1
|
Yang X, Liu C, Li Z, Wen J, He J, Lu Y, Liao Q, Wang T, Tang H, Yang X, Zeng L. Paclitaxel hyperthermia suppresses gastric cancer migration through MiR-183-5p/PPP2CA/AKT/GSK3β/β-catenin axis. J Cancer Res Clin Oncol 2024; 150:416. [PMID: 39249161 PMCID: PMC11383839 DOI: 10.1007/s00432-024-05923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Gastric cancer (GC), a prevalent malignant tumor which is a leading cause of death from malignancy around the world. Peritoneal metastasis accounts for the major cause of mortality in patients with GC. Despite hyperthermia intraperitoneal chemotherapy (HIPEC) improves the therapeutic effect of GC, it's equivocal about the mechanism under HIPEC. METHODS MiR-183-5p expression was sifted from miRNA chip and detected in both GC patients and cell lines by qRT-PCR. Gene interference and rescue experiments were performed to identified biological function in vitro and vivo. Next, we affirmed PPP2CA as targeted of miR-183-5p by dual luciferase reporter assay. Finally, the potential relationship between HIPEC and miR-183-5p was explored. RESULTS MiR-183-5p is up-regulated in GC and associated with advanced stage and poor prognosis. MiR-183-5p accelerate GC migration in vitro which is influenced by miR-183-5p/PPP2CA/AKT/GSK3β/β-catenin Axis. HIPEC exerts migration inhibition via attenuating miR-183-5p expression. CONCLUSION MiR-183-5p can be used as a potential HIPEC biomarker in patients with CC.
Collapse
Affiliation(s)
- Xiansheng Yang
- Department of Anus and Intestine Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Chang Liu
- Medical Affair Department, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zheng Li
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Juncai Wen
- Department of Medical Oncology, Puning People's Hospital, Puning, 515300, China
| | - Jinfu He
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yunxin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Quanxing Liao
- First Department of General Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Tian Wang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hongsheng Tang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Xianzi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| | - Lisi Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
2
|
Marq JB, Gosetto M, Altenried A, Vadas O, Maco B, Dos Santos Pacheco N, Tosetti N, Soldati-Favre D, Lentini G. Cytokinetic abscission in Toxoplasma gondii is governed by protein phosphatase 2A and the daughter cell scaffold complex. EMBO J 2024; 43:3752-3786. [PMID: 39009675 PMCID: PMC11377541 DOI: 10.1038/s44318-024-00171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Margaux Gosetto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Aline Altenried
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Cao R, Jones DTD, Pan L, Yang A, Wang S, Padi SKR, Rawson S, Aster JC, Blacklow SC. Molecular Mechanism of PP2A/B55α Phosphatase Inhibition by IER5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555174. [PMID: 37693604 PMCID: PMC10491241 DOI: 10.1101/2023.08.29.555174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
PP2A serine/threonine phosphatases are heterotrimeric complexes that execute many essential physiologic functions. These activities are modulated by additional regulatory proteins, such as ARPP19, FAM122A, and IER5. Here, we report the cryoelectron microscopy structure of a complex of PP2A/B55α with the N-terminal structured region of IER5 (IER5-N50), which occludes a surface on B55α used for substrate recruitment, and show that IER5-N50 inhibits PP2A/B55α catalyzed dephosphorylation of pTau in biochemical assays. Mutations of full-length IER5 that disrupt its PP2A/B55α interface interfere with co-immunoprecipitation of PP2A/B55α. These mutations and deletions that remove the nuclear localization sequence of IER5 suppress cellular events such as KRT1 expression that depend on association of IER5 with PP2A/B55α. Querying the Alphafold2 predicted structure database identified SERTA domain proteins as high-confidence PP2A/B55α-binding structural homologs of IER5-N50. These studies define the molecular basis of PP2A/B55α inhibition by IER5-family proteins and suggest a roadmap for selective pharmacologic modulation of PP2A/B55α complexes.
