1
|
Srivastava RK, Traylor AM, Muzaffar S, Esman SK, Soliman RH, Khan J, Warren P, Bolisetty S, George JF, Agarwal A, Athar M. Chronic kidney disease amplifies severe kidney injury and mortality in a mouse model of skin arsenical exposure. Am J Physiol Renal Physiol 2025; 328:F328-F343. [PMID: 39417795 DOI: 10.1152/ajprenal.00139.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
In previously published work, we elucidated the role of cutaneous arsenical exposure in promoting acute kidney injury (AKI) in adult healthy mice. Here, we determine whether preexisting chronic kidney disease (CKD) increases the severity of AKI. Following exposure to aristolochic acid (AA) (a nephrotoxic phytochemical in humans), mice manifested classical markers of CKD, including robust interstitial fibrosis and loss in kidney function. Skin challenge with phenylarsine oxide (PAO), a surrogate for warfare arsenicals, led to significantly worse kidney injury, as evidenced by tubulointerstitial fibrosis, glomerulosclerosis, a persistent loss of estimated glomerular filtration rate, and mortality in AA-induced CKD mice compared with mice without CKD. These PAO-challenged CKD mice exhibited enhanced production of serum/urine neutrophil gelatinase-associated lipocalin and a significant rise in serum creatinine along with histological markers of kidney injury, including brush border loss, tubular atrophy, cast formation, glomerular injury, and interstitial inflammatory cell infiltration. Serum cytokines IL-4, IL-6, IFN-γ, IL-12p70, TNF-α, and IL-18 significantly elevated in CKD mice following PAO exposure when compared with animals exposed to PAO alone. Furthermore, we found increased TUNEL-positive tubular cells in the kidneys of CKD mice following PAO exposure, suggesting enhanced PAO-mediated cell death in CKD mice. Mechanistically, we determined that DNA damage-regulated p53 signaling was a major mediator of cellular responses to PAO in CKD mice. In summary, our data demonstrate that CKD significantly increased the severity of AKI following exposure to arsenicals and suggest that human populations with preexisting CKD could be highly susceptible to arsenical-mediated kidney injury and associated morbidity and mortality.NEW & NOTEWORTHY Preexisting chronic kidney disease (CKD) predisposes experimental animals to augmented morbidity and mortality following cutaneous vesicant exposure. The mechanism underlying increased susceptibility to renal injury and associated morbidity involves the DNA damage-regulated p53 signaling pathway.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie Mark Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Suhail Muzaffar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jasim Khan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Phoebe Warren
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
5
|
Zhao Q, Liu K, Zhang L, Li Z, Wang L, Cao J, Xu Y, Zheng A, Chen Q, Zhao T. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death Dis 2022; 13:976. [PMID: 36402748 PMCID: PMC9675825 DOI: 10.1038/s41419-022-05413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) have a significantly lower mutation load compared to somatic cells, but the mechanisms that guard genomic integrity in ESCs remain largely unknown. Here we show that BNIP3-dependent mitophagy protects genomic integrity in mouse ESCs. Deletion of Bnip3 increases cellular reactive oxygen species (ROS) and decreases ATP generation. Increased ROS in Bnip3-/- ESCs compromised self-renewal and were partially rescued by either NAC treatment or p53 depletion. The decreased cellular ATP in Bnip3-/- ESCs induced AMPK activation and deteriorated homologous recombination, leading to elevated mutation load during long-term propagation. Whereas activation of AMPK in X-ray-treated Bnip3+/+ ESCs dramatically ascended mutation rates, inactivation of AMPK in Bnip3-/- ESCs under X-ray stress remarkably decreased the mutation load. In addition, enhancement of BNIP3-dependent mitophagy during reprogramming markedly decreased mutation accumulation in established iPSCs. In conclusion, we demonstrated a novel pathway in which BNIP3-dependent mitophagy safeguards ESC genomic stability, and that could potentially be targeted to improve pluripotent stem cell genomic integrity for regenerative medicine.
Collapse
Affiliation(s)
- Qian Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Kun Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Lin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zheng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Liang Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiani Cao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Youqing Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Aihua Zheng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Quan Chen
- grid.216938.70000 0000 9878 7032College of Life Sciences, Nankai University, Tianjin, 300073 China
| | - Tongbiao Zhao
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences Beijing, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Qiu X, Shen C, Zhao W, Zhang X, Zhao D, Wu X, Yang L. A pan-cancer analysis of the oncogenic role of dual-specificity tyrosine (Y)-phosphorylation- regulated kinase 2 (DYRK2) in human tumors. Sci Rep 2022; 12:15419. [PMID: 36104345 PMCID: PMC9474874 DOI: 10.1038/s41598-022-19087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Although there have been studies correlating DYRK2 with a number of human cancers, there has been no pan-cancer analysis. Therefore, through the TCGA database, we conducted a related study on the expression of DYRK2 in cancers.The expression of DYRK2 is obviously increased in some cancers, while the opposite is true in others, and there is a clear association between its expression and the prognosis of cancer patients.The mutation of DYRK2 is also significantly correlated with patients’ prognosis in certain human tumors. In addition, phosphorylation and methylation levels of DYRK2 are different between tumor tissues and adjacent normal tissues in various tumors. In the tumour microenvironment, the expression of DYRK2 correlates with cancer-associated fibroblast infiltration, such as BLCA or HNSC. In order to fully understand the role of DYRK2 in different tumors, we conducted a pan-cancer analysis.
Collapse
|
7
|
Chen W, Huang C, Shi Y, Li N, Wang E, Hu R, Li G, Yang F, Zhuang Y, Liu P, Hu G, Gao X, Guo X. Investigation of the Crosstalk between GRP78/PERK/ATF-4 Signaling Pathway and Renal Apoptosis Induced by Nephropathogenic Infectious Bronchitis Virus Infection. J Virol 2022; 96:e0142921. [PMID: 34669445 PMCID: PMC8791289 DOI: 10.1128/jvi.01429-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022] Open
Abstract
This study aims to explore the crosstalk between GRP78/PERK/ATF-4 signaling pathway and renal apoptosis induced by nephropathogenic infectious bronchitis virus (NIBV). Hy-Line brown chickens were divided into two groups (Con, n = 100 and Dis, n = 200). At 28 days of age, each chicken in the Dis group was intranasally injected with SX9 strain (10-5/0.2 ml). Venous blood and kidney tissues were collected at 1, 5, 11, 18 and 28 days postinfection. Our results showed that NIBV infection upregulated the levels of creatinine, uric acid, and calcium (Ca2+) levels. Histopathological examination revealed severe hemorrhage and inflammatory cell infiltration near the renal tubules. Meanwhile, NIBV virus particles and apoptotic bodies were observed by ultramicro electron microscope. In addition, RT-qPCR and Western blot showed that NIBV upregulated the expression of GRP78, PERK, eIF2α, ATF-4, CHOP, Caspase-3, Caspase-9, P53, Bax, and on the contrary, downregulated the expression of Bcl-2. Furthermore, immunofluorescence localization analysis showed that the positive expression of Bcl-2 protein was significantly decreased. Correlation analysis indicated that endoplasmic reticulum (ER) stress gene expression, apoptosis gene expression, and renal injury were potentially related. Taken together, NIBV infection can induce renal ER stress and apoptosis by activating of GRP78/PERK/ATF-4 signaling pathway, leading to kidney damage. IMPORTANCE Nephropathogenic infectious bronchitis virus (NIBV) induced renal endoplasmic reticulum stress in chickens. NIBV infection induced kidney apoptosis in chickens. GRP78/PERK/ATF-4 signaling pathway is potentially related to renal apoptosis induced by NIBV.
