1
|
Moucaud B, Prince E, Ragot E, Renaud Y, Jagla K, Junion G, Soler C. Amalgam plays a dual role in controlling the number of leg muscle progenitors and regulating their interactions with the developing Drosophila tendon. PLoS Biol 2024; 22:e3002842. [PMID: 39374263 PMCID: PMC11486429 DOI: 10.1371/journal.pbio.3002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
Formation of functional organs requires cell-cell communication between different cell lineages and failure in this communication can result in severe developmental defects. Hundreds of possible interacting pairs of proteins are known, but identifying the interacting partners that ensure a specific interaction between 2 given cell types remains challenging. Here, we use the Drosophila leg model and our cell type-specific transcriptomic data sets to uncover the molecular mediators of cell-cell communication between tendon and muscle precursors. Through the analysis of gene expression signatures of appendicular muscle and tendon precursor cells, we identify 2 candidates for early interactions between these 2 cell populations: Amalgam (Ama) encoding a secreted protein and Neurotactin (Nrt) known to encode a membrane-bound protein. Developmental expression and function analyses reveal that: (i) Ama is expressed in the leg myoblasts, whereas Nrt is expressed in adjacent tendon precursors; and (ii) in Ama and Nrt mutants, myoblast-tendon cell-cell association is lost, leading to tendon developmental defects. Furthermore, we demonstrate that Ama acts downstream of the FGFR pathway to maintain the myoblast population by promoting cell survival and proliferation in an Nrt-independent manner. Together, our data pinpoint Ama and Nrt as molecular actors ensuring early reciprocal communication between leg muscle and tendon precursors, a prerequisite for the coordinated development of the appendicular musculoskeletal system.
Collapse
Affiliation(s)
- Blandine Moucaud
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Elodie Prince
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Elia Ragot
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Yoan Renaud
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Guillaume Junion
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Cedric Soler
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| |
Collapse
|
2
|
Spitzer DC, Sun WY, Rodríguez-Vargas A, Hariharan IK. The cell adhesion molecule Echinoid promotes tissue survival and separately restricts tissue overgrowth in Drosophila imaginal discs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552072. [PMID: 37577631 PMCID: PMC10418178 DOI: 10.1101/2023.08.04.552072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The interactions that cells in Drosophila imaginal discs have with their neighbors are known to regulate their ability to survive. In a screen of genes encoding cell surface proteins for gene knockdowns that affect the size or shape of mutant clones, we found that clones of cells with reduced levels of echinoid (ed) are fewer, smaller, and can be eliminated during development. In contrast, discs composed mostly of ed mutant tissue are overgrown. We find that ed mutant tissue has lower levels of the anti-apoptotic protein Diap1 and has increased levels of apoptosis which is consistent with the observed underrepresentation of ed mutant clones and the slow growth of ed mutant tissue. The eventual overgrowth of ed mutant tissue results not from accelerated growth, but from prolonged growth resulting from a failure to arrest growth at the appropriate final size. Ed has previously been shown to physically interact with multiple Hippo-pathway components and it has been proposed to promote Hippo pathway signaling, to exclude Yorkie (Yki) from the nucleus, and restrain the expression of Yki-target genes. We did not observe changes in Yki localization in ed mutant tissue and found decreased levels of expression of several Yorkie-target genes, findings inconsistent with the proposed effect of Ed on Yki. We did, however, observe increased expression of several Yki-target genes in wild-type cells neighboring ed mutant cells, which may contribute to elimination of ed mutant clones. Thus, ed has two distinct functions: an anti-apoptotic function by maintaining Diap1 levels, and a function to arrest growth at the appropriate final size. Both of these are unlikely to be explained by a simple effect on the Hippo pathway.