Collapse
Affiliation(s)
- Ruili Cao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel TD Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Li Pan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Annie Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shumei Wang
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sathish K. R. Padi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
4
|
Wachter F, Nowak RP, Ficarro S, Marto J, Fischer ES. Structural characterization of methylation-independent PP2A assembly guides alphafold2Multimer prediction of family-wide PP2A complexes. J Biol Chem 2024; 300:107268. [PMID: 38582449 PMCID: PMC11087950 DOI: 10.1016/j.jbc.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jarrod Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Brewer A, Sathe G, Pflug BE, Clarke RG, Macartney TJ, Sapkota GP. Mapping the substrate landscape of protein phosphatase 2A catalytic subunit PPP2CA. iScience 2024; 27:109302. [PMID: 38450154 PMCID: PMC10915630 DOI: 10.1016/j.isci.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gajanan Sathe
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Billie E. Pflug
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rosemary G. Clarke
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Iannotta L, Emanuele M, Favetta G, Tombesi G, Vandewynckel L, Lara Ordóñez AJ, Saliou JM, Drouyer M, Sibran W, Civiero L, Nichols RJ, Athanasopoulos PS, Kortholt A, Chartier-Harlin MC, Greggio E, Taymans JM. PAK6-mediated phosphorylation of PPP2R2C regulates LRRK2-PP2A complex formation. Front Mol Neurosci 2023; 16:1269387. [PMID: 38169846 PMCID: PMC10759229 DOI: 10.3389/fnmol.2023.1269387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases. To investigate this, we used PhosTag gel electrophoresis with purified proteins and found that PAK6 phosphorylates the PP2A regulatory subunit PPP2R2C at position S381. While S381 phosphorylation did not affect PP2A holoenzyme formation, a S381A phosphodead PPP2R2C showed impaired binding to LRRK2. Also, PAK6 kinase activity changed PPP2R2C subcellular localization in a S381 phosphorylation-dependent manner. Finally, PAK6-mediated dephosphorylation of LRRK2 was unaffected by phosphorylation of PPP2R2C at S381, suggesting that the previously reported mechanism whereby PAK6-mediated phosphorylation of 14-3-3 proteins promotes 14-3-3-LRRK2 complex dissociation and consequent exposure of LRRK2 phosphosites for dephosphorylation is dominant. Taken together, we conclude that PAK6-mediated phosphorylation of PPP2R2C influences the recruitment of PPP2R2C to the LRRK2 complex and PPP2R2C subcellular localization, pointing to an additional mechanism in the fine-tuning of LRRK2 phosphorylation.
Collapse
Affiliation(s)
- Lucia Iannotta
- Department of Biology, University of Padova, Padua, Italy
- National Research Council, c/o Humanitas Research Hospital, Institute of Neuroscience, Rozzano, Italy
| | - Marco Emanuele
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Giulia Favetta
- Department of Biology, University of Padova, Padua, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, Padua, Italy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Laurine Vandewynckel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Jean-Michel Saliou
- University of Lille, CNRS, Inserm, CHU Lille, Institute Pasteur de Lille, US 41 – UAR 2014 – PLBS, Lille, France
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - William Sibran
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Laura Civiero
- Department of Biology, University of Padova, Padua, Italy
- IRCSS, San Camillo Hospital, Venice, Italy
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University West Campus, Isparta, Turkey
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padua, Italy
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
7
|
Rasool RU, O'Connor CM, Das CK, Alhusayan M, Verma BK, Islam S, Frohner IE, Deng Q, Mitchell-Velasquez E, Sangodkar J, Ahmed A, Linauer S, Mudrak I, Rainey J, Zawacki KP, Suhan TK, Callahan CG, Rebernick R, Natesan R, Siddiqui J, Sauter G, Thomas D, Wang S, Taylor DJ, Simon R, Cieslik M, Chinnaiyan AM, Busino L, Ogris E, Narla G, Asangani IA. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance. Nat Commun 2023; 14:5253. [PMID: 37644036 PMCID: PMC10465527 DOI: 10.1038/s41467-023-40760-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Sehbanul Islam
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aqila Ahmed
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Linauer
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Jessica Rainey
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Kaitlin P Zawacki
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tahra K Suhan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine G Callahan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Rebernick
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Javed Siddiqui
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dafydd Thomas
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Taylor
- Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcin Cieslik
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria.