Collapse
Affiliation(s)
- Wei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ning Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Enqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yun WB, Kim JE, Lee ML, Choi JY, Park JJ, Song BR, Kang BC, Nam KT, Lee HW, Hwang DY. Sensitivity to tumor development by TALEN-mediated Trp53 mutant genes in the susceptible FVB/N mice and the resistance C57BL/6 mice. Lab Anim Res 2021; 37:32. [PMID: 34839833 PMCID: PMC8628475 DOI: 10.1186/s42826-021-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Background This study was undertaken to compare the sensitivities of mice strains during tumor induction by transcription activator-like effector nucleases (TALEN)-mediated Trp53 mutant gene. Alterations of their tumorigenic phenotypes including survival rate, tumor formation and tumor spectrum, were assessed in FVB/N-Trp53em2Hwl/Korl and C57BL/6-Trp53em1Hwl/Korl knockout (KO) mice over 16 weeks.
Results Most of the physiological phenotypes factors were observed to be higher in FVB/N-Trp53em2Hwl/Korl KO mice than C57BL/6-Trp53em1Hwl/Korl KO mice, although there were significant differences in the body weight, immune organ weight, number of red blood cells, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet count (PLT), total bilirubin (Bil-T) and glucose (Glu) levels in the KO mice relative to the wild type (WT) mice. Furthermore, numerous solid tumors were also observed in various regions of the surface skin of FVB/N-Trp53em2Hwl/Korl KO mice, but were not detected in C57BL/6-Trp53em1Hwl/Korl KO mice. The most frequently observed tumor in both the Trp53 KO mice was malignant lymphoma, while soft tissue teratomas and hemangiosarcomas were only detected in the FVB/N-Trp53em2Hwl/Korl KO mice. Conclusions Our results indicate that the spectrum and incidence of tumors induced by the TALEN-mediated Trp53 mutant gene is greater in FVB/N-Trp53em2Hwl/Korl KO mice than C57BL/6-Trp53em1Hwl/Korl KO mice over 16 weeks.
Supplementary Information The online version contains supplementary material available at 10.1186/s42826-021-00107-y.
Collapse
Affiliation(s)
- Woo Bin Yun
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea.,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea
| | - Mi Lim Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea
| | - Jun Young Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea
| | - Jin Ju Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea
| | - Bo Ram Song
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea
| | - Byeong Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 03722, South Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, 50 Cheonghak-ri, Samnangjin-eup, Miryang-si, Gyeongsangnam-do, 50463, Korea.
| |
Collapse
|
9
|
Titania Nanosheet Generates Peroxynitrite-Dependent S-Nitrosylation and Enhances p53 Function in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13081233. [PMID: 34452194 PMCID: PMC8401232 DOI: 10.3390/pharmaceutics13081233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metal nanomaterials can enhance the efficacy of current cancer therapies. Here, we show that Ti0.8O2 nanosheets cause cytotoxicity in several lung cancer cells but not in normal cells. The nanosheet-treated cells showed certain apoptosis characteristics. Protein analysis further indicated the activation of the p53-dependent death mechanism. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses revealed the cellular uptake of the nanosheets and the induction of cell morphological change. The nanosheets also exhibited a substantial apoptosis effect on drug-resistant metastatic primary lung cancer cells, and it was found that the potency of the nanosheets was dramatically higher than standard drugs. Ti0.8O2 nanosheets induce apoptosis through a molecular mechanism involving peroxynitrite (ONOO−) generation. As peroxynitrite is known to be a potent inducer of S-nitrosylation, we further found that the nanosheets mediated the S-nitrosylation of p53 at C182, resulting in higher protein-protein complex stability, and this was likely to induce the surrounding residues, located in the interface region, to bind more strongly to each other. Molecular dynamics analysis revealed that S-nitrosylation stabilized the p53 dimer with a ΔGbindresidue of <−1.5 kcal/mol. These results provide novel insight on the apoptosis induction effect of the nanosheets via a molecular mechanism involving S-nitrosylation of the p53 protein, emphasizing the mechanism of action of nanomaterials for cancer therapy.
Collapse
|
10
|
Jiang Z, Weng P, Xu X, Li M, Li Y, Lv Y, Chang K, Wang S, Lin G, Hu C. IRF9 promotes apoptosis and innate immunity by inhibiting SIRT1-p53 axis in fish. FISH & SHELLFISH IMMUNOLOGY 2020; 103:220-228. [PMID: 32439513 DOI: 10.1016/j.fsi.2020.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
As a NAD+-dependent deacetylase, SIRT1 is widely involved in apoptosis and cellular inflammation via multiple pathways such as p53, NF-кB and STAT. More and more studies have shown that p53 is the first non-histone deacetylation target of SIRT1. SIRT1-p53 axis thus plays an important role in mammalian cells. IRF9 is an important member of interferon regulator factor family and performs an important role in innate immunity against foreign virus invasion. More importantly, human IRF9 can suppress the SIRT1-p53 axis. However, the functions and relationship between IRF9 and SIRT1-p53 axis are rarely studied in fish. To this end, we made a preliminary research on the functions of grass carp (Ctenopharyngodon idella) IRF9, SIRT1 and p53 in apoptosis and innate immunity. Firstly, we cloned and identified the ORF of SIRT1 (named CiSIRT1, MN125614) from C. idella and demonstrated that CiIRF9 promoted apoptosis, while CiSIRT1 inhibited apoptosis by flow cytometry and TUNEL experiments. Next, we found the interaction between CiSIRT1 and Cip53 in vivo by co-immunoprecipitation experiments. Moreover, the colocalization analysis also showed CiSIRT1 and Cip53 were mainly distributed in nucleus. Thirdly, we got a conclusion that CiIRF9 can repress the expression of CiSIRT1, implying that CiIRF9 regulates CiSIRT1-p53 axis. Finally, CiSIRT1 mRNA level was significantly up-regulated and the expression reached the highest level at 24 h post poly (I:C) stimulation in CIK cells. So, CiSIRT1 may exert an important function in innate immunity. Furthermore, we found CiSIRT1 down-regulated the expression of CiIFN1. In summary, CiIRF9 promotes apoptosis and innate immunity by inhibiting SIRT1-p53 axis. These findings will provide a new theoretical basis for the research on teleost innate immunity.
Collapse
Affiliation(s)
- Zeyin Jiang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Panwei Weng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Meifeng Li
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
11
|
Gao C, Liu H, Liu Z, Zhang Y, Yan F. Oscillatory behavior of p53-Mdm2 system driven by transcriptional and translational time delays. INT J BIOMATH 2020. [DOI: 10.1142/s1793524520500345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biological experiments clarify that p53-Mdm2 module is the core of tumor network and p53 oscillation plays an important role in determining the tumor cell fate. In this paper, we investigate the effect of time delay on the oscillatory behavior induced by Hopf bifurcation in p53-Mdm2 system. First, the stability of the unique positive equilibrium point and the existence of Hopf bifurcation are investigated by using the time delay as the bifurcation parameter and by applying the bifurcation theory. Second, the explicit criteria determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are developed based on the normal form theory and the center manifold theorem. In addition, the combination of numerical simulation results and theoretical calculation results indicates that time delays in p53-Mdm2 system are critical for p53 oscillations. The results may help us to better understand the biological functions of p53 pathway and provide clues for treatment of cancer.
Collapse
Affiliation(s)
- Chunyan Gao
- Department of Mathematics, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, P. R. China
| | - Haihong Liu
- Department of Mathematics, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, P. R. China
| | - Zengrong Liu
- Department of Mathematics, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, P. R. China
| | - Yuan Zhang
- School of Mathematics and Information Technology, Yuxi Normal University, No. 134, Fenghuang Road, Yuxi City, Yunnan Province, P. R. China
| | - Fang Yan
- Department of Mathematics, Yunnan Normal University, No. 768, Juxian Street, Chenggong District, Kunming, P. R. China
| |
Collapse
|
12
|
Li X, Lei Y, Yu Y, Zhang Y, Zhang W, Shen H, Tao C, Wu F, Huang S, Shao H. Discovery and characterization of a novel splice variant of the p53 tumor suppressor gene in a human T cell leukemia cellline. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1121-1135. [PMID: 32509087 PMCID: PMC7270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Alternative splicing produces multiple mRNA variants of TP53 which have diverse biologic functions. In this study, we identified a novel splice variant of TP53 lacking a 200 nt portion of exon 4 (p53ΔE4p) from a human leukemia T cell line. No protein product of p53ΔE4p was identifiable by western blot; however, forced expression of the variant in HEK-293T cells expressing wild-type p53 could inhibit cell proliferation and promote cell death. Interestingly, this novel variant also significantly enhances the expression of reporter genes. Moreover, transcriptome analysis showed that genes related to DNA binding and regulation of transcription by RNA polymerase II function were significantly upregulated following p53ΔE4p transfection, suggesting a role for this variant in the regulation of gene expression.