Collapse
Affiliation(s)
- Danielle C. Spitzer
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - William Y. Sun
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Anthony Rodríguez-Vargas
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| | - Iswar K. Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley CA 94720-3200
| |
Collapse
|
3
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
4
|
Everetts NJ, Worley MI, Yasutomi R, Yosef N, Hariharan IK. Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. eLife 2021; 10:61276. [PMID: 33749594 PMCID: PMC8021398 DOI: 10.7554/elife.61276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
In both vertebrates and invertebrates, generating a functional appendage requires interactions between ectoderm-derived epithelia and mesoderm-derived cells. To investigate such interactions, we used single-cell transcriptomics to generate a temporal cell atlas of the Drosophila wing disc from two developmental time points. Using these data, we visualized gene expression using a multilayered model of the wing disc and cataloged ligand–receptor pairs that could mediate signaling between epithelial cells and adult muscle precursors (AMPs). We found that localized expression of the fibroblast growth factor ligands, Thisbe and Pyramus, in the disc epithelium regulates the number and location of the AMPs. In addition, Hedgehog ligand from the epithelium activates a specific transcriptional program within adjacent AMP cells, defined by AMP-specific targets Neurotactin and midline, that is critical for proper formation of direct flight muscles. More generally, our annotated temporal cell atlas provides an organ-wide view of potential cell–cell interactions between epithelial and myogenic cells.
Collapse
Affiliation(s)
- Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nir Yosef
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
5
|
Comoletti D, Trobiani L, Chatonnet A, Bourne Y, Marchot P. Comparative mapping of selected structural determinants on the extracellular domains of cholinesterase-like cell-adhesion molecules. Neuropharmacology 2020; 184:108381. [PMID: 33166544 DOI: 10.1016/j.neuropharm.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022]
Abstract
Cell adhesion generally involves formation of homophilic or heterophilic protein complexes between two cells to form transcellular junctions. Neural cell-adhesion members of the α/β-hydrolase fold superfamily of proteins use their extracellular or soluble cholinesterase-like domain to bind cognate partners across cell membranes, as illustrated by the neuroligins. These cell-adhesion molecules currently comprise the synaptic organizers neuroligins found in all animal phyla, along with three proteins found only in invertebrates: the guidance molecule neurotactin, the glia-specific gliotactin, and the basement membrane protein glutactin. Although these proteins share a cholinesterase-like fold, they lack one or more residues composing the catalytic triad responsible for the enzymatic activity of the cholinesterases. Conversely, they are found in various subcellular localisations and display specific disulfide bonding and N-glycosylation patterns, along with individual surface determinants possibly associated with recognition and binding of protein partners. Formation of non-covalent dimers typical of the cholinesterases is documented for mammalian neuroligins, yet whether invertebrate neuroligins and their neurotactin, gliotactin and glutactin relatives also form dimers in physiological conditions is unknown. Here we provide a brief overview of the localization, function, evolution, and conserved versus individual structural determinants of these cholinesterase-like cell-adhesion proteins. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand; Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Laura Trobiani
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Arnaud Chatonnet
- Lab 'Dynamique Musculaire et Métabolisme', Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) / Université Montpellier, Montpellier, France
| | - Yves Bourne
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France
| | - Pascale Marchot
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France.
| |
Collapse
|
6
|
Ariss MM, Terry AR, Islam ABMMK, Hay N, Frolov MV. Amalgam regulates the receptor tyrosine kinase pathway through Sprouty in glial cell development in the Drosophila larval brain. J Cell Sci 2020; 133:jcs250837. [PMID: 32878945 PMCID: PMC7541346 DOI: 10.1242/jcs.250837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.
Collapse
Affiliation(s)
- Majd M Ariss
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Zappia MP, de Castro L, Ariss MM, Jefferson H, Islam AB, Frolov MV. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in Drosophila. EMBO Rep 2020; 21:e49555. [PMID: 32815271 PMCID: PMC7534622 DOI: 10.15252/embr.201949555] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/12/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Drosophila, the wing disc‐associated muscle precursor cells give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single‐cell RNA‐sequencing experiments and built a cell atlas of myoblasts associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM myoblasts that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of myoblasts, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM myoblasts at various states of differentiation by immunofluorescence and genetic cell‐tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Amalgam which is functionally important in muscle development. Our work provides a framework for leveraging scRNA‐seq for gene discovery and details a strategy that can be applied to other scRNA‐seq datasets.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucia de Castro
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd M Ariss
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Holly Jefferson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Abul Bmmk Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Liu Z, Chen Y, Rao Y. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila. Mol Brain 2020; 13:1. [PMID: 31900209 PMCID: PMC6942347 DOI: 10.1186/s13041-019-0541-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
The establishment of the functional nervous system requires coordinated development of neurons and glia in the embryo. Our understanding of underlying molecular and cellular mechanisms, however, remains limited. The developing Drosophila visual system is an excellent model for understanding the developmental control of the nervous system. By performing a systematic transgenic RNAi screen, we investigated the requirements of secreted proteins and cell-surface receptors for the development of photoreceptor neurons (R cells) and wrapping glia (WG) in the Drosophila visual system. From the screen, we identified seven genes whose knockdown disrupted the development of R cells and/or WG, including amalgam (ama), domeless (dome), epidermal growth factor receptor (EGFR), kuzbanian (kuz), N-Cadherin (CadN), neuroglian (nrg), and shotgun (shg). Cell-type-specific analysis revealed that ama is required in the developing eye disc for promoting cell proliferation and differentiation, which is essential for the migration of glia in the optic stalk. Our results also suggest that nrg functions in both eye disc and WG for coordinating R-cell and WG development.
