1
|
Farci D, Piano D. Spatial arrangement and density variations in the cell envelope of Deinococcus radiodurans. Can J Microbiol 2024; 70:190-198. [PMID: 38525892 DOI: 10.1139/cjm-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
Silale A, Zhu Y, Witwinowski J, Smith RE, Newman KE, Bhamidimarri SP, Baslé A, Khalid S, Beloin C, Gribaldo S, van den Berg B. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat Commun 2023; 14:7152. [PMID: 37932269 PMCID: PMC10628300 DOI: 10.1038/s41467-023-42601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane β-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Yiling Zhu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Jerzy Witwinowski
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Robert E Smith
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Satya P Bhamidimarri
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Sogues A, Fioravanti A, Jonckheere W, Pardon E, Steyaert J, Remaut H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat Commun 2023; 14:7051. [PMID: 37923757 PMCID: PMC10624894 DOI: 10.1038/s41467-023-42826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts. The EA1 assembly domain consists of 6 immunoglobulin-like domains, where three calcium-binding sites structure interdomain contacts that allow monomers to adopt their assembly-competent conformation. Nanobody-induced depolymerization of EA1 S-layers results in surface defects, membrane blebbing and cell lysis under hypotonic conditions, indicating that S-layers provide additional mechanical stability to the cell wall. Taken together, we report a complete model of the EA1 S-layer and present a set of nanobodies that may have therapeutic potential against Bacillus anthracis.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Wim Jonckheere
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Forrest S, Ton S, Sholes SL, Harrison S, Plaut RD, Verratti K, Wittekind M, Ettehadieh E, Necciai B, Sozhamannan S, Grady SL. Genetic evidence for the interaction between Bacillus anthracis-encoded phage receptors and their cognate phage-encoded receptor binding proteins. Front Microbiol 2023; 14:1278791. [PMID: 38029077 PMCID: PMC10644760 DOI: 10.3389/fmicb.2023.1278791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Bacteriophages such as γ and AP50c have been shown to infect strains of Bacillus anthracis with high specificity, and this feature has been exploited in the development of bacterial detection assays. To better understand the emergence of phage resistance, and thus the potential failure of such assays, it is important to identify the host and phage receptors necessary for attachment and entry. Using genetic approaches, the bacterial receptors of AP50c and γ have been identified as sap and GamR, respectively. A second AP50c-like phage, Wip1, also appears to use sap as a receptor. In parallel with this work, the cognate phage-encoded receptor binding proteins (RBPs) have also been identified (Gp14 for γ, P28 for AP50c, and P23 for Wip1); however, the strength of evidence supporting these protein-protein interactions varies, necessitating additional investigation. Here, we present genetic evidence further supporting the interaction between sap and the RBPs of AP50c and Wip1 using fluorescently tagged proteins and a panel of B. anthracis mutants. These results showed that the deletion of the sap gene, as well as the deletion of csaB, whose encoded protein anchors sap to the bacterial S-layer, resulted in the loss of RBP binding. Binding could then be rescued by expressing these genes in trans. We also found that the RBP of the γ-like prophage λBa03 relied on csaB activity for binding, possibly by a different mechanism. RBPλBa03 binding to B. anthracis cells was also unique in that it was not ablated by heat inactivation of vegetative cells, suggesting that its receptor is still functional following incubation at 98°C. These results extend our understanding of the diverse attachment and entry strategies used by B. anthracis phages, enabling future assay development.
Collapse
Affiliation(s)
- Samantha Forrest
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Sarah Ton
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Samantha L. Sholes
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Sarah Harrison
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Roger D. Plaut
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Kathleen Verratti
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | | | | | - Bryan Necciai
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, MD, United States
- Joint Research and Development, Inc., Stafford, VA, United States
| | - Sarah L. Grady
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| |
Collapse
|
5
|
Sexton D, Hashimi A, Beskrovnaya P, Sibanda L, Huan T, Tocheva E. The cell envelope of Thermotogae suggests a mechanism for outer membrane biogenesis. Proc Natl Acad Sci U S A 2023; 120:e2303275120. [PMID: 37094164 PMCID: PMC10160955 DOI: 10.1073/pnas.2303275120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
The presence of a cell membrane is one of the major structural components defining life. Recent phylogenomic analyses have supported the hypothesis that the last universal common ancestor (LUCA) was likely a diderm. Yet, the mechanisms that guided outer membrane (OM) biogenesis remain unknown. Thermotogae is an early-branching phylum with a unique OM, the toga. Here, we use cryo-electron tomography to characterize the in situ cell envelope architecture of Thermotoga maritima and show that the toga is made of extended sheaths of β-barrel trimers supporting small (~200 nm) membrane patches. Lipidomic analyses identified the same major lipid species in the inner membrane (IM) and toga, including the rare to bacteria membrane-spanning ether-bound diabolic acids (DAs). Proteomic analyses revealed that the toga was composed of multiple SLH-domain containing Ompα and novel β-barrel proteins, and homology searches detected variable conservations of these proteins across the phylum. These results highlight that, in contrast to the SlpA/OmpM superfamily of proteins, Thermotoga possess a highly diverse bipartite OM-tethering system. We discuss the implications of our findings with respect to other early-branching phyla and propose that a toga-like intermediate may have facilitated monoderm-to-diderm cell envelope transitions.
Collapse
Affiliation(s)
- Danielle L. Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Polina Beskrovnaya
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| | - Lloyd Sibanda
- Department of Chemistry, University of British Columbia, Vancouver,V6T1Z1 BC, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver,V6T1Z1 BC, Canada
| | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver,V6T1Z3 BC, Canada
| |
Collapse
|
6
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
7
|
Malet-Villemagne J, Yucheng L, Evanno L, Denis-Quanquin S, Hugonnet JE, Arthur M, Janoir C, Candela T. Polysaccharide II Surface Anchoring, the Achilles' Heel of Clostridioides difficile. Microbiol Spectr 2023; 11:e0422722. [PMID: 36815772 PMCID: PMC10100865 DOI: 10.1128/spectrum.04227-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Liang Yucheng
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, Orsay, France
| | | | - Jean-Emmanuel Hugonnet
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Michel Arthur
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
8
|
Novel Insights into the Molecular Mechanisms Underlying Robustness and Stability in Probiotic Bifidobacteria. Appl Environ Microbiol 2023; 89:e0008223. [PMID: 36802222 PMCID: PMC10057886 DOI: 10.1128/aem.00082-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Some probiotic bifidobacteria are highly robust and shelf-stable, whereas others are difficult to produce, due to their sensitivity to stressors. This limits their potential use as probiotics. Here, we investigate the molecular mechanisms underlying the variability in stress physiologies of Bifidobacterium animalis subsp. lactis BB-12 and Bifidobacterium longum subsp. longum BB-46, by applying a combination of classical physiological characterization and transcriptome profiling. The growth behavior, metabolite production, and global gene expression profiles differed considerably between the strains. BB-12 consistently showed higher expression levels of multiple stress-associated genes, compared to BB-46. This difference, besides higher cell surface hydrophobicity and a lower ratio of unsaturated to saturated fatty acids in the cell membrane of BB-12, should contribute to its higher robustness and stability. In BB-46, the expression of genes related to DNA repair and fatty acid biosynthesis was higher in the stationary than in the exponential phase, which was associated with enhanced stability of BB-46 cells harvested in the stationary phase. The results presented herein highlight important genomic and physiological features contributing to the stability and robustness of the studied Bifidobacterium strains. IMPORTANCE Probiotics are industrially and clinically important microorganisms. To exert their health-promoting effects, probiotic microorganisms must be administered at high counts, while maintaining their viability at the time of consumption. In addition, intestinal survival and bioactivity are important criteria for probiotics. Although bifidobacteria are among the most well-documented probiotics, the industrial-scale production and commercialization of some Bifidobacterium strains is challenged by their high sensitivity to environmental stressors encountered during manufacturing and storage. Through a comprehensive comparison of the metabolic and physiological characteristics of 2 Bifidobacterium strains, we identify key biological markers that can serve as indicators for robustness and stability in bifidobacteria.