Collapse
Affiliation(s)
- Xiaomei Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yingshou Lei
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yang Yu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Yaqian Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Wenfeng Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Han Shen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Changli Tao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Fenglin Wu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| | - Shulin Huang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
- Central Laboratory, Affiliated Dongguan People’s Hospital, Southern Medical UniversityDongguan, Guangdong Province, China
| | - Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory for Biotechnology Drug CandidateGuangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2020; 12:cancers12040908. [PMID: 32276424 PMCID: PMC7226044 DOI: 10.3390/cancers12040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear transport receptors, such as karyopherin-β1 (KPNB1), play important roles in the nuclear-cytoplasmic transport of macromolecules. Recent evidence indicates the involvement of nuclear transport receptors in the progression of cancer, making these receptors promising targets for the treatment of cancer. Here, we investigated the anticancer effects of KPNB1 blockage or in combination with ionizing radiation on human head and neck squamous cell carcinoma (HNSCC). HNSCC cell line SAS and Ca9-22 cells were used in this study. Importazole, an inhibitor of KPNB1, or knockdown of KPNB1 by siRNA transfection were applied for the blockage of KPNB1 functions. The roles of KPNB1 on apoptosis induction and cell surface expression levels of programmed death-ligand 1 (PD-L1) in irradiated HNSCC cells were investigated. The major findings of this study are that (i) blockage of KPNB1 specifically enhanced the radiation-induced apoptosis and radiosensitivity of HNSCC cells; (ii) importazole elevated p53-upregulated modulator of apoptosis (PUMA) expression via blocking the nuclear import of SCC-specific oncogene ΔNp63 in HNSCC cells; and (iii) blockage of KPNB1 attenuated the upregulation of cell surface PD-L1 expression on irradiated HNSCC cells. Taken together, these results suggest that co-treatment with KPNB1 blockage and ionizing radiation is a promising strategy for the treatment of HNSCC.
Collapse
|
14
|
Dai PL, Du XS, Hou Y, Li L, Xia YX, Wang L, Chen HX, Chang L, Li WH. Different Proteins Regulated Apoptosis, Proliferation and Metastasis of Lung Adenocarcinoma After Radiotherapy at Different Time. Cancer Manag Res 2020; 12:2437-2447. [PMID: 32308480 PMCID: PMC7135201 DOI: 10.2147/cmar.s219967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/15/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction The biological changes after irradiation in lung cancer cells are important to reduce recurrence and metastasis of lung cancer. To optimize radiotherapy of lung adenocarcinoma, our study systematically explored the mechanisms of biological behaviors in residual A549 and XWLC-05 cells after irradiation. Methods Colony formation assay, cell proliferation assay, cell migration assay, flow cytometry, BALB/C-nu mice xenograft models and Western blot of pan-AKT, p-Akt380, p-Akt473, PCNA, DNA-PKCS, KU70, KU80, CD133, CD144, MMP2 and P53 were used in our study to assess biological changes after irradiation with 0, 4 and 8 Gy at 0–336 hr after irradiation in vitro and 20 Gy at transplantation group, irradiated transplantation group, residual tumor 0, 7, 14, 21, and 28 days groups in vivo. Results The ability of cell proliferation and radiosensitivity of residual XWLC-05 cells was better than A549 cells after radiation in vivo and in vitro. MMP-2 has statistical differences in vitro and in vivo and increased with the migratory ability of cells in vitro. PCNA and P53 have statistical differences in XWLC-05 and A549 cells and the changes of them are similar to the proliferation of residual cells within first 336 hr after irradiation in vitro. Pan-AKT increased after irradiation, and residual tumor 21-day group (1.5722) has statistic differences between transplantation group (0.9763, p=0.018) and irradiated transplantation group (0.8455, p=0.006) in vivo. Pan-AKT rose to highest when 21-day after residual tumor reach to 0.5 mm2. MMP2 has statistical differences between transplantation group (0.4619) and residual tumor 14-day group (0.8729, p=0.043). P53 has statistical differences between residual tumor 7-day group (0.6184) and residual tumor 28 days group (1.0394, p=0.007). DNA-PKCS has statistical differences between residual tumor 28 days group (1.1769) and transplantation group (0.2483, p=0.010), irradiated transplantation group (0.1983, p=0.002) and residual tumor 21 days group (0.2017, p=0.003), residual tumor 0 days group (0.5992) and irradiated transplantation group (0.1983, p=0.027) and residual tumor 21 days group (0.2017, p=0.002). KU80 and KU70 have no statistical differences at any time point. Conclusion Different proteins regulated apoptosis, proliferation and metastasis of lung adenocarcinoma after radiotherapy at different times. MMP-2 might regulate metastasis ability of XWLC-05 and A549 cells in vitro and in vivo. PCNA and P53 may play important roles in proliferation of vitro XWLC-05 and A549 cells within first 336 hr after irradiation in vitro. After that, P53 may through PI3K/AKT pathway regulate cell proliferation after irradiation in vitro. DNA-PKCS may play a more important role in DNA damage repair than KU70 and KU80 after 336 hr in vitro because it rapidly rose than KU70 and KU80 after irradiation. Different cells have different time rhythm in apoptosis, proliferation and metastasis after radiotherapy. Time rhythm of cells after irradiation should be delivered and more attention should be paid to resist cancer cell proliferation and metastasis.
Collapse
Affiliation(s)
- P L Dai
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China.,Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - X S Du
- Oncology Department, The Fifth People's Hospital of Huaian, Jiangsu 223001, People's Republic of China
| | - Y Hou
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - L Li
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - Y X Xia
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - L Wang
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - H X Chen
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - L Chang
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| | - W H Li
- Radiotherapy Department, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650100, People's Republic of China
| |
Collapse
|
15
|
Zeng Q, Zhang Y, Zhang W, Guo Q. Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting Snail‑induced epithelial‑mesenchymal transition. Mol Med Rep 2020; 21:2544-2552. [PMID: 32323825 PMCID: PMC7185271 DOI: 10.3892/mmr.2020.11051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Scutellaria baicalensis (S. baicalensis) is a plant that is widely used for medicinal purposes. Baicalein, one of the primary bioactive compounds found in S. baicalensis, is thought to possess antitumor activity, although the specific mechanisms remain unclear. Therefore, the present study aimed to evaluate the ability of baicalein to disrupt the proliferation and metastatic potential of colorectal cancer (CRC) cells; a rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometric method was employed for the identification of baicalein in an S. baicalensis aqueous extract and in rat plasma. To investigate the effects of baicalein, Cell Counting Kit-8 (CCK-8), western blotting, wound-healing and Transwell assays were performed. The data indicated that baicalein was absorbed into the blood and was able to effectively disrupt the proliferation, migration and invasion abilities of CRC cells in a dose- and time-dependent manner. Baicalein treatment was also revealed to decrease the expression of epithelial-mesenchymal transition (EMT)-promoting factors including vimentin, Twist1, and Snail, but to upregulate the expression of E-cadherin in CRC cells. The expression levels of cell cycle inhibitory proteins p53 and p21 also increased following baicalein treatment. In addition, Snail-induced vimentin and Twist1 upregulation, as well as E-cadherin downregulation, were reversed following treatment with baicalein. In conclusion, the results of the present study indicate that baicalein may suppress EMT, at least in part, by decreasing Snail activity.