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Siddiqui MR, Reddy NM, Faridi HM, Shahid M, Shanley TP. Metformin alleviates lung-endothelial hyperpermeability by regulating cofilin-1/PP2AC pathway. Front Pharmacol 2023; 14:1211460. [PMID: 37361221 PMCID: PMC10285707 DOI: 10.3389/fphar.2023.1211460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Microvascular endothelial hyperpermeability is an earliest pathological hallmark in Acute Lung Injury (ALI), which progressively leads to Acute Respiratory Distress Syndrome (ARDS). Recently, vascular protective and anti-inflammatory effect of metformin, irrespective of glycemic control, has garnered significant interest. However, the underlying molecular mechanism(s) of metformin's barrier protective benefits in lung-endothelial cells (ECs) has not been clearly elucidated. Many vascular permeability-increasing agents weakened adherens junctions (AJ) integrity by inducing the reorganization of the actin cytoskeleton and stress fibers formation. Here, we hypothesized that metformin abrogated endothelial hyperpermeability and strengthen AJ integrity via inhibiting stress fibers formation through cofilin-1-PP2AC pathway. Methods: We pretreated human lung microvascular ECs (human-lung-ECs) with metformin and then challenged with thrombin. To investigate the vascular protective effects of metformin, we studied changes in ECs barrier function using electric cell-substrate impedance sensing, levels of actin stress fibers formation and inflammatory cytokines IL-1β and IL-6 expression. To explore the downstream mechanism, we studied the Ser3-phosphorylation-cofilin-1 levels in scramble and PP2AC-siRNA depleted ECs in response to thrombin with and without metformin pretreatment. Results: In-vitro analyses showed that metformin pretreatment attenuated thrombin-induced hyperpermeability, stress fibers formation, and the levels of inflammatory cytokines IL-6 and IL-β in human-lung-ECs. We found that metformin mitigated Ser3-phosphorylation mediated inhibition of cofilin-1 in response to thrombin. Furthermore, genetic deletion of PP2AC subunit significantly inhibited metformin efficacy to mitigate thrombin-induced Ser3-phosphorylation cofilin-1, AJ disruption and stress fibers formation. We further demonstrated that metformin increases PP2AC activity by upregulating PP2AC-Leu309 methylation in human-lung-ECs. We also found that the ectopic expression of PP2AC dampened thrombin-induced Ser3-phosphorylation-mediated inhibition of cofilin-1, stress fibers formation and endothelial hyperpermeability. Conclusion: Together, these data reveal the unprecedented endothelial cofilin-1/PP2AC signaling axis downstream of metformin in protecting against lung vascular endothelial injury and inflammation. Therefore, pharmacologically enhancing endothelial PP2AC activity may lead to the development of novel therapeutic approaches for prevention of deleterious effects of ALI on vascular ECs.
Collapse
Affiliation(s)
- M. Rizwan Siddiqui
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Narsa M. Reddy
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hafeez M. Faridi
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Mohd Shahid
- Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Thomas P. Shanley
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
9
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Ripamonti M, Lamarca A, Davey NE, Tonoli D, Surini S, de Curtis I. A functional interaction between liprin-α1 and B56γ regulatory subunit of protein phosphatase 2A supports tumor cell motility. Commun Biol 2022; 5:1025. [PMID: 36171301 PMCID: PMC9519923 DOI: 10.1038/s42003-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Scaffold liprin-α1 is required to assemble dynamic plasma membrane-associated platforms (PMAPs) at the front of migrating breast cancer cells, to promote protrusion and invasion. We show that the N-terminal region of liprin-α1 contains an LxxIxE motif interacting with B56 regulatory subunits of serine/threonine protein phosphatase 2A (PP2A). The specific interaction of B56γ with liprin-α1 requires an intact motif, since two point mutations strongly reduce the interaction. B56γ mediates the interaction of liprin-α1 with the heterotrimeric PP2A holoenzyme. Most B56γ protein is recovered in the cytosolic fraction of invasive MDA-MB-231 breast cancer cells, where B56γ is complexed with liprin-α1. While mutation of the short linear motif (SLiM) does not affect localization of liprin-α1 to PMAPs, localization of B56γ at these sites specifically requires liprin-α1. Silencing of B56γ or liprin-α1 inhibits to similar extent cell spreading on extracellular matrix, invasion, motility and lamellipodia dynamics in migrating MDA-MB-231 cells, suggesting that B56γ/PP2A is a novel component of the PMAPs machinery regulating tumor cell motility. In this direction, inhibition of cell spreading by silencing liprin-α1 is not rescued by expression of B56γ binding-defective liprin-α1 mutant. We propose that liprin-α1-mediated recruitment of PP2A via B56γ regulates cell motility by controlling protrusion in migrating MDA-MB-231 cells.
Collapse
Affiliation(s)
- Marta Ripamonti
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Andrea Lamarca
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Diletta Tonoli
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Sara Surini
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Ivan de Curtis
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
11
|
Li Y, Balakrishnan VK, Rowse M, Wu CG, Bravos AP, Yadav VK, Ivarsson YI, Strack S, Novikova IV, Xing Y. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. eLife 2022; 11:79736. [PMID: 35924897 PMCID: PMC9398451 DOI: 10.7554/elife.79736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme–PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.