Collapse
|
9
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
10
|
Laemthong T, Bing RG, Crosby JR, Adams MWW, Kelly RM. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. Appl Environ Microbiol 2022; 88:e0127422. [PMID: 36169328 PMCID: PMC9599439 DOI: 10.1128/aem.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited β-1,3-glucanase activity, Calkro_0402 was active on both β-1,3/1,4-glucan and β-1,4-xylan, Calkro_2036 exhibited activity on both β-1,3/1,4-glucan and β-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Tomatsidou A, Krunic M, Missiakas D. Contribution of TagA-Like Glycosyltransferases to the Assembly of the Secondary Cell Wall Polysaccharide in Bacillus anthracis. J Bacteriol 2022; 204:e0025322. [PMID: 35997505 PMCID: PMC9487633 DOI: 10.1128/jb.00253-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis elaborates a secondary cell wall polysaccharide (SCWP) made of 6 to 12 trisaccharide units. Pyruvyl and acetyl substitutions of the distal unit are prerequisites for the noncovalent retention of 22 secreted Bacillus S-layer (Bsl)-associated proteins bearing an S-layer homology (SLH) domain. Surface display of Bsl proteins contributes to cell separation as well as virulence. Earlier work suggested that TagO initiates the synthesis of SCWP while GneY and GneZ, two UDP-GlcNAc 2-epimerases, synthesize ManNAc that is later incorporated in the repeat unit (→4)-ManNAc-(β1→4)-GlcNAc-(β1→6)-GlcNAc-(α1→). In organisms that synthesize wall teichoic acid, TagA catalysts have been shown to form the glycosidic bond ManNAc-(β1→4)-GlcNAc. Here, we show that genes bas2675 and bas5272, predicted to encode glycosyltransferases of the WecB/TagA/CpsF family (PFAM03808; CAZy GT26), are required for B. anthracis SCWP synthesis and S-layer assembly. Similar to tagO or gneY gneZ mutants, B. anthracis strains depleted of tagA1 (bas5272) cannot maintain cell shape, support vegetative growth, or synthesize SCWP. Expression of tagA2 (bas2675), or Staphylococcus aureus tagA on a plasmid, rescues the nonviable tagA1 mutant. We propose that TagA1 and TagA2 fulfill overlapping and key glycosyltransferase functions for the synthesis of repeat units of the SCWP of B. anthracis. IMPORTANCE Glycosyltransferases (GTs) catalyze the transfer of sugar moieties from activated donor molecules to acceptor molecules to form glycosidic bonds using a retaining or inverting mechanism. Based on the structural relatedness of their catalytic and carbohydrate-binding modules, GTs have been grouped into 115 families in the Carbohydrate-Active EnZyme (CAZy) database. For complex products, the functional assignment of GTs remains highly challenging without the knowledge of the chemical structure of the assembled polymer. Here, we propose that two uncharacterized GTs of B. anthracis belonging to the WecB/TagA/CpsF family incorporate ManNAc in repeat units of the secondary cell wall polymer of bacilli species.
Collapse
Affiliation(s)
- Anastasia Tomatsidou
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Maria Krunic
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| |
Collapse
|
12
|
Fioravanti A, Mathelie-Guinlet M, Dufrêne YF, Remaut H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS NEXUS 2022; 1:pgac121. [PMID: 36714836 PMCID: PMC9802277 DOI: 10.1093/pnasnexus/pgac121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Surface layers (S-layers) are 2D paracrystalline protein monolayers covering the cell envelope of many prokaryotes and archaea. Proposed functions include a role in cell support, as scaffolding structure, as molecular sieve, or as virulence factor. Bacillus anthracis holds two S-layers, composed of Sap or EA1, which interchange in early and late exponential growth phase. We previously found that acute disruption of B. anthracis Sap S-layer integrity, by means of nanobodies, results in severe morphological cell surface defects and cell collapse. Remarkably, this loss of function is due to the destruction of the Sap lattice structure rather than detachment of monomers from the cell surface. Here, we combine force nanoscopy and light microscopy observations to probe the contribution of the S-layer to the mechanical, structural, and functional properties of the cell envelope, which have been so far elusive. Our experiments reveal that cells with a compromised S-layer lattice show a decreased compressive stiffness and elastic modulus. Furthermore, we find that S-layer integrity is required to resist cell turgor under hypotonic conditions. These results present compelling experimental evidence indicating that the S-layers can serve as prokaryotic exoskeletons that support the cell wall in conferring rigidity and mechanical stability to bacterial cells.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marion Mathelie-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
13
|
In vivo imaging of fluorescent albumin modified with pyruvylated-human-type complex oligosaccharide reveals sialylation-like biodistribution and kinetics. Bioorg Med Chem 2022; 70:116943. [PMID: 35905685 DOI: 10.1016/j.bmc.2022.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Both pyruvylation and sialylation onto the terminus of oligosaccharides of N-glycoproteins seem to be structurally and functionally similar with a property of conferring negative charge. However, detailed molecular characteristics of pyruvylation and sialylation in vivo were elusive. Here, to investigate an effect of terminal pyruvylation to N-glycan on in vivo biodistribution and kinetics, we prepared human serum albumin (HSA) modified with pyruvylated N-glycan (PvG), conjugated with HiLyte Fluor 750 (FL750-PvGHSA). In vivo imaging by using FL750-PvGHSA revealed that terminally pyruvylated N-glycoalbumin was excreted like sialylated N-glycoalbumin, suggesting that pyruvylation mimics sialylation in in vivo biodistribution and kinetics of N-glycoproteins. Terminal pyruvylation onto N-glycans can be a potential tool for a novel glycoengineering strategy.