Collapse
Affiliation(s)
- Qiongyao Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Wenjing Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qiang Guo
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
16
|
Thayer KM, Carcamo C. Homologs of the Tumor Suppressor Protein p53: A Bioinformatics Study for Drug Design. MOJ PROTEOMICS & BIOINFORMATICS 2020; 9:5-14. [PMID: 34532721 PMCID: PMC8442938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sequence and structure of proteins related to the tumor suppressor protein p53 were studied from the perspective of gaining insight for the development of therapeutic drugs. Our study addresses two major issues encumber bringing novel drugs to market: side effects and artifacts from animal models. In the first phase of our study, we performed a genome-wide search to identify potentially similar proteins to p53 that may be susceptible to off target effects. In the second phase, we chose a selection of common model organisms that could potentially be available to undergraduate researchers in the university setting to assess which ones utilize p53 most similar to humans on the basis of sequence homology and structural similarity from predicted structures. Our results confirm the proteins in the humans significantly similar to p53 are known paralogs within the p53 family. In considering model organisms, murine p53 bore great similarity to human p53 in terms of both sequence and structure, but others performed similarly well. We discuss the findings against the background of other structural benchmarks and point out potential benefits and drawbacks of various alternatives for use in future drug design pilot studies.
Collapse
Affiliation(s)
- Kelly M Thayer
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Claudia Carcamo
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
17
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Zhang YJ, Li JQ, Li HZ, Song H, Wei CS, Zhang SQ. PDRG1 gene silencing contributes to inhibit the growth and induce apoptosis of gastric cancer cells. Pathol Res Pract 2019; 215:152567. [DOI: 10.1016/j.prp.2019.152567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
|
19
|
Gao C, Ji J, Yan F, Liu H. Oscillation induced by Hopf bifurcation in the p53-Mdm2 feedback module. IET Syst Biol 2019; 13:251-259. [PMID: 31538959 PMCID: PMC8687385 DOI: 10.1049/iet-syb.2018.5092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
This study develops an integrated model of the p53-Mdm2 interaction composed of five basic components and time delay in the DNA damage response based on the existing research work. Some critical factors, including time delay, system parameters, and their interactions in the p53-Mdm2 system are investigated to examine their effects on the oscillatory behaviour induced by Hopf bifurcation. It is shown that the positive feedback formed between p53 and the activity of Mdm2 in the cytoplasm can cause a slight decrease in the amplitude of the p53 oscillation. The length of the time delay plays an important role in determining the amplitude and period of the oscillation and can significantly extend the parameter range for the system to demonstrate oscillatory behaviour. The numerical simulation results are found to be in good agreement with the published experimental observation. It is expected that the results of this research would be helpful to better understand the biological functions of p53 pathway and provide some clues in the treatment of cancer.
Collapse
Affiliation(s)
- Chunyan Gao
- Department of Mathematical, Yunnan Normal University, Kunming, People's Republic of China
| | - Jinchen Ji
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Fang Yan
- Department of Mathematical, Yunnan Normal University, Kunming, People's Republic of China
| | - Haihong Liu
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
20
|
p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int 2019; 19:188. [PMID: 31360122 PMCID: PMC6642601 DOI: 10.1186/s12935-019-0910-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths primarily due to chemoresistance. Somatic mutation of TP53 (36%) and epidermal growth factor receptor (EGFR; > 30%) are major contributors to cisplatin (CDDP) resistance. Substantial evidence suggests the elevated levels of reactive oxygen species (ROS) is a key determinant in cancer. The elevated ROS can affect the cellular responses to chemotherapeutic treatments. Although the role of EGFR in PI3K/Akt signaling cascade in NSCLC is extensively studied, the molecular link between EGFR and p53 and the role of ROS in pathogenesis of NSCLC are limitedly addressed. In this study, we investigated the role of p53 in regulation of ROS production and EGFR signaling, and the chemosensitivity of NSCLC. Methods In multiple NSCLC cell lines with varied p53 and EGFR status, we compared and examined the protein contents involved in EGFR-Akt-P53 signaling loop (EGFR, P-EGFR, Akt, P-Akt, p53, P-p53) by Western blot. Apoptosis was determined based on nuclear morphological assessment using Hoechst 33258 staining. Cellular ROS levels were measured by dichlorofluorescin diacetate (DCFDA) staining followed by flow cytometry analysis. Results We have demonstrated for the first time that activation of p53 sensitizes chemoresistant NSCLC cells to CDDP by down-regulating EGFR signaling pathway and promoting intracellular ROS production. Likewise, blocking EGFR/PI3K/AKT signaling with PI3K inhibitor elicited a similar response. Our findings suggest that CDDP-induced apoptosis in chemosensitive NSCLC cells involves p53 activation, leading to suppressed EGFR signaling and ROS production. In contrast, in chemoresistant NSCLC, activated Akt promotes EGFR signaling by the positive feedback loop and suppresses CDDP-induced ROS production and apoptosis. Conclusion Collectively, our study reveals that the interaction of the p53 and Akt feedback loops determine the fate of NSCLC cells and their CDDP sensitivity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0910-2) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Wang M, Liang L, Lu J, Yu Y, Zhao Y, Shi Z, Li H, Xu X, Yan Y, Niu Y, Liu Z, Shen L, Zhang H. Delanzomib, a novel proteasome inhibitor, sensitizes breast cancer cells to doxorubicin-induced apoptosis. Thorac Cancer 2019; 10:918-929. [PMID: 30883017 PMCID: PMC6449274 DOI: 10.1111/1759-7714.13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 11/29/2022] Open
Abstract
Background Delanzomib, a novel proteasome inhibitor, has demonstrated promising efficacy and antitumor ability in human multiple myeloma cell lines and patient‐derived cells. However, the potential therapeutic effects of delanzomib on breast cancer remain unknown. In this study, we show that delanzomib has antitumor effects and synergizes with doxorubicin (Dox) in human breast cancer cell lines. Methods Cell proliferation assay and flow cytometry were used to evaluate cell viability and apoptosis in eight human breast cancer cell lines after treatment with delanzomib or Dox. Essential molecules of the p53, MAPK, and apoptosis signaling pathways were analyzed by Western blotting. Results Delanzomib induced cell death and demonstrated synergism with Dox in all tested breast cancer cell lines. In addition, delanzomib enhanced the Dox‐induced phosphorylation of p38/JNK and the expression of transcriptional target proteins of p53, such as p21, p27, NOXA, and PUMA. Conclusion The combined regimen of the proteasome inhibitor delanzomib with Dox chemotherapy may become an effective strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Mopei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Li Liang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Zhenfeng Shi
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA.,Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur autonomous region, Urumqi, China
| | - Hui Li
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA.,Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA
| | - Yuxian Yan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, USA.,Tasly Academy Institute of Tianjing, Tianjin, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhentao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Yin L, Lin Y, Wang X, Su Y, Hu H, Li C, Wang L, Jiang Y. The family of apoptosis-stimulating proteins of p53 is dysregulated in colorectal cancer patients. Oncol Lett 2018; 15:6409-6417. [PMID: 29731851 PMCID: PMC5921073 DOI: 10.3892/ol.2018.8151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The apoptosis-stimulating protein of p53 (ASPP) family is a newly identified family protein including ASPP1, ASPP2 and inhibitor of ASPP (iASPP), by which the tumor protein 53 (TP53)-mediated apoptotic process is selectively regulated. Downregulation of ASPP1/ASPP2 and upregulation of iASPP were revealed to be associated with a poor prognosis and metastasis in several types of cancer. However, to the best of our knowledge, the expression of ASPP in colorectal cancer (CRC) has not previously been investigated. The present study analyzed ASPP expression in human CRC tissues with multiple clinical and pathological profiles. A total of 41 patients diagnosed with CRC were enrolled in the present study. The expression of ASPP was detected by immunohistochemistry, immunofluorescence and reverse transcription-quantitative polymerase chain reaction. In addition, the variation in ASPP expression was examined in a number of pathological groups. The associations among ASPP expression, and the expression of TP53, plasma carcinoembryonic antigen (CEA) levels and α-fetoprotein (AFP) levels were also investigated. ASPP1 and ASPP2 expression was significantly reduced, while iASPP expression was elevated in CRC samples compared with expression in adjacent non-cancerous tissues. Downregulation of ASPP1 was detected in the TP53-positive group compared with the TP53-negative group. The increase in iASPP expression was correlated with the grade of malignancy, but not with regional lymph node status or metastases. The expression of ASPP2 was negatively correlated with plasma CEA levels. The results of the present study, not only enrich CRC epidemic and pathological data, but also provide valuable indices for CRC clinical treatment and prognosis.