Collapse
Affiliation(s)
- Yitong Li
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Michael Rowse
- Indiana University - Purdue University Columbus, Columbus, United States
| | - Cheng-Guo Wu
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| | | | - Vikash K Yadav
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - YIva Ivarsson
- 5Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, United States
| | - Yongna Xing
- Department of Oncology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
12
|
Schuhmacher D, Sontag JM, Sontag E. A Novel Role of PP2A Methylation in the Regulation of Tight Junction Assembly and Integrity. Front Cell Dev Biol 2022; 10:911279. [PMID: 35912112 PMCID: PMC9326217 DOI: 10.3389/fcell.2022.911279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tight junctions (TJs) are multiprotein complexes essential for cell polarity and the barrier function of epithelia. The major signaling molecule, protein serine/threonine phosphatase 2A (PP2A), interacts with the TJ and modulates the phosphorylation state of TJ proteins. An important PP2A regulatory mechanism involves leucine carboxyl methyltransferase-1 (LCMT1)-dependent methylation and protein phosphatase methylesterase-1 (PME1)-mediated demethylation of its catalytic subunit on Leu309. Here, using MDCK cells, we show that overexpression of LCMT1, which enhances cellular PP2A methylation, inhibits TJ formation, induces TJ ruffling, and decreases TJ barrier function. Conversely, overexpression of PME1 accelerates TJ assembly and enhances TJ barrier function. PME1-dependent PP2A demethylation increases during early Ca2+-dependent junctional assembly. Inhibition of endogenous PME1 delays the initial Ca2+-mediated redistribution of TJ proteins to cell-cell contacts and affects TJ morphology and barrier function. Manipulating one-carbon metabolism modulates TJ assembly, at least in part by affecting PP2A methylation state. The integrity of PP2A methylation is critical for proper targeting of PP2A to the TJ. It is necessary for PP2A complex formation with the TJ proteins, occludin and ZO-1, and proteins of the PAR complex, Par3 and atypical protein kinase C ζ (aPKCζ), which play a key role in development of cell polarity. Expression of a methylation incompetent PP2A mutant induces defects in TJ assembly and barrier function. aPKCζ-mediated Par3 phosphorylation is also required for targeting of the PP2A ABαC holoenzyme to the TJ. Our findings provide the first evidence for a role of LCMT1, PME1 and PP2A methylation/demethylation processes in modulating TJ assembly and functional integrity. They also position PP2A at the interface of one-carbon metabolism and the regulation of key TJ and polarity proteins that become deregulated in many human diseases.
Collapse
|
13
|
Lyons SP, Greiner EC, Cressey LE, Adamo ME, Kettenbach AN. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation. Sci Rep 2021; 11:23031. [PMID: 34845248 PMCID: PMC8630191 DOI: 10.1038/s41598-021-02456-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The family of Phosphoprotein Phosphatases (PPPs) is responsible for most cellular serine and threonine dephosphorylation. PPPs achieve substrate specificity and selectivity by forming multimeric holoenzymes. PPP holoenzyme assembly is tightly controlled, and changes in the cellular repertoire of PPPs are linked to human disease, including cancer and neurodegeneration. For PP2A, PP4, and PP6, holoenzyme formation is in part regulated by carboxyl (C)-terminal methyl-esterification (often referred to as "methylation"). Here, we use mass spectrometry-based proteomics, methylation-ablating mutations, and genome editing to elucidate the role of C-terminal methylation on PP2A, PP4, and PP6 holoenzyme assembly. We find that the catalytic subunits of PP2A, PP4, and PP6 are frequently methylated in cancer cells and that deletion of the C-terminal leucine faithfully recapitulates loss of methylation. We observe that loss of PP2A methylation consistently reduced B55, B56, and B72 regulatory subunit binding in cancer and non-transformed cell lines. However, Striatin subunit binding is only affected in non-transformed cells. For PP4, we find that PP4R1 and PP4R3β bind in a methylation-dependent manner. Intriguingly, loss of methylation does not affect PP6 holoenzymes. Our analyses demonstrate in an unbiased, comprehensive, and isoform-specific manner the crucial regulatory function of endogenous PPP methylation in transformed and non-transformed cell lines.