Collapse
|
14
|
Boutonnet C, Lyonnais S, Alpha-Bazin B, Armengaud J, Château A, Duport C. Dynamic Profile of S-Layer Proteins Controls Surface Properties of Emetic Bacillus cereus AH187 Strain. Front Microbiol 2022; 13:937862. [PMID: 35847057 PMCID: PMC9277125 DOI: 10.3389/fmicb.2022.937862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Many prokaryotes are covered by a two-dimensional array of proteinaceous subunits. This surface layers (S-layer) is incompletely characterized for many microorganisms. Here, we studied Bacillus cereus AH187. A genome analysis identified two genes encoding the S-layer proteins SL2 and EA1, which we experimentally confirmed to encode the two protein components of the S-layer covering the surface of B. cereus. Shotgun proteomics analysis indicated that SL2 is the major component of the B. cereus S-layer at the beginning of exponential growth, whereas EA1 becomes more abundant than SL2 during later stages of stationary growth. Microscopy analysis revealed the spatial organization of SL2 and EA1 at the surface of B. cereus to depend on their temporal-dynamics during growth. Our results also show that a mutant strain lacking functional SL2 and EA1 proteins has distinct surface properties compared to its parental strain, in terms of stiffness and hydrophilicity during the stationary growth phase. Surface properties, self-aggregation capacity, and bacterial adhesion were observed to correlate. We conclude that the dynamics of SL2 and EA1 expression is a key determinant of the surface properties of B. cereus AH187, and that the S-layer could contribute to B. cereus survival in starvation conditions.
Collapse
Affiliation(s)
| | | | - Beatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Avignon, France
- *Correspondence: Catherine Duport,
| |
Collapse
|
15
|
An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat Microbiol 2022; 7:411-422. [PMID: 35246664 DOI: 10.1038/s41564-022-01066-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Recent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB). We show that the presence of such systems follows the ToB with a bimodal distribution matching the deepest phylogenetic divergence between Terrabacteria and Gracilicutes. Whereas the lipoprotein peptidoglycan-associated lipoprotein (Pal) is restricted to the Gracilicutes, along with a more sporadic occurrence of OmpA, and Braun's lipoprotein is present only in a subclade of Gammaproteobacteria, diderm Terrabacteria display, as the main system, the OmpM protein. We propose an evolutionary scenario whereby OmpM represents a simple, ancestral OM-tethering system that was later replaced by one based on Pal after the emergence of the Lol machinery to deliver lipoproteins to the OM, with OmpA as a possible transition state. We speculate that the existence of only one main OM-tethering system in the Terrabacteria would have allowed the multiple OM losses specifically inferred in this clade through OmpM perturbation, and we provide experimental support for this hypothesis by inactivating all four ompM gene copies in the genetically tractable diderm Firmicute Veillonella parvula. High-resolution imaging and tomogram reconstructions reveal a non-lethal phenotype in which vast portions of the OM detach from the cells, forming huge vesicles with an inflated periplasm shared by multiple dividing cells. Together, our results highlight an ancient shift of OM-tethering systems in bacterial evolution and suggest a mechanism for OM loss and the multiple emergences of the monoderm phenotype from diderm ancestors.
Collapse
|
16
|
Legg MSG, Hager-Mair FF, Krauter S, Gagnon SML, Lòpez-Guzmán A, Lim C, Blaukopf M, Kosma P, Schäffer C, Evans SV. The S-layer homology domains of Paenibacillus alvei surface protein SpaA bind to cell wall polysaccharide through the terminal monosaccharide residue. J Biol Chem 2022; 298:101745. [PMID: 35189140 PMCID: PMC8942822 DOI: 10.1016/j.jbc.2022.101745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Self-assembling (glyco)protein surface layers (S-layers) are ubiquitous prokaryotic cell-surface structures involved in structural maintenance, nutrient diffusion, host adhesion, virulence, and other processes, which makes them appealing targets for therapeutics and biotechnological applications as biosensors or drug delivery systems. However, unlocking this potential requires expanding our understanding of S-layer properties, especially the details of surface-attachment. S-layers of Gram-positive bacteria often are attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Cocrystal structures of the SLH domain trimer from the Paenibacillus alvei S-layer protein SpaA (SpaASLH) with synthetic, terminal SCWP disaccharide and trisaccharide analogs, together with isothermal titration calorimetry binding analyses, reveal that while SpaASLH accommodates longer biologically relevant SCWP ligands within both its primary (G2) and secondary (G1) binding sites, the terminal pyruvylated ManNAc moiety serves as the nearly exclusive SCWP anchoring point. Binding is accompanied by displacement of a flexible loop adjacent to the receptor site that enhances the complementarity between protein and ligand, including electrostatic complementarity with the terminal pyruvate moiety. Remarkably, binding of the pyruvylated monosaccharide SCWP fragment alone is sufficient to cause rearrangement of the receptor-binding sites in a manner necessary to accommodate longer SCWP fragments. The observation of multiple conformations in longer oligosaccharides bound to the protein, together with the demonstrated functionality of two of the three SCWP receptor-binding sites, reveals how the SpaASLH-SCWP interaction has evolved to accommodate longer SCWP ligands and alleviate the strain inherent to bacterial S-layer adhesion during growth and division.
Collapse
Affiliation(s)
- Max S G Legg
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Fiona F Hager-Mair
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Simon Krauter
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susannah M L Gagnon
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Arturo Lòpez-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Charlie Lim
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Stephen V Evans
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
17
|
Cardoso D, Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803. PLANTS 2021; 10:plants10122757. [PMID: 34961227 PMCID: PMC8707739 DOI: 10.3390/plants10122757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.
Collapse
Affiliation(s)
- Delfim Cardoso
- MABBS—Mestrado em Aplicações em Biotecnologia e Biologia Sintética, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- MCbiology Doctoral Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
18
|
van Leeuwen HC, Roelofs D, Corver J, Hensbergen P. Phylogenetic analysis of the bacterial Pro-Pro-endopeptidase domain reveals a diverse family including secreted and membrane anchored proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100024. [PMID: 34841315 PMCID: PMC8610288 DOI: 10.1016/j.crmicr.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial Pro-Pro-endopeptidase (PPEP) is the latest member of the metalloendopeptidase class (E.C. 3.4.24.89). PPEP homologs are found in two firmicutes orders, clostridiales and bacillales spread over 9 genera and more than 130 species. Some PPEP homologs have acquired additional anchor domains that bind noncovalently to various elements of the bacterial peptidoglycan cell wall. Prototype family members, PPEP-1 and PPEP-2, target bacterial surface adhesion proteins, but homologs could target other extracellular proteins.
Pro-Pro-endopeptidases (PPEP, EC 3.4.24.89) are secreted, zinc metalloproteases that have the unusual capacity to cleave a peptide bond between two prolines, a bond that is generally less sensitive to proteolytic cleavage. Two well studied members of the family are PPEP-1 and PPEP-2, produced by Clostridioides difficile, a human pathogen, and Paenibacillus alvei, a bee secondary invader, respectively. Both proteases seem to be involved in mediating bacterial adhesion by cleaving cell surface anchor proteins on the bacterium itself. By using basic alignment and phylogenetic profiling analysis, this work shows that the complete family of proteins that contain a PPEP domain includes proteins from more than 130 species spread over 9 genera. These analyses also suggest that the PPEP domain spread through horizontal gene transfer events between species within the Firmicutes’ classes Bacilli and Clostridia. Bacterial species containing PPEP homologs are found in diverse habitats, varying from human pathogens and gut microbiota to free-living bacteria, which were isolated from various environments, including extreme conditions such as hot springs, desert soil and salt lakes. The phylogenetic tree reveals the relationships between family members and suggests that smaller subgroups could share cleavage specificity, substrates and functional similarity. Except for PPEP-1 and PPEP-2, no cleavage specificity, specific physiological target, or function has been assigned for any of the other PPEP-family members. Some PPEP proteins have acquired additional domains that recognize and bind noncovalently to various elements of the bacterial peptidoglycan cell-wall, anchoring these PPEPs. Secreted or anchored to the cell-wall surface PPEP proteins seem to perform various functions.
