terminal domain is essential for the stability and assembly of the E. coli Wza complex.
Collapse
Affiliation(s)
- Robert C Ford
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Guilvout I, Chami M, Berrier C, Ghazi A, Engel A, Pugsley AP, Bayan N. In Vitro Multimerization and Membrane Insertion of Bacterial Outer Membrane Secretin PulD. J Mol Biol 2008; 382:13-23. [DOI: 10.1016/j.jmb.2008.06.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
|
44
|
Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjørås M, Derrick JP, Tønjum T. The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. MICROBIOLOGY-SGM 2007; 153:1593-1603. [PMID: 17464074 PMCID: PMC2884949 DOI: 10.1099/mic.0.2006/004200-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis is naturally competent for transformation throughout its growth cycle. Transformation in neisserial species is coupled to the expression of type IV pili, which are present on the cell surface as bundled filamentous appendages, and are assembled, extruded and retracted by the pilus biogenesis components. During the initial phase of the transformation process, binding and uptake of DNA takes place with entry through a presumed outer-membrane channel into the periplasm. This study showed that DNA associates only weakly with purified pili, but binds significantly to the PilQ complex isolated directly from meningococcal membranes. By assessing the DNA-binding activity of the native complex PilQ, as well as recombinant truncated PilQ monomers, it was shown that the N-terminal region of PilQ is involved in the interaction with DNA. It was evident that the binding of ssDNA to PilQ had a higher affinity than the binding of dsDNA. The binding of DNA to PilQ did not, however, depend on the presence of the neisserial DNA-uptake sequence. It is suggested that transforming DNA is introduced into the cell through the outer-membrane channel formed by the PilQ complex, and that DNA uptake occurs by non-specific introduction of DNA coupled to pilus retraction, followed by presentation to DNA-binding component(s), including PilQ.
Collapse
Affiliation(s)
- Reza Assalkhou
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Seetha Balasingham
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Richard F. Collins
- Faculty of Life Sciences, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | - Stephan A. Frye
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Afsaneh V. Benam
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | - Jeremy P. Derrick
- Faculty of Life Sciences, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| |
Collapse
|
45
|
Collin S, Guilvout I, Chami M, Pugsley AP. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol 2007; 64:1350-7. [PMID: 17542925 DOI: 10.1111/j.1365-2958.2007.05743.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that targeting of the dodecameric secretin PulD to the Escherichia coli outer membrane is strictly dependent on the chaperone-like pilotin PulS. Here, we report that PulD multimerization and membrane association in strains producing PulS were unaffected when the levels of the essential outer membrane assembly factor YaeT(Omp85) were reduced by controlled expression of a paraBAD-yaeT transcriptional fusion. This behaviour contrasted markedly to that of the trimeric porin LamB, which remained monomeric under these conditions. Furthermore, resistance to extraction by the detergent Sarkosyl and by urea, and susceptibility to trypsin digestion all suggested that PulD localized to the outer membrane in YaeT-depleted cells. We conclude that, unlike classical beta-barrel outer membrane proteins such as LamB, multimerization of PulD is largely YaeT-independent.
Collapse
Affiliation(s)
- Séverine Collin
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
46
|
Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 2007; 189:5716-27. [PMID: 17526700 PMCID: PMC1951802 DOI: 10.1128/jb.00060-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.
Collapse
Affiliation(s)
- Seetha V Balasingham
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
47
|
Bitter W, van Boxtel R, Groeneweg M, Carballo PS, Zähringer U, Tommassen J, Koster M. Species-specific functioning of the Pseudomonas XcpQ secretin: role for the C-terminal homology domain and lipopolysaccharide. J Bacteriol 2007; 189:2967-75. [PMID: 17277064 PMCID: PMC1855860 DOI: 10.1128/jb.01583-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretins are oligomeric proteins that mediate the export of macromolecules across the bacterial outer membrane. The members of the secretin superfamily possess a C-terminal homology domain that is important for oligomerization and channel formation, while their N-terminal halves are thought to be involved in system-specific interactions. The XcpQ secretin of Pseudomonas spp. is a component of the type II secretion pathway. XcpQ from Pseudomonas alcaligenes is not able to functionally replace the secretin of the closely related species Pseudomonas aeruginosa. By analysis of chimeric XcpQ proteins, a region important for species-specific functioning was mapped between amino acid residues 344 and 478 in the C-terminal homology domain. Two chromosomal suppressor mutations were obtained that resulted in the proper functioning in P. aeruginosa of P. alcaligenes XcpQ and inactive hybrids. These mutations caused a defect in the synthesis of the lipopolysaccharide (LPS) outer core region. Subsequent analysis of different LPS mutants showed that changes in the outer core and not the loss of O antigen caused the suppressor phenotype. High concentrations of divalent cations in the growth medium also allowed P. alcaligenes XcpQ and inactive hybrids to function properly in P. aeruginosa. Since divalent cations are known to affect the structure of LPS, this observation supports the hypothesis that LPS has a role in the functioning of secretins.