Collapse
Affiliation(s)
- Libin Yin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuyang Lin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanzhuo Su
- Department of Gastrointestinal Colorectal and Anal Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Han Hu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
23
|
Zhang Y, Wang H, Liu Y, Wang C, Wang J, Long C, Guo W, Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed Pharmacother 2018; 102:1003-1014. [PMID: 29710517 DOI: 10.1016/j.biopha.2018.03.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) can establish a life-long latent infection in the host and is associated with various human malignancies, including nasopharyngeal carcinoma (NPC), the most common cancer originated from nasopharynx. EBV nuclear antigen 1 (EBNA1) is the only viral protein absolutely demanded for segregation, replication, transcription and maintenance of EBV viral genome in host cells. Baicalein, a bioactive flavonoid compound purified from the root of Scutellariae baicaleinsis, displays anti-inflammatory, immunosuppressive, and anti-tumor properties. In this study, the therapeutic effects and functional mechanism of baicalein on EBV-positive human NPC were determined. Cell Counting Kit-8 assays and cell formation colony were performed to investigate that baicalein can suppress proliferation of EBV-infected human NPC cells. Flow cytometric and hoechst 33258 staining results indicated that baicalein induced cell cycle arrest and apoptosis. Western blotting results demonstrated that baicalein down-regulates EBNA1 expression but not reduces the stability and half-life of EBNA1 in EBV-infected NPC cells. Additionally, the mRNA level of EBNA1 was examined by real time-PCR, the activity of EBNA1 Q promoter (Qp) was determined by dual luciferase reporter assay. Considering that transcription factor specificity protein 1 (Sp1) can maintain EBNA1 Qp active. Further analyses also elucidated that baicalein inhibits the expression of Sp1 while knock-down Sp1 by specific shRNAs decreases the expression and transcription levels of EBNA1. Therefore, the results suggested that baicalein may decrease EBNA1 expression level in EBV-positive NPC cells via inhibiting the activity of EBNA1 Q-promoter while over-expression of EBNA1 attenuate the inhibitory effect of baicalein. Finally, it was found that baicalein may strongly reduce growth of tumor in the mouse xenograft model of EBV-positive NPC. These results indicated that baicalein inhibits growth of EBV-positive NPC by repressing the activity of EBNA1 Q-promoter. Baicalein may be used as a therapeutic agent to treat EBV-positive NPC.
Collapse
Affiliation(s)
- Yaqian Zhang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Huan Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu Liu
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jingchao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Cong Long
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Xiaoping Sun
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
24
|
Farnsworth B, Peuckert C, Zimmermann B, Jazin E, Kettunen P, Emilsson LS. Gene Expression of Quaking in Sporadic Alzheimer's Disease Patients is Both Upregulated and Related to Expression Levels of Genes Involved in Amyloid Plaque and Neurofibrillary Tangle Formation. J Alzheimers Dis 2018; 53:209-19. [PMID: 27163826 PMCID: PMC4942724 DOI: 10.3233/jad-160160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quaking (QKI) is a gene exclusively expressed within glial cells. QKI has previously been implicated in various neurological disorders and diseases, including Alzheimer’s disease (AD), a condition for which increasing evidence suggests a central role of glia cells. The objective of the present study was to investigate the expression levels of QKI and three QKI isoforms (QKI5, QKI6, and QKI7) in AD. Genes that have previously been related to the ontogeny and progression of AD, specifically APP, PSEN1, PSEN2, and MAPT, were also investigated. A real-time PCR assay of 123 samples from human postmortem sporadic AD patients and control brains was performed. The expression values were analyzed with an analysis of covariance model and subsequent multiple regressions to explore the possibility of related expression values between QKI, QKI isoforms, and AD-related genes. Further, the sequences of AD-related genes were analyzed for the presence of QKI binding domains. QKI and all measured QKI isoforms were found to be significantly upregulated in AD samples, relative to control samples. However, APP, PSEN1, PSEN2, and MAPT were not found to be significantly different. QKI and QKI isoforms were found to be predictive for the variance of APP, PSEN1, PSEN2, and MAPT, and putative QKI binding sites suggests an interaction with QKI. Overall, these results implicate a possible role of QKI in AD, although the exact mechanism by which this occurs remains to be uncovered.
Collapse
Affiliation(s)
- Bryn Farnsworth
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Neuroscience, Uppsala Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Bettina Zimmermann
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Elena Jazin
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lina Sors Emilsson
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol 2017; 122:98-122. [PMID: 29458795 DOI: 10.1016/j.critrevonc.2017.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Mucins are the main structural components of mucus that create a selective protective barrier for epithelial surface and also execute wide range of other physiological functions. Mucins can be classified into two types, namely secreted mucins and membrane bounded mucins. Alterations in mucin expression or glycosylation and mislocalization have been seen in various types of pathological conditions such as cancers, inflammatory bowel disease and ocular disease, which highlight the importance of mucin in maintaining homeostasis. Hence mucins can be used as attractive target for therapeutic intervention. In this review, we discuss in detail about the structural diversity of mucins; their biosynthesis; its role in pathogenesis; regulation and as possible therapeutic targets.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
26
|
Bing Z, Tian J, Zhang J, Li X, Wang X, Yang K. An Integrative Model of miRNA and mRNA Expression Signature for Patients of Breast Invasive Carcinoma with Radiotherapy Prognosis. Cancer Biother Radiopharm 2017; 31:253-60. [PMID: 27610468 DOI: 10.1089/cbr.2016.2059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy is widely used in breast cancer treatment. The radiotherapy for breast invasive carcinoma (BRCA) presents challenges with the complex clinical factors, and too many genes have been found to be associated with BRCA radiotherapy prognosis. The aim of this study was to construct an integrative model to combine the clinical data and RNA expression data (including microRNA and mRNA) to predict the survival durations of BRCA patients with radiotherapy. Also, the authors try to find the key regulation pairs between mRNA and miRNA from prediction. They collected mRNA and microRNA expression profiles and gathered the corresponding clinical data of 73 BRCA patients with radiotherapy from The Cancer Genome Atlas (TCGA). According to an integrative model from univariate Cox regression between RNA expression and patient survival, they classified the patients with radiotherapy into low-risk and high-risk groups. The results showed that nine mRNAs were considered as protective genes and five miRNAs and eight mRNAs were considered as high-risk genes. Moreover, the high-risk group has a significantly shorter survival time in comparison with the low-risk group by the log-rank test (p = 0.0039). The reliability of the gene signature was validated by an independent data set from the Gene Expression Omnibus (GEO). Furthermore, three pairs of miRNA-mRNA, closely associated to survival, were identified. These findings and method may prove valuable for improving the clinical management of BRCA patients with radiotherapy.
Collapse
Affiliation(s)
- Zhitong Bing
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China .,3 Institute of Modern Physics of Chinese Academy of Sciences , Lanzhou, China
| | - Jinhui Tian
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Jingyun Zhang
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Xiuxia Li
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| | - Xiaohu Wang
- 4 Gansu Provincial Cancer Hospital , Lanzhou, China
| | - Kehu Yang
- 1 Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University , Lanzhou, China .,2 Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province , Lanzhou, China
| |
Collapse
|
27
|
Fu X, Cui K, Yi Q, Yu L, Xu Y. DNA repair mechanisms in embryonic stem cells. Cell Mol Life Sci 2017; 74:487-493. [PMID: 27614628 PMCID: PMC11107665 DOI: 10.1007/s00018-016-2358-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 08/28/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and retain the pluripotency to differentiate into all cell types in the body. Therefore, as a renewable source of various functional cells in the human body, ESCs hold great promise for human cell therapy. During the rapid proliferation of ESCs in culture, DNA damage, such as DNA double-stranded breaks, will occur in ESCs. Therefore, to realize the potential of ESCs in human cell therapy, it is critical to understand the mechanisms how ESCs activate DNA damage response and DNA repair to maintain genomic stability, which is a prerequisite for their use in human therapy. In this context, it has been shown that ESCs harbor much fewer spontaneous mutations than somatic cells. Consistent with the finding that ESCs are genetically more stable than somatic cells, recent studies have indicated that ESCs can mount more robust DNA damage responses and DNA repair than somatic cells to ensure their genomic integrity.