Collapse
Affiliation(s)
- Hans C van Leeuwen
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Dick Roelofs
- KeyGene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Paul Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
19
|
Chow V, Nong G, St John FJ, Sawhney N, Rice JD, Preston JF. Bacterial xylan utilization regulons: Systems for coupling depolymerization of methylglucuronoxylans with assimilation and metabolism. J Ind Microbiol Biotechnol 2021; 49:6420245. [PMID: 34734267 DOI: 10.1093/jimb/kuab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
Bioconversion of lignocellulosic resources to fuels and chemicals offers an economically promising path to renewable energy. Technological challenges to achieving bioconversion include the development of cost-effective processes that render the cellulose and hemicellulose components of these resources to fermentable hexoses and pentoses. Natural bioprocessing of the hemicellulose fraction of lignocellulosic biomass requires depolymerization of methylglucuronoxylans. This depends upon the secretion of endoxylanases that release xylooligosaccharides and aldouronates. Physiological, biochemical and genetic studies with selected bacteria support a process in which a cell-anchored multimodular GH10 endoxylanase catalyzes the release of the hydrolysis products, aldotetrauronate, xylotriose, and xylobiose that are directly assimilated and metabolized. Gene clusters encoding intracellular enzymes, including α-glucuronidase, endo-xylanase, β-xylosidase, ABC transporter proteins, and transcriptional regulators are coordinately responsive to substrate induction or repression. The rapid rates of glucuronoxylan utilization and microbial growth, along with the absence of detectable products of depolymerization in the medium, indicate that assimilation and depolymerization are coupled processes. Genomic comparisons provide evidence that such systems occur in xylanolytic species in several genera, including Clostridium, Geobacillus, Paenibacillus, and Thermotoga. These systems offer promise, either in their native configurations or through gene transfer to other organisms, to develop biocatalysts for efficient production of fuels and chemicals from the hemicellulose fractions of lignocellulosic resources.
Collapse
Affiliation(s)
- Virgina Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, USA
| | - Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| |
Collapse
|
20
|
Simunović V. Genomic and molecular evidence reveals novel pathways associated with cell surface polysaccharides in bacteria. FEMS Microbiol Ecol 2021; 97:6355432. [PMID: 34415013 DOI: 10.1093/femsec/fiab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Amino acid (acyl carrier protein) ligases (AALs) are a relatively new family of bacterial amino acid adenylating enzymes with unknown function(s). Here, genomic enzymology tools that employ sequence similarity networks and genome context analyses were used to hypothesize the metabolic function(s) of AALs. In over 50% of species, aal and its cognate acyl carrier protein (acp) genes, along with three more genes, formed a highly conserved AAL cassette. AAL cassettes were strongly associated with surface polysaccharide gene clusters in Proteobacteria and Actinobacteria, yet were prevalent among soil and rhizosphere-associated α- and β-Proteobacteria, including symbiotic α- and β-rhizobia and some Mycolata. Based on these associations, AAL cassettes were proposed to encode a noncanonical Acp-dependent polysaccharide modification route. Genomic-inferred predictions were substantiated by published experimental evidence, revealing a role for AAL cassettes in biosynthesis of biofilm-forming exopolysaccharide in pathogenic Burkholderia and expression of aal and acp genes in nitrogen-fixing Rhizobium bacteroids. Aal and acp genes were associated with dltBD-like homologs that modify cell wall teichoic acids with d-alanine, including in Paenibacillus and certain other bacteria. Characterization of pathways that involve AAL and Acp may lead to developing new plant and human disease-controlling agents as well as strains with improved nitrogen fixation capacity.
Collapse
|
21
|
Tarraran L, Gandini C, Luganini A, Mazzoli R. Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis. Biotechnol J 2021; 16:e2100064. [PMID: 34019730 DOI: 10.1002/biot.202100064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/05/2022]
Abstract
Engineering microbial strains combining efficient lignocellulose metabolization and high-value chemical production is a cutting-edge strategy towards cost-sustainable 2nd generation biorefining. Here, protein components of the Clostridium cellulovorans cellulosome were introduced in Lactococcus lactis IL1403, one of the most efficient lactic acid producers but unable to directly ferment cellulose. Cellulosomes are protein complexes with high cellulose depolymerization activity whose synergistic action is supported by scaffolding protein(s) (i.e., scaffoldins). Scaffoldins are involved in bringing enzymes close to each other and often anchor the cellulosome to the cell surface. In this study, three synthetic scaffoldins were engineered by using domains derived from the main scaffoldin CbpA and the Endoglucanase E (EngE) of the C. cellulovorans cellulosome. Special focus was on CbpA X2 and EngE S-layer homology (SLH) domains possibly involved in cell-surface anchoring. The recombinant scaffoldins were successfully introduced in and secreted by L. lactis. Among them, only that carrying the three EngE SLH modules was able to bind to the L. lactis surface although these domains lack the conserved TRAE motif thought to mediate binding with secondary cell wall polysaccharides. The synthetic scaffoldins engineered in this study could serve for assembly of secreted or surface-displayed designer cellulosomes in L. lactis.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Department of Applied Science and Technology, Politecnico of Turin, Torino, Italy
| | - Chiara Gandini
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
22
|
Bacillus anthracis chain length, a virulence determinant, is regulated by membrane localized serine/threonine protein kinase PrkC. J Bacteriol 2021; 203:JB.00582-20. [PMID: 33753466 PMCID: PMC8117516 DOI: 10.1128/jb.00582-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis, a spore-forming pathogen that displays a chaining phenotype. It has been reported that the chaining phenotype acts as a virulence factor in B. anthracis In this study, we identify a serine/threonine protein kinase of B. anthracis, PrkC, the only kinase localized at the bacteria-host interface, as a determinant of B. anthracis chain length. In vitro, prkC disruption strain (BAS ΔprkC) grew as shorter chains throughout the bacterial growth cycle. A comparative analysis between the parent strain and BAS ΔprkC indicated that the levels of proteins, BslO and Sap, associated with the regulation of the bacterial chain length, were upregulated in BAS ΔprkC BslO is a septal murein hydrolase that catalyzes daughter cell separation and Sap is an S-layer structural protein required for the septal localization of BslO. PrkC disruption also has a significant effect on bacterial growth, cell wall thickness, and septa formation. Upregulation of ftsZ in BAS ΔprkC was also observed. Altogether, our results indicate that PrkC is required for maintaining optimum growth, cell wall homeostasis and most importantly - for the maintenance of the chaining phenotype.IMPORTANCEChaining phenotype acts as a virulence factor in Bacillus anthracis This is the first study that identifies a 'signal transduction protein' with an ability to regulate the chaining phenotype in Bacillus anthracis We show that the disruption of the lone surface-localized serine/threonine protein kinase, PrkC, leads to the shortening of the bacterial chains. We report upregulation of the de-chaining proteins in the PrkC disruption strain. Apart from this, we also report for the first time that PrkC disruption results in an attenuated cell growth, a decrease in the cell wall thickness and aberrant cell septa formation during the logarithmic phase of growth - a growth phase where PrkC is expressed maximally.