Collapse
Affiliation(s)
- Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
14
|
Yang CL, Qiu X, Lin JY, Chen XY, Zhang YM, Hu XY, Zhong JH, Tang S, Li XY, Xiang BD, Zhang ZM. Potential Role and Clinical Value of PPP2CA in Hepatocellular Carcinoma. J Clin Transl Hepatol 2021; 9:661-671. [PMID: 34722181 PMCID: PMC8516843 DOI: 10.14218/jcth.2020.00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS Protein phosphatase 2A (PP2A) is associated with many cancers. This study aimed to clarify whether PPP2CA, which encodes the alpha isoform of the catalytic subunit of PP2A, plays a role in hepatocellular carcinoma (HCC) and to identify the potential underlying molecular pathways. METHODS Based on bioinformatics, public databases and our in-house RNA-Seq database, we analyzed the clinical value and molecular mechanism of PPP2CA in HCC. RESULTS Data were analyzed from 2,545 patients with HCC and 1,993 controls without HCC indexed in The Cancer Genome Atlas database, the Gene Expression Omnibus database and our in-house RNA-Seq database. PPP2CA expression was significantly higher in HCC tissue than in non-cancerous tissues (standardized mean difference: 0.69, 95% confidence interval [CI]: 0.50-0.89). PPP2CA expression was able to differentiate HCC from non-HCC, with an area under the summary receiver operator characteristic curve of 0.79 (95% CI: 0.75-0.83). Immunohistochemistry of tissue sections confirmed that PPP2CA protein was up-regulated in HCC tissues. High PPP2CA expression in HCC patients was associated with shorter overall, progression-free and disease-free survival. Potential molecular pathways through which PPP2CA may be involved in HCC were determined using miRWalk 2.0 as well as analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, and protein-protein interaction networks. CONCLUSIONS PPP2CA is up-regulated in HCC and higher expression correlates with worse prognosis. PPP2CA shows potential as a diagnostic marker for HCC. Future studies should examine whether PPP2CA contributes to HCC through the candidate microRNAs, pathways and hub genes identified in this study.
Collapse
Affiliation(s)
- Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xue Qiu
- The First Clinical Medical School, Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Yan Lin
- The First Clinical Medical School, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Yu Chen
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yu-Mei Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Yin Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xi-Yi Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Correspondence to: Zhi-Ming Zhang and Bang-De Xiang, Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, He Di Rd #71, Nanning, Guangxi 530021, China. ORCID: https://orcid.org/0000-0001-9823-4945 (ZMZ), https://orcid.org/0000-0002-1877-7139 (BDX). Tel: +86-771-533-0855, Fax: +86-771-531-2000, E-mail: (ZMZ), (BDX)
| | - Zhi-Ming Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Correspondence to: Zhi-Ming Zhang and Bang-De Xiang, Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, He Di Rd #71, Nanning, Guangxi 530021, China. ORCID: https://orcid.org/0000-0001-9823-4945 (ZMZ), https://orcid.org/0000-0002-1877-7139 (BDX). Tel: +86-771-533-0855, Fax: +86-771-531-2000, E-mail: (ZMZ), (BDX)
| |
Collapse
|
15
|
Chu H, Sacharidou A, Nguyen A, Li C, Chambliss KL, Salmon JE, Shen YM, Lo J, Leone GW, Herz J, Hui DY, Marciano DK, Abrahams VM, Natale BV, Montalbano AP, Xiao X, Xu L, Natale DR, Shaul PW, Mineo C. Protein Phosphatase 2A Activation Via ApoER2 in Trophoblasts Drives Preeclampsia in a Mouse Model of the Antiphospholipid Syndrome. Circ Res 2021; 129:735-750. [PMID: 34404233 DOI: 10.1161/circresaha.120.318941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Haiyan Chu
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - An Nguyen
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Chun Li
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Jane E Salmon
- Medicine, Hospital for Special Surgery, Weill Cornell Medical College, New York (J.E.S.)
| | - Yu-Min Shen
- Internal Medicine (Y.-M.S., D.K.M.), University of Texas Southwestern Medical Center, Dallas
| | - Julie Lo
- Obstetrics and Gynecology (J.L.), University of Texas Southwestern Medical Center, Dallas
| | - Gustavo W Leone
- Froedtert-Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee (G.W.L.)
| | - Joachim Herz
- Molecular Genetics (J.H.), University of Texas Southwestern Medical Center, Dallas
| | - David Y Hui
- Pathology, University of Cincinnati College of Medicine (D.Y.H.)
| | - Denise K Marciano
- Internal Medicine (Y.-M.S., D.K.M.), University of Texas Southwestern Medical Center, Dallas.,Cell Biology (D.K.M., C.M.), University of Texas Southwestern Medical Center, Dallas
| | - Vikki M Abrahams
- Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT (V.M.A.)
| | - Bryony V Natale
- Obstetrics, Gynecology & Reproductive Science, University of California San Diego, La Jolla (B.V.N., D.R.N.).,Obstetrics and Gynaecology, School of Medicine, Queen's University, Ontario, Canada (B.V.N., D.R.N.)
| | - Alina P Montalbano
- Biochemistry and Obstetrics and Gynecology (A.P.M.), University of Texas Southwestern Medical Center, Dallas
| | - Xue Xiao
- Population and Data Sciences and Pediatrics (X.X., L.X.), University of Texas Southwestern Medical Center, Dallas
| | - Lin Xu
- Population and Data Sciences and Pediatrics (X.X., L.X.), University of Texas Southwestern Medical Center, Dallas
| | - David R Natale
- Obstetrics, Gynecology & Reproductive Science, University of California San Diego, La Jolla (B.V.N., D.R.N.).,Obstetrics and Gynaecology, School of Medicine, Queen's University, Ontario, Canada (B.V.N., D.R.N.)