Collapse
Affiliation(s)
- Zhengya Liu
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yixu Chen
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yong Rao
- Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
9
|
Sitaram P, Lu S, Harsh S, Herrera SC, Bach EA. Next-Generation Sequencing Reveals Increased Anti-oxidant Response and Ecdysone Signaling in STAT Supercompetitors in Drosophila. G3 (BETHESDA, MD.) 2019; 9:2609-2622. [PMID: 31227525 PMCID: PMC6686945 DOI: 10.1534/g3.119.400345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023]
Abstract
Cell competition is the elimination of one viable population of cells (the losers) by a neighboring fitter population (the winners) and was discovered by studies in the Drosophila melanogaster wing imaginal disc. Supercompetition is a process in which cells with elevated JAK/STAT signaling or increased Myc become winners and outcompete wild-type neighbors. To identify the genes that are differentially regulated in STAT supercompetitors, we purified these cells from Drosophila wing imaginal discs and performed next-generation sequencing. Their transcriptome was compared to those of control wing disc cells and Myc supercompetitors. Bioinformatics revealed that STAT and Myc supercompetitors have distinct transcriptomes with only 41 common differentially regulated genes. Furthermore, STAT supercompetitors have elevated reactive oxygen species, an anti-oxidant response and increased ecdysone signaling. Using a combination of methods, we validated 13 differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY
| | - Sean Lu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY
| | - Sneh Harsh
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY
| | - Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY
| |
Collapse
|
10
|
Neuert H, Deing P, Krukkert K, Naffin E, Steffes G, Risse B, Silies M, Klämbt C. The Drosophila NCAM homolog Fas2 signals independent of adhesion. Development 2019; 147:dev.181479. [DOI: 10.1242/dev.181479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
The development of tissues and organs requires close interaction of cells. To do so, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila orthologue Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as different isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms we have conducted a comprehensive genetic analysis of fas2. We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI-anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated fas2 mutants expressing only single isoforms. In contrast to the null mutation which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type specific rescue experiments showed that glial secreted Fas2 can rescue the fas2 mutant phenotype to viability. This demonstrates cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data propose novel mechanistic aspects of a long studied adhesion protein.
Collapse
Affiliation(s)
- Helen Neuert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Petra Deing
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Karin Krukkert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Georg Steffes
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Benjamin Risse
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Marion Silies
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
11
|
Achim K, Eling N, Vergara HM, Bertucci PY, Musser J, Vopalensky P, Brunet T, Collier P, Benes V, Marioni JC, Arendt D. Whole-Body Single-Cell Sequencing Reveals Transcriptional Domains in the Annelid Larval Body. Mol Biol Evol 2018; 35:1047-1062. [PMID: 29373712 PMCID: PMC5913682 DOI: 10.1093/molbev/msx336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research.
Collapse
Affiliation(s)
- Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nils Eling
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Paola Yanina Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Durand N, Chertemps T, Bozzolan F, Maïbèche M. Expression and modulation of neuroligin and neurexin in the olfactory organ of the cotton leaf worm Spodoptera littoralis. INSECT SCIENCE 2017; 24:210-221. [PMID: 26749290 DOI: 10.1111/1744-7917.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like adhesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuromuscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin SlnrxI were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.