Collapse
|
23
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
24
|
Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021; 12:663468. [PMID: 33889148 PMCID: PMC8056022 DOI: 10.3389/fmicb.2021.663468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.
Collapse
Affiliation(s)
- Janani Ravi
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Microorganisms 2021; 9:microorganisms9030499. [PMID: 33652876 PMCID: PMC7996765 DOI: 10.3390/microorganisms9030499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.
Collapse
|
26
|
Kim D, Shashkov AS, Dmitrenok AS, Potekhina NV, Senchenkova SN, Dorofeeva LV, Evtushenko LI, Tul'skaya EM. Novel galactofuranan and pyruvylated galactomannan in the cell wall of Clavibacter michiganensis subsp. michiganensis VKM Ac-1403 T. Carbohydr Res 2021; 500:108247. [PMID: 33524890 DOI: 10.1016/j.carres.2021.108247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022]
Abstract
The cell wall of Clavibacter michiganensis subsp. michiganensis VKM Ас-1403Т (family Microbacteriaceae, class Actinobacteria) contains two polysaccharides. The first one is neutral (1 → 6) linked galactofuranan in which every second galactofuranose residue in the main chain substituted at position 3 by side trisaccharide, β-D-GlcpNAc-(1 → 3)-α-L-Rhap-(1 → 2)-α-D-Fucp-(1 →. The second polymer is pyruvylated galactomannan with the repeating unit, →3)-α-D-Galp-(1 → 3)-α-D-[4,6-S-Pyr]-Manp-(1 → 3)-α-D-Manp-(1 →. The cell wall glycopolymer structures were established by chemical and NMR spectroscopic methods. The obtained results provide new data on the cell wall composition of plant pathogenic species of the genus Clavibacter and can promote understanding the molecular mechanisms involved in colonization and infection of plants.
Collapse
Affiliation(s)
- Deborah Kim
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Nataliya V Potekhina
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry,Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991,Russian Federation
| | - Lubov V Dorofeeva
- All-Russian Collection of Microorganisms (VKM),G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms,Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290,Russian Federation
| | - Lyudmila I Evtushenko
- All-Russian Collection of Microorganisms (VKM),G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms,Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290,Russian Federation
| | - Elena M Tul'skaya
- School of Biology,M. V. Lomonosov Moscow State University, Moscow, 119991,Russian Federation.
| |
Collapse
|
27
|
LytR-CpsA-Psr Glycopolymer Transferases: Essential Bricks in Gram-Positive Bacterial Cell Wall Assembly. Int J Mol Sci 2021; 22:ijms22020908. [PMID: 33477538 PMCID: PMC7831098 DOI: 10.3390/ijms22020908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.
Collapse
|
28
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
29
|
Chateau A, Van der Verren SE, Remaut H, Fioravanti A. The Bacillus anthracis Cell Envelope: Composition, Physiological Role, and Clinical Relevance. Microorganisms 2020; 8:E1864. [PMID: 33255913 PMCID: PMC7759979 DOI: 10.3390/microorganisms8121864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022] Open
Abstract
Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, B. anthracis cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies. This review will focus on the novel insights regarding the composition, physiological role, and clinical relevance of B. anthracis cell envelope components.
Collapse
Affiliation(s)
- Alice Chateau
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France;
| | - Sander E. Van der Verren
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; (S.E.V.d.V.); (H.R.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
30
|
Autotransporters Drive Biofilm Formation and Autoaggregation in the Diderm Firmicute Veillonella parvula. J Bacteriol 2020; 202:JB.00461-20. [PMID: 32817093 PMCID: PMC7549365 DOI: 10.1128/jb.00461-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Veillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract. The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments. IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.
Collapse
|
31
|
Ali S, Jenkins B, Cheng J, Lobb B, Wei X, Egan S, Charles TC, McConkey BJ, Austin J, Doxey AC. Slr4, a newly identified S-layer protein from marine Gammaproteobacteria, is a major biofilm matrix component. Mol Microbiol 2020; 114:979-990. [PMID: 32804439 PMCID: PMC7821379 DOI: 10.1111/mmi.14588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/06/2020] [Indexed: 01/03/2023]
Abstract
S‐layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S‐layer protein present in the Gram‐negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta‐helical structure for EAR28894 similar to the Caulobacter S‐layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S‐layer was found surrounding the outer membrane in wild‐type cells and completely removed from cells in an EAR28894 deletion mutant. S‐layer material also appeared to be “shed” from wild‐type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S‐layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.
Collapse
Affiliation(s)
- Sura Ali
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Jenkins
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Suhelen Egan
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | | | - John Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
32
|
Chateau A, Oh SY, Tomatsidou A, Brockhausen I, Schneewind O, Missiakas D. Distinct Pathways Carry Out α and β Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis. J Bacteriol 2020; 202:e00191-20. [PMID: 32457049 PMCID: PMC7348550 DOI: 10.1128/jb.00191-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3-α-Gal and O-4-β-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4-β-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3-α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units.IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Anastasia Tomatsidou
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Dietrich C, Li de la Sierra-Gallay I, Masi M, Girard E, Dautin N, Constantinesco-Becker F, Tropis M, Daffé M, van Tilbeurgh H, Bayan N. The C-terminal domain of Corynebacterium glutamicum mycoloyltransferase A is composed of five repeated motifs involved in cell wall binding and stability. Mol Microbiol 2020; 114:1-16. [PMID: 32073722 DOI: 10.1111/mmi.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Indexed: 12/29/2022]
Abstract
The genomes of Corynebacteriales contain several genes encoding mycoloyltransferases (Myt) that are specific cell envelope enzymes essential for the biogenesis of the outer membrane. MytA is a major mycoloyltransferase of Corynebacterium glutamicum, displaying an N-terminal domain with esterase activity and a C-terminal extension containing a conserved repeated Leu-Gly-Phe-Pro (LGFP) sequence motif of unknown function. This motif is highly conserved in Corynebacteriales and found associated with cell wall hydrolases and with proteins of unknown function. In this study, we determined the crystal structure of MytA and found that its C-terminal domain is composed of five LGFP motifs and forms a long stalk perpendicular to the N-terminal catalytic α/β-hydrolase domain. The LGFP motifs are composed of a 4-stranded β-fold and occupy alternating orientations along the axis of the stalk. Multiple acetate binding pockets were identified in the stalk, which could correspond to putative ligand-binding sites. By using various MytA mutants and complementary in vitro and in vivo approaches, we provide evidence that the C-terminal LGFP domain interacts with the cell wall peptidoglycan-arabinogalactan polymer. We also show that the C-terminal LGFP domain is not required for the activity of MytA but rather contributes to the overall integrity of the cell envelope.