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Pediatrics (H.C., A.S., A.N., C.L., K.L.C., P.W.S., C.M.).,Cell Biology (D.K.M., C.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
16
|
Targeting protein phosphatase PP2A for cancer therapy: development of allosteric pharmaceutical agents. Clin Sci (Lond) 2021; 135:1545-1556. [PMID: 34192314 DOI: 10.1042/cs20201367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023]
Abstract
Tumor initiation is driven by oncogenes that activate signaling networks for cell proliferation and survival involving protein phosphorylation. Protein kinases in these pathways have proven to be effective targets for pharmaceutical inhibitors that have progressed to the clinic to treat various cancers. Here, we offer a narrative about the development of small molecule modulators of the protein Ser/Thr phosphatase 2A (PP2A) to reduce the activation of cell proliferation and survival pathways. These novel drugs promote the assembly of select heterotrimeric forms of PP2A that act to limit cell proliferation. We discuss the potential for the near-term translation of this approach to the clinic for cancer and other human diseases.
Collapse
|
17
|
Ikeda S, Tsuji S, Ohama T, Sato K. Involvement of PP2A methylation in the adipogenic differentiation of bone marrow-derived mesenchymal stem cell. J Biochem 2021; 168:643-650. [PMID: 32663263 DOI: 10.1093/jb/mvaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells with ability to self-replicate and differentiate into mesodermal derivatives, such as adipocytes and osteoblasts. BM-MSCs are a critical component of the tumour microenvironment. They support tumour progression by recruiting additional BM-MSCs and by differentiating into myofibroblasts (also called cancer-associated fibroblasts). Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that regulates a broad range of cellular signalling. PP2A forms a heterotrimer to dephosphorylate specific substrates. The reversible methylesterification (methylation) of Leu309 in the catalytic subunit of PP2A (PP2Ac) regulates biogenesis of the PP2A holoenzyme. It is unknown whether the methylation of PP2Ac plays a role in BM-MSC differentiation. Our experiments determined that protein levels of PP2A subunits and PP2A methyltransferase (LCMT-1) are significantly altered during differentiation. PP2Ac methylation levels in BM-MSCs decrease over time in response to an adipogenic differentiation stimulus. However, blockage of PP2A demethylation using the PP2A dimethyl-esterase inhibitors enhanced adipocyte differentiation. This suggests that PP2Ac demethylation is involved in adipocyte differentiation resistance. The results of our study provide a greater understanding of the regulation of BM-MSCs differentiation by PP2A holoenzyme.
Collapse
Affiliation(s)
- Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shunya Tsuji
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
18
|
Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer's disease. Cell Commun Signal 2021; 19:51. [PMID: 33962636 PMCID: PMC8103764 DOI: 10.1186/s12964-021-00732-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's disease involves abnormal aggregation and accumulation of toxic proteins aggregates. Post-translational modifications (PTMs) of the causative proteins play an important role in the etiology of disease as they could either slow down or accelerate the disease progression. Alzheimer disease is associated with the aggregation and accumulation of two major protein aggregates-intracellular neurofibrillary tangles made up of microtubule-associated protein Tau and extracellular Amyloid-β plaques. Post-translational modifications are important for the regulation of Tau`s function but an imbalance in PTMs may lead to abnormal Tau function and aggregation. Tau methylation is one of the important PTM of Tau in its physiological state. However, the methylation signature on Tau lysine changes once it acquires pathological aggregated form. Tau methylation can compete with other PTMs such as acetylation and ubiquitination. The state of PTM at these sites determines the fate of Tau protein in terms of its function and stability. The global methylation in neurons, microglia and astrocytes are involved in multiple cellular functions involving their role in epigenetic regulation of gene expression via DNA methylation. Here, we have discussed the effect of methylation on Tau function in a site-specific manner and their cross-talk with other lysine modifications. We have also elaborated the role of methylation in epigenetic aspects and neurodegenerative conditions associated with the imbalance in methylation metabolism affecting global methylation state of cells. Video abstract.