Collapse
Affiliation(s)
- Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| |
Collapse
|
13
|
Becker H, Renner S, Technau GM, Berger C. Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Drosophila. PLoS Genet 2016; 12:e1005961. [PMID: 27015425 PMCID: PMC4807829 DOI: 10.1371/journal.pgen.1005961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS. The central nervous system (CNS) needs to be subdivided into functionally specified regions. In the developing CNS of Drosophila, each neural stem cell, called neuroblasts (NB), acquires a unique identity according to its anterior-posterior and dorso-ventral position to generate a specific cell lineage. Along the anterior-posterior body axis, Hox genes of the Bithorax-Complex convey segmental identities to NBs in the trunk segments. In the derived gnathal and brain segments, the mechanisms specifying segmental NB identities are largely unknown. We investigated the role of Hox genes of the Antennapedia-Complex in the gnathal CNS. In addition to cell-autonomous Hox gene function, we unexpectedly uncovered a parallel non-cell-autonomous pathway in mediating segmental specification of embryonic NBs in gnathal segments. Both pathways restrict the expression of the cell cycle gene CyclinE, ensuring the proper specification of a glial cell lineage. Whereas the Hox gene Deformed mediates this cell-autonomously, labial and Antennapedia influence the identity via transcriptional regulation of the secreted molecule Amalgam (and its downstream pathway) in a non-cell-autonomous manner. These findings shed new light on the role of the highly conserved Hox genes during segmental patterning of neural stem cells in the CNS.
Collapse
Affiliation(s)
- Henrike Becker
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Simone Renner
- Institute of Genetics, University of Mainz, Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| | - Christian Berger
- Institute of Genetics, University of Mainz, Mainz, Germany
- * E-mail: (CB); (GMT)
| |
Collapse
|
14
|
Johnson G, Moore SW. The Leu-Arg-Glu (LRE) adhesion motif in proteins of the neuromuscular junction with special reference to proteins of the carboxylesterase/cholinesterase family. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:231-43. [PMID: 23850873 DOI: 10.1016/j.cbd.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
Short linear motifs confer evolutionary flexibility on proteins as they can be added with relative ease allowing the acquisition of new functions. Such motifs may mediate a variety of signalling functions. The adhesion-mediating Leu-Arg-Glu (LRE) motif is enriched in laminin beta 2, and has been observed in other proteins, including members of the carboxylesterase/cholinesterase family. It acts as a stop signal for growing axons in the developing neuromuscular junction, binding to the voltage-gated calcium channel. In this bioinformatic analysis, we have investigated the presence of the motif in proteins of the neuromuscular junction, and have also examined its structural position and potential for ligand interaction, as well as phylogenetic conservation, in the carboxylesterase/cholinesterase family. The motif was observed to occur with a significantly higher frequency than expected in the UniProt/Swiss-Prot database, as well as in four individual species (human, mouse, Caenorhabditis elegans and Drosophila melanogaster). Examination of its presence in neuromuscular junction proteins showed it to be enriched in certain proteins of the synaptic basement membrane, including laminin, agrin, acetylcholinesterase and tenascin. A highly significant enrichment was observed in cytoskeletal proteins, particularly intermediate filament proteins and members of the spectrin family. In the carboxylesterase/cholinesterase family, the motif was observed in four conserved positions in the protein structure. It is present in the majority of mammalian acetylcholinesterases, as well as acetylcholinesterases from electric fish and a number of invertebrates. In insects, it is present in the ace-2, rather than in the synaptic ace-1, enzyme. It is also observed in the cholinesterase-like adhesion molecules (neuroligins, neurotactin and glutactin). It is never seen in butyrylcholinesterases, which do not mediate cell adhesion. In conclusion, the significant enrichment of the motif in certain classes of protein, as well as its conserved presence and structural positioning in one protein family, suggests that it has specific functions both in cell adhesion in the neuromuscular junction and in maintaining the structural integrity of the cytoskeleton.