Collapse
Affiliation(s)
- Christiane Dietrich
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Muriel Masi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Eric Girard
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Nathalie Dautin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nicolas Bayan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
34
|
Whelan F, Lafita A, Griffiths SC, Cooper REM, Whittingham JL, Turkenburg JP, Manfield IW, St. John AN, Paci E, Bateman A, Potts JR. Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection. Proc Natl Acad Sci U S A 2019; 116:26540-26548. [PMID: 31818940 PMCID: PMC6936399 DOI: 10.1073/pnas.1911776116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the β-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin β-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain.
Collapse
Affiliation(s)
- Fiona Whelan
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | - Samuel C. Griffiths
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| | | | - Jean L. Whittingham
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander N. St. John
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | - Jennifer R. Potts
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
35
|
Majumder S, Das S, Kingston J, Shivakiran MS, Batra HV, Somani VK, Bhatnagar R. Functional characterization and evaluation of protective efficacy of EA752-862 monoclonal antibody against B. anthracis vegetative cell and spores. Med Microbiol Immunol 2019; 209:125-137. [PMID: 31811379 DOI: 10.1007/s00430-019-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/22/2019] [Indexed: 08/30/2023]
Abstract
The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752-862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752-862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752-862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752-862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.
Collapse
Affiliation(s)
- Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Shreya Das
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Joseph Kingston
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India.
| | - M S Shivakiran
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - H V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Vikas Kumar Somani
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
36
|
Hager FF, Sützl L, Stefanović C, Blaukopf M, Schäffer C. Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci 2019; 20:E4929. [PMID: 31590345 PMCID: PMC6801904 DOI: 10.3390/ijms20194929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.
Collapse
Affiliation(s)
- Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Leander Sützl
- Department of Food Science and Technology, Food Biotechnology Laboratory, Muthgasse 11, Universität für Bodenkultur Wien, A-1190 Vienna, Austria.
| | - Cordula Stefanović
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Markus Blaukopf
- Department of Chemistry, Division of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
37
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Fouet A, Callegan MC. S-layer Impacts the Virulence of Bacillus in Endophthalmitis. Invest Ophthalmol Vis Sci 2019; 60:3727-3739. [PMID: 31479113 PMCID: PMC6719748 DOI: 10.1167/iovs.19-27453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Bacillus causes a sight-threating infection of the posterior segment of the eye. The robust intraocular inflammatory response in this disease is likely activated via host innate receptor interactions with components of the Bacillus cell envelope. S-layer proteins (SLPs) of some Gram-positive pathogens contribute to the pathogenesis of certain infections. The potential contributions of SLPs in eye infection pathogenesis have not been considered. Here, we explored the role of a Bacillus SLP (SlpA) in endophthalmitis pathogenesis. Methods The phenotypes and infectivity of wild-type (WT) and S-layer deficient (ΔslpA) Bacillus thuringiensis were compared. Experimental endophthalmitis was induced in C57BL/6J mice by intravitreally injecting 100-CFU WT or ΔslpA B. thuringiensis. Infected eyes were analyzed by bacterial counts, retinal function analysis, histology, and inflammatory cell influx. SLP-induced inflammation was also analyzed in vitro. Muller cells (MIO-M1) were treated with purified SLP. Nuclear factor-κB (NF-κB) DNA binding was measured by ELISA and expression of proinflammatory mediators from Muller cells was measured by RT-qPCR. Results Tested phenotypes of WT and ΔslpA B. thuringiensis were similar, with the exception of absence of the S-layer in the ΔslpA mutant. Intraocular growth of WT and ΔslpA B. thuringiensis was also similar. However, eyes infected with the ΔslpA mutant had significantly reduced inflammatory cell influx, less inflammatory damage to the eyes, and significant retention of retinal function compared with WT-infected eyes. SLP was also a potent stimulator of the NF-κB pathway and induced the expression of proinflammatory mediators (IL6, TNFα, CCL2, and CXCL-1) in human retinal Muller cells. Conclusions Taken together, our results suggest that SlpA contributes to the pathogenesis of Bacillus endophthalmitis, potentially by triggering innate inflammatory pathways in the retina.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Agnès Fouet
- Institut Cochin INSERM U1016, Paris, France
- CNRS 8104, Paris, France
- University Paris Descartes, Paris, France
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
38
|
The broad-specificity chitinases: their origin, characterization, and potential application. Appl Microbiol Biotechnol 2019; 103:3289-3295. [DOI: 10.1007/s00253-019-09718-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
|
39
|
Chateau A, Schneewind O, Missiakas D. Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria. Methods Mol Biol 2019; 1954:47-57. [PMID: 30864123 DOI: 10.1007/978-1-4939-9154-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The envelope of gram-positive bacteria encompasses the cell wall, a rigid exoskeleton comprised of peptidoglycan that provides protection against lysis and governs bacterial cell shapes. Peptidoglycan also serves as the site of attachment for proteins and nonproteinaceous polymers that interact with the bacterial environment. Nonproteinaceous molecules include teichoic acids, capsular polysaccharides, and secondary cell wall polysaccharides (SCWP). Treatment of gram-positive bacterial cells with proteases, nucleases, and detergents results in the isolation of "murein sacculi" (i.e., peptidoglycan with bound carbohydrate polymers). Incubation of sacculi with acid or base releases carbohydrate polymers that can be purified for further biochemical characterization. This protocol describes the hydrofluoric acid extraction and purification of the secondary cell wall polymer of Bacillus anthracis that is also found in the envelope of the other members of the Bacillus cereus sensu lato group of bacteria.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, USA. .,Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Chapman RN, Liu L, Boons GJ. 4,6- O-Pyruvyl Ketal Modified N-Acetylmannosamine of the Secondary Cell Wall Polysaccharide of Bacillus anthracis Is the Anchoring Residue for Its Surface Layer Proteins. J Am Chem Soc 2018; 140:17079-17085. [PMID: 30452253 DOI: 10.1021/jacs.8b08857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary cell wall polysaccharide (SCWP) of Bacillus anthracis plays a key role in the organization of the cell envelope of vegetative cells and is intimately involved in host-guest interactions. Genetic studies have indicated that it anchors S-layer and S-layer-associated proteins, which are involved in multiple vital biological functions, to the cell surface of B. anthracis. Phenotypic observations indicate that specific functional groups of the terminal unit of SCWP, including 4,6- O-pyruvyl ketal and acetyl esters, are important for binding of these proteins. These observations are based on genetic manipulations and have not been corroborated by direct binding studies. To address this issue, a synthetic strategy was developed that could provide a range of pyruvylated oligosaccharides derived from B. anthracis SCWP bearing base-labile acetyl esters and free amino groups. The resulting oligosaccharides were used in binding studies with a panel of S-layer and S-layer-associated proteins, which identified structural features of SCWP important for binding. A single pyruvylated ManNAc monosaccharide exhibited strong binding to all proteins, making it a promising structure for S-layer protein manipulation. The acetyl esters and free amine of SCWP did not significantly impact binding, and this observation is contrary to a proposed model in which SCWP acetylation is a prerequisite for association of some but not all S-layer and S-layer-associated proteins.