Collapse
Affiliation(s)
- Xuemei Fu
- Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| | - Ke Cui
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuxiang Yi
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lili Yu
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Raj N, Attardi LD. The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026047. [PMID: 27864306 DOI: 10.1101/cshperspect.a026047] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcriptional activator, with discrete domains that participate in sequence-specific DNA binding, tetramerization, and transcriptional activation. Mutagenesis and reporter studies have delineated two distinct activation domains (TADs) and specific hydrophobic residues within these TADs that are critical for their function. Knockin mice expressing p53 mutants with alterations in either or both of the two TADs have revealed that TAD1 is critical for responses to acute DNA damage, whereas both TAD1 and TAD2 participate in tumor suppression. Biochemical and structural studies have identified factors that bind either or both TADs, including general transcription factors (GTFs), chromatin modifiers, and negative regulators, helping to elaborate a model through which p53 activates transcription. Posttranslational modifications (PTMs) of the p53 TADs through phosphorylation also regulate TAD activity. Together, these studies on p53 TADs provide great insight into how p53 serves as a tumor suppressor.
Collapse
Affiliation(s)
- Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
29
|
Romero-Geraldo RDJ, García-Lagunas N, Hernández-Saavedra NY. Crassostrea gigas exposure to the dinoflagellate Prorocentrum lima: Histological and gene expression effects on the digestive gland. MARINE ENVIRONMENTAL RESEARCH 2016; 120:93-102. [PMID: 27475522 DOI: 10.1016/j.marenvres.2016.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/09/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Bivalve mollusks bioaccumulate toxins via ingestion of toxic dinoflagellates. In this study, Crassostrea gigas was used to investigate the effects related to Prorocentrum lima exposure. Oysters were fed with three diets Isochrysis galbana (2 × 10(6) cell mL(-1)) control treatment; algal mix of I. galbana (2 × 10(6)) and P. lima (3 × 10(3) cell mL(-1)); and P. lima alone (3 × 10(3) cell mL(-1)). Feeding behavior changes, histopathological alterations, and expression patterns changes of genes involved in cell cycle (p21, cafp55, p53), cytoskeleton (tub, act), and inflammatory process (casp1) were evaluated. Results indicated that the presence of diarrheic shellfish poisoning by P. lima cells decreased the clearance rate (p < 0.05), induced structural loss, significantly decreased tubule area of the digestive gland (p < 0.05), and up-regulated in expression all gene (p < 0.05), suggesting that toxic cells might trigger inflammatory tissue process, disturb cell cycle and cytoskeleton representing a risk to oysters integrity.
Collapse
Affiliation(s)
- Reyna de Jesús Romero-Geraldo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur No. 4720, Apartado Postal 43-B, La Paz, 23080, Baja California Sur, Mexico.
| | - Norma García-Lagunas
- CIBNOR - Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Avenida Instituto Politécnico Nacional No. 195, Playa Palo de Sta. Rita Sur, Apartado Postal128, La Paz, 23096, Baja California Sur, Mexico.
| | - Norma Yolanda Hernández-Saavedra
- CIBNOR - Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Avenida Instituto Politécnico Nacional No. 195, Playa Palo de Sta. Rita Sur, Apartado Postal128, La Paz, 23096, Baja California Sur, Mexico.
| |
Collapse
|
30
|
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A 2016; 113:E1853-62. [PMID: 26976603 DOI: 10.1073/pnas.1602487113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.
Collapse
|
31
|
Curcumin induces apoptosis in p53-null Hep3B cells through a TAp73/DNp73-dependent pathway. Tumour Biol 2015; 37:4203-12. [PMID: 26490992 DOI: 10.1007/s13277-015-4029-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/27/2014] [Indexed: 12/11/2022] Open
Abstract
Curcumin has anticancer functions in various tumors. It has been shown to induce apoptosis through p53-dependent pathways. p73 gene is a member of the p53 family which encodes both a tumor suppressor (transactivation-competent p73 (TAp73)) and a putative oncogene (dominant-negative p73 (DNp73)); the former shares similarity with the tumor suppressor p53, and the latter behaves as dominant-negative proteins that interfere with the activity of TAp73. To understand the p73-dependent mechanisms that are engaged during curcumin-induced apoptosis, we established a p73 overexpression cell models using p53-deficient Hep3B cells (Hep3B(TAp73/DNp73)). Our results demonstrated that curcumin at concentrations of 40 and 80 μM induced DNA damage, increased TAp73/DNp73 ratio, and also led to apoptosis in the Hep3B(TAp73/DNp73) cells. The apoptotic cell death was concurrent with the loss of mitochondrial membrane potential; release of cytochrome c from mitochondria; and the cleavage of caspase 9, caspase 3, and poly(ADP-ribose) polymerase (PARP). These results demonstrated a p73-dependent mechanism for curcumin-induced apoptosis that involves the mitochondria-mediated pathway.
Collapse
|
32
|
Abstract
Deleterious or 'disease-associated' mutations are mutations that lead to disease with high phenotype penetrance: they are inherited in a simple Mendelian manner, or, in the case of cancer, accumulate in somatic cells leading directly to disease. However, in some cases, the amino acid that is substituted resulting in disease is the wild-type native residue in the functionally equivalent protein in another species. Such examples are known as 'compensated pathogenic deviations' (CPDs) because, somewhere in the second species, there must be compensatory mutations that allow the protein to function normally despite having a residue which would cause disease in the first species. Depending on the nature of the mutations, compensation can occur in the same protein, or in a different protein with which it interacts. In principle, compensation can be achieved by a single mutation (most probably structurally close to the CPD), or by the cumulative effect of several mutations. Although it is clear that these effects occur in proteins, compensatory mutations are also important in RNA potentially having an impact on disease. As a much simpler molecule, RNA provides an interesting model for understanding mechanisms of compensatory effects, both by looking at naturally occurring RNA molecules and as a means of computational simulation. This review surveys the rather limited literature that has explored these effects. Understanding the nature of CPDs is important in understanding traversal along fitness landscape valleys in evolution. It could also have applications in treating diseases that result from such mutations.
Collapse
|
33
|
Halasi M, Pandit B, Gartel AL. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle 2015; 13:3202-6. [PMID: 25485499 DOI: 10.4161/15384101.2014.950132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.
Collapse
Affiliation(s)
- Marianna Halasi
- a Department of Medicine ; University of Illinois at Chicago ; Chicago , IL USA
| | | | | |
Collapse
|
34
|
Shi Y, Han Y, Xie F, Wang A, Feng X, Li N, Guo H, Chen D. ASPP2 enhances oxaliplatin (L-OHP)-induced colorectal cancer cell apoptosis in a p53-independent manner by inhibiting cell autophagy. J Cell Mol Med 2014; 19:535-43. [PMID: 25534115 PMCID: PMC4369811 DOI: 10.1111/jcmm.12435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022] Open
Abstract
Inactivation of p53-mediated cell death pathways is a central component of cancer progression. ASPP2 (apoptosis stimulated protein of p53-2) is a p53 binding protein that specially stimulates pro-apoptosis function of p53. Down-regulation of ASPP2 is observed in many human cancers and is associated with poor prognosis and metastasis. In this study, ASPP2 was found to enhance L-OHP-induced apoptosis in HCT116 p53−/− cells in a p53-independent manner. Such apoptosis-promoting effect of ASPP2 was achieved by inhibiting autophagy. Further experiments with ASPP2 RNA interference and autophagy inhibitor (3-methyladenine, 3-MA) confirmed that ASPP2 enhanced HCT116 p53−/− cell apoptosis via inhibiting the autophagy. The association of cell death and autophagy was also found in ASPP2+/− mice, where colon tissue with reduced ASPP2 expression displayed more autophagy and less cell death. Finally, colorectal tumours and their adjacent normal tissues from 20 colorectal cancer patients were used to examine ASPP2 expression, p53 expression and p53 mutation, to understand their relationships with the patients' outcome. Three site mutations were found in p53 transcripts from 16 of 20 patients. ASPP2 mRNA expressions were higher, and autophagy level was lower in the adjacent normal tissues, compared with the tumour tissues, which was independent of both p53 mutation and expression level. Taken together, ASPP2 increased tumour sensitivity to chemotherapy via inhibiting autophagy in a p53-independent manner, which was associated with the tumour formation, suggesting that both p53 inactivation and ASPP2 expression level were involved in the sensitivity of colorectal cancer to chemotherapy.