Collapse
Affiliation(s)
- Wilbert Bitter
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Guilvout I, Chami M, Engel A, Pugsley AP, Bayan N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 2006; 25:5241-9. [PMID: 17082772 PMCID: PMC1636608 DOI: 10.1038/sj.emboj.7601402] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/29/2006] [Indexed: 11/09/2022] Open
Abstract
Dodecamerization and insertion of the outer membrane secretin PulD is entirely determined by the C-terminal half of the polypeptide (PulD-CS). In the absence of its cognate chaperone PulS, PulD-CS and PulD mislocalize to the inner membrane, from which they are extractable with detergents but not urea. Electron microscopy of PulD-CS purified from the inner membrane revealed apparently normal dodecameric complexes. Electron microscopy of PulD-CS and PulD in inner membrane vesicles revealed inserted secretin complexes. Mislocalization of PulD or PulD-CS to this membrane induces the phage shock response, probably as a result of a decreased membrane electrochemical potential. Production of PulD in the absence of the phage shock response protein PspA and PulS caused a substantial drop in membrane potential and was lethal. Thus, PulD-CS and PulD assemble in the inner membrane if they do not associate with PulS. We propose that PulS prevents premature multimerization of PulD and accompanies it through the periplasm to the outer membrane. PulD is the first bacterial outer membrane protein with demonstrated ability to insert efficiently into the inner membrane.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
| | - Mohamed Chami
- ME Müller Institute, Biozentrum, University of Basel, Basel, Switzerland
| | - Andreas Engel
- ME Müller Institute, Biozentrum, University of Basel, Basel, Switzerland
| | - Anthony P Pugsley
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
- Molecular Genetics Unit, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 4568 8494; Fax: +33 1 4568 8960; E-mail:
| | - Nicolas Bayan
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, Paris, France
- CNRS UMR8619, Université de Paris Sud, Orsay, France
| |
Collapse
|
49
|
Login FH, Shevchik VE. The Single Transmembrane Segment Drives Self-assembly of OutC and the Formation of a Functional Type II Secretion System in Erwinia chrysanthemi. J Biol Chem 2006; 281:33152-62. [PMID: 16956883 DOI: 10.1074/jbc.m606245200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system.
Collapse
Affiliation(s)
- Frédéric H Login
- Unité de Microbiologie et Génétique, UMR 5122 CNRS, INSA de Lyon, Université Lyon 1, 69622 Villeurbanne, France
| | | |
Collapse
|
50
|
Korotkov KV, Krumm B, Bagdasarian M, Hol WGJ. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J Mol Biol 2006; 363:311-21. [PMID: 16978643 DOI: 10.1016/j.jmb.2006.08.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/19/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
The type 2 secretion system (T2SS) occurring in Gram-negative bacteria is composed of 12-15 different proteins which form large assemblies spanning two membranes and secreting several virulence factors in folded state across the outer membrane. The T2SS component EpsC of Vibrio cholerae plays an important role in this machinery. While anchored in the inner membrane, by far the largest part of EpsC is periplasmic, containing a so-called homology region (HR) domain and a PDZ domain. Here we report studies on the structure and function of both periplasmic domains of EpsC. The crystal structures of two variants of the PDZ domain of EpsC from V. cholerae were determined at better than 2 A resolution. Compared to the short variant, the longer variant contains an additional N-terminal helix, and reveals a significant difference in the position of helix alphaB with respect to the beta-sheet. Both our structures show that the PDZ domain of EpsC adopts a more open form than in previously reported structures of other PDZ domains. Most interestingly, in the crystals of the short EpsC-PDZ domain the peptide binding groove interacts with an alpha-helix from a neighboring subunit burying approximately 921 A2 solvent accessible surface. This makes it possible that the PDZ domain of this bacterial protein binds proteins in a manner which is altogether different from that seen in any other PDZ domain so far. We also determined that the HR domain of EpsC is primarily responsible for the interaction with the secretin EpsD, while the PDZ is not, or much less, so. This new finding, together with studies of others, leads to the suggestion that the PDZ domain of EpsC may interact with exoproteins to be secreted while the HR domain plays a key role in linking the inner-membrane sub-complex of the T2SS in V. cholerae to the outer membrane secretin.
Collapse
Affiliation(s)
- Konstantin V Korotkov
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|