Collapse
Affiliation(s)
- Robert N Chapman
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Lin Liu
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
41
|
Dvortsov IA, Lunina NA, Demidyuk IV, Kostrov SV. Disturbed processing of the carbohydrate‐binding module of family 54 significantly impairs its binding to polysaccharides. FEBS Lett 2018; 592:3414-3420. [DOI: 10.1002/1873-3468.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Igor A. Dvortsov
- Institute of Molecular Genetics Russian Academy of Sciences Moscow Russia
| | - Nataliya A. Lunina
- Institute of Molecular Genetics Russian Academy of Sciences Moscow Russia
| | - Ilya V. Demidyuk
- Institute of Molecular Genetics Russian Academy of Sciences Moscow Russia
| | - Sergey V. Kostrov
- Institute of Molecular Genetics Russian Academy of Sciences Moscow Russia
| |
Collapse
|
42
|
Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV. The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:229. [PMID: 30159029 PMCID: PMC6106730 DOI: 10.1186/s13068-018-1228-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still uncharacterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. RESULTS To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identified in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, β-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of β-d-xylose, β-d-glucose, β-d-galactose, α-l-arabinofuranose, α-l-rhamnose, β-d-glucuronic acid, and N-acetyl-β-d-glucosamine. The activities of three enzymes with non-classified glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and β-d-xylosidase Bxl31D showed activities not described so far for their GH families. 11 of the 13 polysaccharide-degrading enzymes were most active at pH 5.0 to pH 6.5 and at temperatures of 57-76 °C. Investigation of the substrate and product specificity of arabinoxylan-degrading enzymes revealed that only the GH10 xylanases were able to degrade arabinoxylooligosaccharides. While Xyn10C was inhibited by α-(1,2)-arabinosylations, Xyn10D showed a degradation pattern different to Xyn10B and Xyn10C. Xyn11A released longer degradation products than Xyn10B. Both tested arabinose-releasing enzymes, Arf51B and Axh43A, were able to hydrolyse single- as well as double-arabinosylated xylooligosaccharides. CONCLUSIONS The obtained results lead to a better understanding of the hemicellulose-degrading capacity of C. stercorarium and its involved enzyme systems. Despite similar average activities measured by depolymerisation tests, a closer look revealed distinctive differences in the activities and specificities within an enzyme class. This may lead to synergistic effects and influence the enzyme choice for biotechnological applications. The newly characterised glycoside hydrolases can now serve as components of an enzyme platform for industrial applications in order to reconstitute synthetic enzyme systems for complete and optimised degradation of defined polysaccharides and hemicellulose.
Collapse
Affiliation(s)
- Jannis Broeker
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Matthias Mechelke
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Melanie Baudrexl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Denise Mennerich
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Hornburg
- Present Address: School of Medicine, Stanford University, Stanford, CA 94305 USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| |
Collapse
|
43
|
Blackler RJ, López-Guzmán A, Hager FF, Janesch B, Martinz G, Gagnon SML, Haji-Ghassemi O, Kosma P, Messner P, Schäffer C, Evans SV. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat Commun 2018; 9:3120. [PMID: 30087354 PMCID: PMC6081394 DOI: 10.1038/s41467-018-05471-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Self-assembling protein surface (S-) layers are common cell envelope structures of prokaryotes and have critical roles from structural maintenance to virulence. S-layers of Gram-positive bacteria are often attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Here we present an in-depth characterization of this interaction, with co-crystal structures of the three consecutive SLH domains from the Paenibacillus alvei S-layer protein SpaA with defined SCWP ligands. The most highly conserved SLH domain residue SLH-Gly29 is shown to enable a peptide backbone flip essential for SCWP binding in both biophysical and cellular experiments. Furthermore, we find that a significant domain movement mediates binding by two different sites in the SLH domain trimer, which may allow anchoring readjustment to relieve S-layer strain caused by cell growth and division. Gram-positive bacterial envelopes comprise proteinaceous surface layers (S-layers) important for survival and virulence that are often anchored to the cell wall through secondary cell wall polymers. Here the authors use a structural and biophysical approach to define the molecular mechanism of this important interaction.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Zymeworks Inc., Vancouver, BC, V6H 3V9, Canada
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Gudrun Martinz
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Susannah M L Gagnon
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Paul Kosma
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria.
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
44
|
A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Hager FF, López-Guzmán A, Krauter S, Blaukopf M, Polter M, Brockhausen I, Kosma P, Schäffer C. Functional Characterization of Enzymatic Steps Involved in Pyruvylation of Bacterial Secondary Cell Wall Polymer Fragments. Front Microbiol 2018; 9:1356. [PMID: 29997588 PMCID: PMC6030368 DOI: 10.3389/fmicb.2018.01356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Various mechanisms of protein cell surface display have evolved during bacterial evolution. Several Gram-positive bacteria employ S-layer homology (SLH) domain-mediated sorting of cell-surface proteins and concomitantly engage a pyruvylated secondary cell-wall polymer as a cell-wall ligand. Specifically, pyruvate ketal linked to β-D-ManNAc is regarded as an indispensable epitope in this cell-surface display mechanism. That secondary cell wall polymer (SCWP) pyruvylation and SLH domain-containing proteins are functionally coupled is supported by the presence of an ortholog of the predicted pyruvyltransferase CsaB in bacterial genomes, such as those of Bacillus anthracis and Paenibacillus alvei. The P. alvei SCWP, consisting of pyruvylated disaccharide repeats [→4)-β-D-GlcNAc-(1→3)-4,6-Pyr-β-D-ManNAc-(1→] serves as a model to investigate the widely unexplored pyruvylation reaction. Here, we reconstituted the underlying enzymatic pathway in vitro in combination with synthesized compounds, used mass spectrometry, and nuclear magnetic resonance spectroscopy for product characterization, and found that CsaB-catalyzed pyruvylation of β-D-ManNAc occurs at the stage of the lipid-linked repeat. We produced the P. alvei TagA (PAV_RS07420) and CsaB (PAV_RS07425) enzymes as recombinant, tagged proteins, and using a synthetic 11-phenoxyundecyl-diphosphoryl-α-GlcNAc acceptor, we uncovered that TagA is an inverting UDP-α-D-ManNAc:GlcNAc-lipid carrier transferase, and that CsaB is a pyruvyltransferase, with synthetic UDP-α-D-ManNAc and phosphoenolpyruvate serving as donor substrates. Next, to substitute for the UDP-α-D-ManNAc substrate, the recombinant UDP-GlcNAc-2-epimerase MnaA (PAV_RS07610) of P. alvei was included in this in vitro reconstitution system. When all three enzymes, their substrates and the lipid-linked GlcNAc primer were combined in a one-pot reaction, a lipid-linked SCWP repeat precursor analog was obtained. This work highlights the biochemical basis of SCWP biosynthesis and bacterial pyruvyl transfer.