Collapse
Affiliation(s)
- Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India.
| |
Collapse
|
19
|
Frohner IE, Mudrak I, Schüchner S, Anrather D, Hartl M, Sontag JM, Sontag E, Wadzinski BE, Preglej T, Ellmeier W, Ogris E. PP2A C Phospho-Tyr 307 Antibodies Are Not Specific for this Modification but Are Sensitive to Other PP2A C Modifications Including Leu 309 Methylation. Cell Rep 2021; 30:3171-3182.e6. [PMID: 32130916 DOI: 10.1016/j.celrep.2020.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2AC) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr307 monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr307 but instead are hampered by PP2AC methylation at leucine 309 or phosphorylation at threonine 304. Other pTyr307 antibodies are sensitive to PP2AC methylation as well, and some cross-react with pTyr residues in general, including phosphorylated hemagglutinin tags. We identify pTyr307 using targeted mass spectrometry after transient overexpression of PP2AC and Src kinase. Yet under such conditions, none of the tested antibodies show exclusive pTyr307 specificity. Thus, data generated using these antibodies need to be revisited, and the mechanism of PP2A inactivation needs to be redefined.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
20
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:ijms22042051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
- Correspondence:
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
21
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
22
|
Walvekar AS, Kadamur G, Sreedharan S, Gupta R, Srinivasan R, Laxman S. Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. J Biol Chem 2020; 295:18390-18405. [PMID: 33122193 PMCID: PMC7939465 DOI: 10.1074/jbc.ra120.014248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Indexed: 11/06/2022] Open
Abstract
Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ganesh Kadamur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India; School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.
| |
Collapse
|
23
|
Goguet-Rubio P, Amin P, Awal S, Vigneron S, Charrasse S, Mechali F, Labbé JC, Lorca T, Castro A. PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules 2020; 10:biom10111586. [PMID: 33266510 PMCID: PMC7700614 DOI: 10.3390/biom10111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.
Collapse
|
24
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
25
|
Beauchamp LC, Liu XM, Sedjahtera A, Bogeski M, Vella LJ, Bush AI, Adlard PA, Barnham KJ. S-Adenosylmethionine Rescues Cognitive Deficits in the rTg4510 Animal Model by Stabilizing Protein Phosphatase 2A and Reducing Phosphorylated Tau. J Alzheimers Dis 2020; 77:1705-1715. [DOI: 10.3233/jad-200756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer’s disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau. Objective: This study aimed to increase protein phosphatase 2A activity through supplementation of S-adenosylmethionine and analyze the effect on spatial memory and tau in treated animals. Methods: 6-month-old rTg4510 mice were treated with 100 mg/kg S-adenosylmethionine by oral gavage for 3 weeks. Spatial recognition memory was tested in the Y-maze. Alterations to phosphorylated tau and protein phosphatase 2A were explored using immunohistochemistry, western blot, and enzyme-linked immunosorbent assays. Results: Treatment with S-adenosylmethionine increased the Y-maze novel arm exploration time and increased both the expression and activity of protein phosphatase 2A. Furthermore, treatment reduced the number of AT8 positive neurons and reduced the expression of phosphorylated tau (Ser202/Thr205). S-adenosylmethionine contributes to multiple pathways in neuronal homeostasis and neurodegeneration. Conclusion: This study shows that supplementation with S-adenosylmethionine stabilizes the heterotrimeric form of PP2A resulting in an increase the enzymatic activity, a reduced level of pathological tau, and improved cognition.
Collapse
Affiliation(s)
- Leah C. Beauchamp
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| | - Xiang M. Liu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Amelia Sedjahtera
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Mirjana Bogeski
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Laura J. Vella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Paul A. Adlard
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
27
|
Wu B, Cai H, Tang S, Xu Y, Shi Q, Wei L, Meng L, Zhang N, Wang X, Xiao D, Zou Y, Yang X, Li X, Lu C. Methionine-Mediated Protein Phosphatase 2A Catalytic Subunit (PP2Ac) Methylation Ameliorates the Tauopathy Induced by Manganese in Cell and Animal Models. Neurotherapeutics 2020; 17:1878-1896. [PMID: 32959271 PMCID: PMC7851222 DOI: 10.1007/s13311-020-00930-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.