Collapse
Affiliation(s)
- Ying Shi
- Beijing Youan Hospital, Capital University of Medical Sciences, Beijing, China; Beijing Institute of Hepatology, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, Davies B, Peterse EF, Sacilotto N, Walker GJ, Terzian T, Tomlinson IP, Box NF, Meinshausen N, De Val S, Bell DA, Bond GL. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 2013; 155:410-22. [PMID: 24120139 PMCID: PMC4171736 DOI: 10.1016/j.cell.2013.09.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/09/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.
Collapse
Affiliation(s)
- Jorge Zeron-Medina
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Xuting Wang
- Environmental Genomics Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Emmanouela Repapi
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Michelle R. Campbell
- Environmental Genomics Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dan Su
- Environmental Genomics Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Francesc Castro-Giner
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Benjamin Davies
- Transgenic Technology Research Group, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Elisabeth F.P. Peterse
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Graeme J. Walker
- Skin Carcinogenesis Laboratory, Queensland Institute of Medical Research, Herston, QLD 4006, Australia
| | - Tamara Terzian
- Department of Dermatology, University of Colorado Denver, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Ian P. Tomlinson
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Neil F. Box
- Department of Dermatology, University of Colorado Denver, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicolai Meinshausen
- Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Douglas A. Bell
- Environmental Genomics Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Gareth L. Bond
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
36
|
Small-molecule multi-targeted kinase inhibitor RGB-286638 triggers P53-dependent and -independent anti-multiple myeloma activity through inhibition of transcriptional CDKs. Leukemia 2013; 27:2366-75. [PMID: 23807770 PMCID: PMC3928098 DOI: 10.1038/leu.2013.194] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
Small molecule multi-targeted CDK inhibitors (CDKIs) are of particular interest due to their potent antitumor activity independent of p53 gene alterations. P53 deletion is associated with a very poor prognosis in multiple myeloma (MM). In this regard, we tested the anti-MM activity of RGB-286638, an indenopyrazole-derived CDKI with Ki-nanomolar activity against transcriptional CDKs. We examined RGB-286638’s mode-of-action in MM cell lines with wild type (wt)-p53 and those expressing mutant p53. RGB-286638 treatment resulted in MM cytotoxicity in vitro associated with inhibition of MM tumor growth and prolonged survival in vivo. RGB-286638 displayed caspase-dependent apoptosis in both wt-p53 and mutant-p53 cells that was closely associated with the downregulation of RNA polymerase II phosphorylation and inhibition of transcription. RGB-286638-triggered p53 accumulation via nucleolar stress and loss of Mdm2, accompanied by induction of p53 DNA binding activity. Additionally, RGB-286638 mediated p53-independent activity, which was confirmed by cytotoxicity in p53-knockdown and p53-mutant cells. We also demonstrated downregulation of oncogenic miR-19, miR-92a-1, and miR-21. Our data provide the rationale for the development of transcriptional CDK inhibitors as therapeutic agents, which activate p53 in competent cells, while circumventing p53 deficiency through alternative p53-independent cell death mechanisms in p53-mutant/deleted cells.
Collapse
|
37
|
Targeting apoptosis in the hormone- and drug-resistant prostate cancer cell line, DU-145, by gossypol/zoledronic acid combination. Cell Biol Int 2013; 33:1165-72. [DOI: 10.1016/j.cellbi.2009.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/11/2009] [Accepted: 08/17/2009] [Indexed: 12/25/2022]
|
38
|
Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK, Iino M, Goto K. Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. J Cell Sci 2013; 126:2785-97. [DOI: 10.1242/jcs.118711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor p53 plays a crucial role in coordinating the cellular response to various stresses. Therefore, p53 protein levels and activity need to be kept under tight control. We report here that diacylglycerol kinase ζ (DGKζ) binds to p53 and modulates its function both in the cytoplasm and nucleus. DGKζ, one of the DGK family that metabolizes a lipid second messenger diacylglycerol, localizes primarily to the nucleus in various cell types. Recently, reports have described that excitotoxic stress induces DGKζ nucleocytoplasmic translocation in hippocampal neurons. In this study, we found that cytoplasmic DGKζ attenuates p53-mediated cytotoxicity against doxorubicin-induced DNA damage by facilitating cytoplasmic anchoring and degradation of p53 through a ubiquitin–proteasome system. Concomitantly, decreased levels of nuclear DGKζ engender down-regulation of p53 transcriptional activity. Consistent with these in vitro cellular experiments, DGKζ-deficient brain exhibits high levels of p53 protein after kainate-induced seizures and even under normal conditions. These findings provide novel insights into the regulation of p53 function and suggest that DGKζ serves as a sentinel to control p53 function both during normal homeostasis and in stress responses.
Collapse
|
39
|
Xuan C, Wang Q, Han X, Duan Y, Li L, Shi L, Wang Y, Shan L, Yao Z, Shang Y. RBB, a novel transcription repressor, represses the transcription of HDM2 oncogene. Oncogene 2012; 32:3711-21. [PMID: 22926524 DOI: 10.1038/onc.2012.386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/04/2023]
Abstract
The p53 tumor suppressor is important in many aspects of cell biology. Tight regulation of p53 is thus imperative for maintaining cell homeostasis and preventing tumorigenesis. The stabilization and activity of p53 is primarily regulated by MDM2, which is encoded for by HDM2. However, how the expression and activity of MDM2 is regulated remains largely unknown. Here, we report a novel BTB and BEN domains-containing protein, RBB. We demonstrated that RBB is a novel transcriptional repressor binding specific DNA motif via a homodimer and interacting with the nucleosome remodeling and deacetylase (NuRD) complex. Genome wide transcription target analysis by ChIP sequencing revealed that RBB represses the transcription of a series of functionally important genes including HDM2. We showed that RBB recruits the NuRD complex to the internal promoter of HDM2 and inhibits the expression of MDM2 protein, leading to subsequent stabilization of tumor suppressor p53. Significantly, we showed that RBB suppresses cell proliferation and sensitizes cells to DNA damage-induced apoptosis. Our data indicate that RBB is a novel transcriptional repressor and an important regulator of p53 pathway.
Collapse
Affiliation(s)
- C Xuan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bourthoumieu S, Magnaudeix A, Terro F, Leveque P, Collin A, Yardin C. Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 2012; 34:52-60. [DOI: 10.1002/bem.21744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/09/2012] [Indexed: 11/07/2022]
|
41
|
Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci 2012; 70:89-103. [PMID: 22669258 PMCID: PMC3535400 DOI: 10.1007/s00018-012-1032-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases.
Collapse
Affiliation(s)
- Kanchan Phadwal
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
| | - Alexander Scarth Watson
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
| | - Anna Katharina Simon
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS UK
| |
Collapse
|
42
|
Aberrant signaling pathways in glioma. Cancers (Basel) 2011; 3:3242-78. [PMID: 24212955 PMCID: PMC3759196 DOI: 10.3390/cancers3033242] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.
Collapse
|
43
|
Taneja P, Zhu S, Maglic D, Fry EA, Kendig RD, Inoue K. Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 2011; 5:235-57. [PMID: 21836819 PMCID: PMC3153120 DOI: 10.4137/cmo.s7516] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research. The anti-tumorigenic functions of TSGs, and their role in development and differentiation, and inhibition of oncogenes are discussed. In this review, we summarize some of the important transgenic and knockout mouse models for TSGs, including Rb, p53, Ink4a/Arf, Brca1/2, and their related genes.