Collapse
Affiliation(s)
- Glynis Johnson
- Divisions of Paediatric Surgery/Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa.
| | | |
Collapse
|
15
|
Kazemian M, Zhu Q, Halfon MS, Sinha S. Improved accuracy of supervised CRM discovery with interpolated Markov models and cross-species comparison. Nucleic Acids Res 2011; 39:9463-72. [PMID: 21821659 PMCID: PMC3239187 DOI: 10.1093/nar/gkr621] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in experimental approaches for identifying transcriptional cis-regulatory modules (CRMs, ‘enhancers’), direct empirical discovery of CRMs for all genes in all cell types and environmental conditions is likely to remain an elusive goal. Effective methods for computational CRM discovery are thus a critically needed complement to empirical approaches. However, existing computational methods that search for clusters of putative binding sites are ineffective if the relevant TFs and/or their binding specificities are unknown. Here, we provide a significantly improved method for ‘motif-blind’ CRM discovery that does not depend on knowledge or accurate prediction of TF-binding motifs and is effective when limited knowledge of functional CRMs is available to ‘supervise’ the search. We propose a new statistical method, based on ‘Interpolated Markov Models’, for motif-blind, genome-wide CRM discovery. It captures the statistical profile of variable length words in known CRMs of a regulatory network and finds candidate CRMs that match this profile. The method also uses orthologs of the known CRMs from closely related genomes. We perform in silico evaluation of predicted CRMs by assessing whether their neighboring genes are enriched for the expected expression patterns. This assessment uses a novel statistical test that extends the widely used Hypergeometric test of gene set enrichment to account for variability in intergenic lengths. We find that the new CRM prediction method is superior to existing methods. Finally, we experimentally validate 12 new CRM predictions by examining their regulatory activity in vivo in Drosophila; 10 of the tested CRMs were found to be functional, while 6 of the top 7 predictions showed the expected activity patterns. We make our program available as downloadable source code, and as a plugin for a genome browser installed on our servers.
Collapse
Affiliation(s)
- Majid Kazemian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
16
|
Ding ZY, Wang YH, Luo ZK, Lee HF, Hwang J, Chien CT, Huang ML. Glial cell adhesive molecule unzipped mediates axon guidance in Drosophila. Dev Dyn 2010; 240:122-34. [PMID: 21117153 DOI: 10.1002/dvdy.22508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axon guidance needs help from the glial cell system during embryogenesis. In the Drosophila embryonic central nervous system (CNS), longitudinal glia (LG) have been implicated in axon guidance but the mechanism remains unclear. We identified the protein encoded by the Drosophila gene unzipped (uzip) as a novel cell adhesion molecule (CAM). Uzip expressed in Drosophila S2 cells triggered cell aggregation through homophilic binding. In the embryonic CNS, Uzip was mainly produced by the LG but was also located at axons, which is consistent with the secretion of Uzip expressed in cultured cells. Although uzip mutants displayed no axonal defect, loss of uzip enhanced the axonal defects in the mutant of N-cadherin (CadN) and the Wnt gene family member wnt5. Overexpression of uzip could rescue the phenotype in the CadNuzip(D43) mutant. Thus, Uzip is a novel CAM from the LG regulating axon guidance.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
17
|
Song JK, Kannan R, Merdes G, Singh J, Mlodzik M, Giniger E. Disabled is a bona fide component of the Abl signaling network. Development 2010; 137:3719-27. [PMID: 20940230 DOI: 10.1242/dev.050948] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis. The Dab mutant interacts genetically with mutations in Abl, and with mutations in the Abl accessory factors trio and enabled (ena). Genetic epistasis tests show that Dab functions upstream of Abl and ena, and, consistent with this, we show that Dab is required for the subcellular localization of these two proteins. We therefore infer that Dab is a bona fide component of the core Abl signaling pathway in Drosophila.
Collapse
Affiliation(s)
- Jeong K Song
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 2010; 187:27-33. [DOI: 10.1016/j.cbi.2010.03.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
|
19
|
Zeev-Ben-Mordehai T, Mylonas E, Paz A, Peleg Y, Toker L, Silman I, Svergun DI, Sussman JL. The quaternary structure of amalgam, a Drosophila neuronal adhesion protein, explains its dual adhesion properties. Biophys J 2010; 97:2316-26. [PMID: 19843464 DOI: 10.1016/j.bpj.2009.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022] Open
Abstract
Amalgam (Ama) is a secreted neuronal adhesion protein that contains three tandem immunoglobulin domains. It has both homophilic and heterophilic cell adhesion properties, and is required for axon guidance and fasciculation during early stages of Drosophila development. Here, we report its biophysical characterization and use small-angle x-ray scattering to determine its low-resolution structure in solution. The biophysical studies revealed that Ama forms dimers in solution, and that its secondary and tertiary structures are typical for the immunoglobulin superfamily. Ab initio and rigid-body modeling by small-angle x-ray scattering revealed a distinct V-shaped dimer in which the two monomer chains are aligned parallel to each other, with the dimerization interface being formed by domain 1. These data provide a structural basis for the dual adhesion characteristics of Ama. Thus, the dimeric structure explains its homophilic adhesion properties. Its V shape suggests a mechanism for its interaction with its receptor, the single-pass transmembrane adhesion protein neurotactin, in which each "arm" of Ama binds to the extracellular domain of neurotactin, thus promoting its clustering on the outer face of the plasma membrane.