Collapse
Affiliation(s)
- Fiona F Hager
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Arturo López-Guzmán
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Simon Krauter
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus Blaukopf
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Mathias Polter
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Paul Kosma
- Division of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
46
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
47
|
Fujinami S, Ito M. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis. Front Microbiol 2018; 9:810. [PMID: 29765360 PMCID: PMC5938343 DOI: 10.3389/fmicb.2018.00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
It is well known that the Na+ cycle and the cell wall are essential for alkaline adaptation of Na+-dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na+ concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na+ concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.
Collapse
Affiliation(s)
- Shun Fujinami
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan.,Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Masahiro Ito
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan.,Graduate School of Life Sciences, Toyo University, Tokyo, Japan
| |
Collapse
|
48
|
Sychantha D, Chapman RN, Bamford NC, Boons GJ, Howell PL, Clarke AJ. Molecular Basis for the Attachment of S-Layer Proteins to the Cell Wall of Bacillus anthracis. Biochemistry 2018. [PMID: 29522326 DOI: 10.1021/acs.biochem.8b00060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial surface (S) layers are paracrystalline arrays of protein assembled on the bacterial cell wall that serve as protective barriers and scaffolds for housekeeping enzymes and virulence factors. The attachment of S-layer proteins to the cell walls of the Bacillus cereus sensu lato, which includes the pathogen Bacillus anthracis, occurs through noncovalent interactions between their S-layer homology domains and secondary cell wall polysaccharides. To promote these interactions, it is presumed that the terminal N-acetylmannosamine (ManNAc) residues of the secondary cell wall polysaccharides must be ketal-pyruvylated. For a few specific S-layer proteins, the O-acetylation of the penultimate N-acetylglucosamine (GlcNAc) is also required. Herein, we present the X-ray crystal structure of the SLH domain of the major surface array protein Sap from B. anthracis in complex with 4,6- O-ketal-pyruvyl-β-ManNAc-(1,4)-β-GlcNAc-(1,6)-α-GlcN. This structure reveals for the first time that the conserved terminal SCWP unit is the direct ligand for the SLH domain. Furthermore, we identify key binding interactions that account for the requirement of 4,6- O-ketal-pyruvyl-ManNAc while revealing the insignificance of the O-acetylation on the GlcNAc residue for recognition by Sap.
Collapse
Affiliation(s)
- David Sychantha
- Department of Molecular and Cellular Biology , University of Guelph , Guelph , ON N1G 2X1 , Canada
| | - Robert N Chapman
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| | - Natalie C Bamford
- Program in Molecular Medicine , The Hospital for Sick Children , Toronto , ON M5G 0A4 , Canada.,Department of Biochemistry , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| | - P Lynne Howell
- Program in Molecular Medicine , The Hospital for Sick Children , Toronto , ON M5G 0A4 , Canada.,Department of Biochemistry , University of Toronto , Toronto , ON M5S 1A8 , Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology , University of Guelph , Guelph , ON N1G 2X1 , Canada
| |
Collapse
|
49
|
Chateau A, Lunderberg JM, Oh SY, Abshire T, Friedlander A, Quinn CP, Missiakas DM, Schneewind O. Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis. J Bacteriol 2018; 200:e00562-17. [PMID: 29229702 PMCID: PMC5809694 DOI: 10.1128/jb.00562-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is essential for bacterial growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats with the structure, [→4)-β-ManNAc-(1→4)-β-GlcNAc(O3-α-Gal)-(1→6)-α-GlcNAc(O3-α-Gal, O4-β-Gal)-(1→]6-12 The genes whose products promote the galactosylation of B. anthracis SCWP are not yet known. We show here that the expression of galE1, encoding a UDP-glucose 4-epimerase necessary for the synthesis of UDP-galactose, is required for B. anthracis SCWP galactosylation. The galE1 mutant assembles surface (S) layer and S layer-associated proteins that associate with ketal-pyruvylated SCWP via their S layer homology domains similarly to wild-type B. anthracis, but the mutant displays a defect in γ-phage murein hydrolase binding to SCWP. Furthermore, deletion of galE1 diminishes the capsulation of B. anthracis with poly-d-γ-glutamic acid (PDGA) and causes a reduction in bacterial virulence. These data suggest that SCWP galactosylation is required for the physiologic assembly of the B. anthracis cell wall envelope and for the pathogenesis of anthrax disease.IMPORTANCE Unlike virulent Bacillus anthracis isolates, B. anthracis strain CDC684 synthesizes secondary cell wall polysaccharide (SCWP) trisaccharide repeats without galactosyl modification, exhibits diminished growth in vitro in broth cultures, and is severely attenuated in an animal model of anthrax. To examine whether SCWP galactosylation is a requirement for anthrax disease, we generated variants of B. anthracis strains Sterne 34F2 and Ames lacking UDP-glucose 4-epimerase by mutating the genes galE1 and galE2 We identified galE1 as necessary for SCWP galactosylation. Deletion of galE1 decreased the poly-d-γ-glutamic acid (PDGA) capsulation of the vegetative form of B. anthracis and increased the bacterial inoculum required to produce lethal disease in mice, indicating that SCWP galactosylation is indeed a determinant of anthrax disease.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Justin Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Teresa Abshire
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Arthur Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Bönisch E, Oh YJ, Anzengruber J, Hager FF, López-Guzmán A, Zayni S, Hinterdorfer P, Kosma P, Messner P, Duda KA, Schäffer C. Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology 2018; 28:148-158. [PMID: 29309573 PMCID: PMC5993097 DOI: 10.1093/glycob/cwx102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-positive lactic acid bacterium Lactobacillus buchneri CD034 is covered by a two-dimensional crystalline, glycoproteinaceous cell surface (S-) layer lattice. While lactobacilli are extensively exploited as cell surface display systems for applied purposes, questions about how they stick their cell wall together are remaining open. This also includes the identification of the S-layer cell wall ligand. In this study, lipoteichoic acid was isolated from the L. buchneri CD034 cell wall as a significant fraction of the bacterium's cell wall glycopolymers, structurally characterized and analyzed for its potential to mediate binding of the S-layer to the cell wall. Combined component analyses and 1D- and 2D-nuclear magnetic resonance spectroscopy (NMR) revealed the lipoteichoic acid to be composed of on average 31 glycerol-phosphate repeating units partially substituted with α-d-glucose, and with an α-d-Galp(1→2)-α-d-Glcp(1→3)-1,2-diacyl-sn-Gro glycolipid anchor. The specificity of binding between the L. buchneri CD034 S-layer protein and purified lipoteichoic acid as well as their interaction force of about 45 pN were obtained by single-molecule force spectroscopy; this value is in the range of typical ligand-receptor interactions. This study sheds light on a functional implication of Lactobacillus cell wall architecture by showing direct binding between lipoteichoic acid and the S-layer of L. buchneri CD034.
Collapse
Affiliation(s)
- Eva Bönisch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Yoo Jin Oh
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
- Keysight Technologies Austria GmbH, A-4020 Linz, Austria
| | - Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Sonja Zayni
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Katarzyna A Duda
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Junior Group of Allergobiochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, D−23845 Borstel, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| |
Collapse
|