Collapse
Affiliation(s)
| | - Sinan Zhu
- The Departments of Pathology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dejan Maglic
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | - Kazushi Inoue
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
44
|
Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145:571-83. [PMID: 21565614 DOI: 10.1016/j.cell.2011.03.035] [Citation(s) in RCA: 428] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/03/2011] [Accepted: 03/18/2011] [Indexed: 12/17/2022]
Abstract
The molecular basis for p53-mediated tumor suppression remains unclear. Here, to elucidate mechanisms of p53 tumor suppression, we use knockin mice expressing an allelic series of p53 transcriptional activation mutants. Microarray analysis reveals that one mutant, p53(25,26), is severely compromised for transactivation of most p53 target genes, and, moreover, p53(25,26) cannot induce G(1)-arrest or apoptosis in response to acute DNA damage. Surprisingly, p53(25,26) retains robust activity in senescence and tumor suppression, indicating that efficient transactivation of the majority of known p53 targets is dispensable for these pathways. In contrast, the transactivation-dead p53(25,26,53,54) mutant cannot induce senescence or inhibit tumorigenesis, like p53 nullizygosity. Thus, p53 transactivation is essential for tumor suppression but, intriguingly, in association with a small set of novel p53 target genes. Together, our studies distinguish the p53 transcriptional programs involved in acute DNA-damage responses and tumor suppression-a critical goal for designing therapeutics that block p53-dependent side effects of chemotherapy without compromising p53 tumor suppression.
Collapse
|
45
|
Selvi BR, Cassel JC, Kundu TK, Boutillier AL. Tuning acetylation levels with HAT activators: Therapeutic strategy in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:840-53. [DOI: 10.1016/j.bbagrm.2010.08.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
|
46
|
Bandele OJ, Wang X, Campbell MR, Pittman GS, Bell DA. Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements. Nucleic Acids Res 2010; 39:178-89. [PMID: 20817676 PMCID: PMC3017610 DOI: 10.1093/nar/gkq764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein–DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.
Collapse
Affiliation(s)
- Omari J Bandele
- Environmental Genomics Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
47
|
Gomes NP, Espinosa JM. Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes. Cell Cycle 2010; 9:3428-37. [PMID: 20818159 PMCID: PMC3047614 DOI: 10.4161/cc.9.17.12998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022] Open
Abstract
The p53 transcription factor regulates the expression of genes involved in cellular responses to stress, including cell cycle arrest and apoptosis. The p53 transcriptional program is extremely malleable, with target gene expression varying in a stress- and cell type-specific fashion. The molecular mechanisms underlying differential p53 target gene expression remain elusive. Here we provide evidence for gene-specific mechanisms affecting expression of three important p53 target genes. First we show that transcription of the apoptotic gene PUMA is regulated through intragenic chromatin boundaries, as revealed by distinct histone modification territories that correlate with binding of the insulator factors CTCF, Cohesins and USF1/2. Interestingly, this mode of regulation produces an evolutionary conserved long non-coding RNA of unknown function. Second, we demonstrate that the kinetics of transcriptional competence of the cell cycle arrest gene p21 and the apoptotic gene FAS are markedly different in vivo, as predicted by recent biochemical dissection of their core promoter elements in vitro. After a pulse of p53 activity in cells, assembly of the transcriptional apparatus on p21 is rapidly reversed, while FAS transcriptional activation is more sustained. Collectively these data add to a growing list of p53-autonomous mechanisms that impact differential regulation of p53 target genes.
Collapse
Affiliation(s)
- Nathan P Gomes
- Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
48
|
Davies L, Gray D, Spiller D, White MRH, Damato B, Grierson I, Paraoan L. P53 apoptosis mediator PERP: localization, function and caspase activation in uveal melanoma. J Cell Mol Med 2010; 13:1995-2007. [PMID: 19040420 DOI: 10.1111/j.1582-4934.2008.00590.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
p53 apoptosis effector related to PMP-22 (PERP) is a transcriptional target gene of p53 tumour suppressor that is specifically induced during apoptosis and not during cell cycle arrest. In primary uveal melanoma (UM), the most common intraocular malignancy in adults that has a reportedly unaffected signalling pathway upstream of and including p53, PERP expression is down-regulated in the metastatic monosomy 3-type tumours, compared with the less aggressive disomy 3-type tumours. Here, we demonstrate experimentally, by the use of full-length PERP-green fluorescent protein (GFP) fusions and real-time confocal microscopy, the intracellular targeting and plasma membrane localization of PERP in living UM cells and show that expression of PERP induces caspase-mediated apoptosis in UM cells. Induction of PERP expression in GFP-PERP-transfected UM cells leads to increased levels of cleaved caspase-8 forms, as well as to reduction of its full-length substrate Bid, but not to detectable processing of caspase-9. The levels of mature caspase-8, -9 and -3 proteins significantly correlate with PERP expression levels in primary UMs. Transcriptional profiling of PERP and caspase-8 in tumour specimens indicates that the positive association of PERP and caspase-8 proteins is a consequence of post-translational processing, most likely at the level of caspase-8 cleavage, and not of increased transcription of pro-caspase-8. We conclude that PERP expression leads to activation of an extrinsic receptor-mediated apoptotic pathway, with a possible subsequent engagement of the intrinsic apoptotic pathway. The findings underline the apoptotic pathway mediated by PERP as a critical mechanism employed by UM tumours to modulate susceptibility to apoptosis.
Collapse
Affiliation(s)
- Lyndsay Davies
- Unit of Ophthalmology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Donna Gray
- Unit of Ophthalmology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dave Spiller
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mike R H White
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bertil Damato
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Ian Grierson
- Unit of Ophthalmology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Unit of Ophthalmology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
49
|
Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 2010; 29:2893-904. [PMID: 20348949 DOI: 10.1038/onc.2010.87] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucins (MUC) are high molecular weight O-linked glycoproteins whose primary functions are to hydrate, protect, and lubricate the epithelial luminal surfaces of the ducts within the human body. The MUC family is comprised of large secreted gel forming and transmembrane (TM) mucins. MUC1, MUC4, and MUC16 are the well-characterized TM mucins and have been shown to be aberrantly overexpressed in various malignancies including cystic fibrosis, asthma, and cancer. Recent studies have uncovered the unique roles of these mucins in the pathogenesis of cancer. These mucins possess specific domains that can make complex associations with various signaling pathways, impacting cell survival through alterations of cell growth, proliferation, death, and autophagy. The cytoplasmic domain of MUC1 serves as a scaffold for interaction with various signaling proteins. On the other hand, MUC4 mediates its effect by stabilizing and enhancing the activity of growth factor receptor ErbB2. MUC16, previously known as CA125, is a well-known serum marker for the diagnosis of ovarian cancer and has a key role in stimulation and dissemination of ovarian cancer cells by interacting with mesothelin and galectin. Therefore, herein we discuss the function and divergent mechanisms of MUC1, MUC4, and MUC16 in carcinogenesis in the context of alteration in cell growth and survival.
Collapse
Affiliation(s)
- S Bafna
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | |
Collapse
|
50
|
p53 and stem cells: new developments and new concerns. Trends Cell Biol 2010; 20:170-5. [PMID: 20061153 DOI: 10.1016/j.tcb.2009.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
As the guardian of the genome, the tumor suppressor p53 prevents the accumulation of genetic mutations by inducing cell cycle arrest, apoptosis or senescence of somatic cells after genotoxic and oncogenic stresses. Recent studies have identified the roles of p53 in suppressing pluripotency and cellular dedifferentiation. In this context, p53 suppresses the self-renewal of embryonic stem cells after DNA damage and blocks the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). If the inactivation of p53 pathway is a prerequisite for successful reprogramming, these findings raise concerns for the genomic stability and tumorigenecity of iPSCs and their derivatives. Elucidation of the roles of p53 as a barrier to pluripotency and cellular dedifferentiation might also reveal the mechanisms by which p53 coordinates tumor suppression and aging.
Collapse
|