Collapse
|
20
|
Zeev-Ben-Mordehai T, Paz A, Peleg Y, Toker L, Wolf SG, Rydberg EH, Sussman JL, Silman I. Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: Over-expression, purification and biophysical characterization. Protein Expr Purif 2009; 63:147-57. [DOI: 10.1016/j.pep.2008.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022]
|
21
|
Smith ST, Wickramasinghe P, Olson A, Loukinov D, Lin L, Deng J, Xiong Y, Rux J, Sachidanandam R, Sun H, Lobanenkov V, Zhou J. Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization. Dev Biol 2009; 328:518-28. [PMID: 19210964 DOI: 10.1016/j.ydbio.2008.12.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/26/2008] [Accepted: 12/22/2008] [Indexed: 01/27/2023]
Abstract
Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.
Collapse
Affiliation(s)
- Sheryl T Smith
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Zimmerman G, Soreq H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res 2006; 326:655-69. [PMID: 16802134 DOI: 10.1007/s00441-006-0239-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Termination of synaptic transmission by neurotransmitter hydrolysis is a substantial characteristic of cholinergic synapses. This unique termination mechanism makes acetylcholinesterase (AChE), the enzyme in charge of executing acetylcholine breakdown, a key component of cholinergic signaling. AChE is now known to exist not as a single entity, but rather as a combinatorial complex of protein products. The diverse AChE molecular forms are generated by a single gene that produces over ten different transcripts by alternative splicing and alternative promoter choices. These transcripts are translated into six different protein subunits. Mature AChE proteins are found as soluble monomers, amphipatic dimers, or tetramers of these subunits and become associated to the cellular membrane by specialized anchoring molecules or members of other heteromeric structural components. A substantial increasing body of research indicates that AChE functions in the central nervous system go far beyond the termination of synaptic transmission. The non-enzymatic neuromodulatory functions of AChE affect neurite outgrowth and synaptogenesis and play a major role in memory formation and stress responses. The structural homology between AChE and cell adhesion proteins, together with the recently discovered protein partners of AChE, predict the future unraveling of the molecular pathways underlying these multileveled functions.
Collapse
Affiliation(s)
- Gabriel Zimmerman
- The Institute of Life Sciences and the Interdisciplinary Center for Neural Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
24
|
Strigini M, Cantera R, Morin X, Bastiani MJ, Bate M, Karagogeos D. The IgLON protein Lachesin is required for the blood-brain barrier in Drosophila. Mol Cell Neurosci 2006; 32:91-101. [PMID: 16682215 DOI: 10.1016/j.mcn.2006.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022] Open
Abstract
In the mammalian peripheral nervous system, nerve insulation depends on the integrity of paranodal junctions between axons and their ensheathing glia. Ultrastructurally, these junctions are similar to the septate junctions (SJ) of invertebrates. In Drosophila, SJ are found in epithelia and in the glia that form the blood-brain barrier (BBB). Drosophila NeurexinIV and Gliotactin, two components of SJ, play an important role in nerve ensheathment and insulation. Here, we report that Drosophila Lachesin (Lac), another SJ component, is also required for a functional BBB. In the developing nervous system, Lac is expressed in a dynamic pattern by surface glia and a subset of neurons. Ultrastructural analysis of Lac mutant embryos shows poorly developed SJ in surface glia and epithelia where Lac is expressed. Mutant embryos undergo a phase of hyperactivity, with unpatterned muscle contractions, and subsequently become paralyzed and fail to hatch. We propose that this phenotype reflects a failure in BBB function.
Collapse
Affiliation(s)
- Maura Strigini
- IMBB/FORTH, Vassilika Vouton, Iraklio, Crete GR-71110, Greece.
| | | | | | | | | | | |
Collapse
|
25
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
26
|
Abstract
Recent studies have highlighted novel functions of a group of cell adhesion molecules during nervous system development. Members of this protein family are characterized by an extracellular domain with sequence homology to cholinesterases and include the neuroligins, synaptic cell adhesion molecules recently implicated in autism, and neurotactin, a cell surface receptor involved in axonal pathfinding. Although these proteins have a structural organization similar to the enzyme acetylcholinesterase, the cholinesterase domain lacks enzymatic activity and functions as a protein-protein interaction motif. This protein family provides a striking example of how the function of a catalytically active domain has evolved to mediate receptor-ligand interactions that regulate morphogenetic processes during development of the nervous system.
Collapse
Affiliation(s)
- Francisco G Scholl
- Columbia University, Department of Physiology and Cellular Biophysics, and Center for Neurobiology and Behavior, College of Physicians and Surgeons, 630 West 168th Street, P&S 11-511, New York, NY 10032, USA.
| | | |
Collapse
|
27
|
Zeev-Ben-Mordehai T, Rydberg EH, Solomon A, Toker L, Auld VJ, Silman I, Botti S, Sussman JL. The intracellular domain of theDrosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins 2003; 53:758-67. [PMID: 14579366 DOI: 10.1002/prot.10471] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drosophila gliotactin (Gli) is a 109-kDa transmembrane, cholinesterase-like adhesion molecule (CLAM), expressed in peripheral glia, that is crucial for formation of the blood-nerve barrier. The intracellular portion (Gli-cyt) was cloned and expressed in the cytosolic fraction of Escherichia coli BLR(DE3) at 45 mg/L and purified by Ni-NTA (nitrilotriacetic acid) chromatography. Although migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), under denaturing conditions, was unusually slow, molecular weight determination by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) confirmed that the product was consistent with its theoretical size. Gel filtration chromatography yielded an anomalously large Stokes radius, suggesting a fully unfolded conformation. Circular dichroism (CD) spectroscopy demonstrated that Gli-cyt was >50% unfolded, further suggesting a nonglobular conformation. Finally, 1D-(1)H NMR conclusively demonstrated that Gli-cyt possesses an extended unfolded structure. In addition, Gli-cyt was shown to possess charge and hydrophobic properties characteristic of natively unfolded proteins (i.e., proteins that, when purified, are intrinsically disordered under physiologic conditions in vitro).
Collapse
|
28
|
Liebl EC, Rowe RG, Forsthoefel DJ, Stammler AL, Schmidt ER, Turski M, Seeger MA. Interactions between the secreted protein Amalgam, its transmembrane receptor Neurotactin and the Abelson tyrosine kinase affect axon pathfinding. Development 2003; 130:3217-26. [PMID: 12783792 DOI: 10.1242/dev.00545] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two novel dosage-sensitive modifiers of the Abelson tyrosine kinase (Abl) mutant phenotype have been identified. Amalgam (Ama) is a secreted protein that interacts with the transmembrane protein Neurotactin (Nrt) to promote cell:cell adhesion. We have identified an unusual missense ama allele, ama(M109), which dominantly enhances the Abl mutant phenotype, affecting axon pathfinding. Heterozygous null alleles of ama do not show this dominant enhancement, but animals homozygous mutant for both ama and Abl show abnormal axon outgrowth. Cell culture experiments demonstrate the Ama(M109) mutant protein binds to Nrt, but is defective in mediating Ama/Nrt cell adhesion. Heterozygous null alleles of nrt dominantly enhance the Abl mutant phenotype, also affecting axon pathfinding. Furthermore, we have found that all five mutations originally attributed to disabled are in fact alleles of nrt. These results suggest Ama/Nrt-mediated adhesion may be part of signaling networks involving the Abl tyrosine kinase in the growth cone.
Collapse
Affiliation(s)
- Eric C Liebl
- Department of Biology, Denison University, Granville, OH 43023, USA.
| | | | | | | | | | | | | |
Collapse
|