Collapse
Affiliation(s)
- Bin Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yilu Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
28
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
29
|
Guo J, Xu C, Ni S, Zhang S, Li Q, Zeng P, Pi G, Liu E, Sun DS, Liu Y, Wang Z, Chen H, Yang Y, Wang JZ. Elevation of pS262-Tau and Demethylated PP2A in Retina Occurs Earlier than in Hippocampus During Hyperhomocysteinemia. J Alzheimers Dis 2020; 68:367-381. [PMID: 30775994 DOI: 10.3233/jad-180978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor of Alzheimer's disease (AD), which is not diagnosed for many years before onset due to lack of peripherally detectable early biomarkers. Visual dysfunction is prevalent in AD patients and correlates with the severity of cognitive defects. Importantly, alterations in eyes can be non-invasively detected. To search for early biomarkers in eyes from high risk factors of AD, we injected homocysteine (Hcy) into the rats via vena caudalis for 3, 7, and 14 days, respectively, and characterized the chronological order of the AD-like pathologies appearing in retina and the hippocampus during the progression of hyperhomocysteinemia, and their correlations with cognitive impairment. We found that administration of Hcy for 14 days, but not 3 or 7 days, induced hyperhomocysteinemia, although a gradually increased blood Hcy level was detected. In retina and/or the hippocampus, significant loss of retinal ganglion cells and stenosis of retinal arteries with the AD-like tau and amyloid-β (Aβ) pathologies and memory deficit were shown only in the 14-day Hcy group. Interestingly, accumulation of Ser262 hyperphosphorylated tau (pS262-tau) but not Aβ with decreased methylation of protein phosphatase-2A catalytic subunit (M-PP2Ac) and increased de-methylated PP2Ac (DM-PP2Ac) was detected in retina of the 3-day Hcy group, in which the retinal pathologies were preceded by those of the hippocampus. These findings suggest that elevated pS262-tau and DM-PP2Ac and reduced M-PP2Ac in retina may serve as surveillance biomarkers for diagnosis of the hyperhomocysteinemia-induced AD in the early stage.
Collapse
Affiliation(s)
- Jing Guo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cheng Xu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shaozhou Ni
- Department of Emergency, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shujuan Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Zhejiang, China
| | - Peng Zeng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Enjie Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dong-Sheng Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yanchao Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhouyi Wang
- Department of Neurology, Center Hospital of Huang Gang City, Hubei Province, PR China
| | - Haote Chen
- Department of Neurology, Center Hospital of Huang Gang City, Hubei Province, PR China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
30
|
Jiang Y, Li L, Dai CL, Zhou R, Gong CX, Iqbal K, Gu JH, Liu F. Effect of Peripheral Insulin Administration on Phosphorylation of Tau in the Brain. J Alzheimers Dis 2020; 75:1377-1390. [PMID: 32417781 DOI: 10.3233/jad-200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormally hyperphosphorylated tau is the major protein of neurofibrillary tangles in Alzheimer's disease. Insulin activates PI3K-AKT signaling and regulates tau phosphorylation. Impaired brain insulin signaling is involved in Alzheimer's disease pathogenesis. However, the effect of peripheral insulin on tau phosphorylation is controversial. OBJECTIVE In the present study, we determined the effect of peripheral insulin administration on tau phosphorylation in brain. METHODS We intraperitoneally injected a super physiological dose of insulin to mice and analyzed PI3K-AKT signaling and tau phosphorylation in brains by western blots. RESULTS We found that peripherally administered insulin activated the PI3K-AKT signaling pathway immediately in the liver, but not in the brain. Tau phosphorylation in the mouse brain was found to be first decreased (15 min) and then increased (30 min and 60 min) after peripheral insulin administration and these changes correlated inversely with body temperature and the level of brain protein O-GlcNAcylation. Maintaining body temperature of mice post peripheral insulin administration prevented the insulin/hypoglycemia-induced tau hyperphosphorylation after peripheral insulin administration. CONCLUSION These findings suggest that peripheral insulin can induce tau hyperphosphorylation through both hypothermia and downregulation of brain protein O-GlcNAcylation during hypoglycemia.
Collapse
Affiliation(s)
- Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Longfei Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Ranran Zhou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jin-Hua Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Clinical Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
31
|
Wang X, Tang S, Qin F, Liu Y, Liang Z, Cai H, Mo L, Xiao D, Guo S, Ouyang Y, Sun B, Lu C, Li X. Proteomics and phosphoproteomics study of LCMT1 overexpression and oxidative stress: overexpression of LCMT1 arrests H 2O 2-induced lose of cells viability. Redox Rep 2020; 24:1-9. [PMID: 30898057 PMCID: PMC6748586 DOI: 10.1080/13510002.2019.1595332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives: Protein phosphatase 2A (PP2A), a major serine/threonine
phosphatase, is also known to be a target of ROS. The methylation of PP2A can be
catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A
activity and substrate specificity. Methods: In the previous study, we have showed that LCMT1-dependent
PP2Ac methylation arrests H2O2-induced cell oxidative
stress damage. To explore the possible protective mechanism, we performed
iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of
H2O2-treated vector control and LCMT1-overexpressing
cells. Results: A total of 4480 non-redundant proteins and 3801 unique
phosphopeptides were identified by this means. By comparing the
H2O2-regulated proteins in LCMT1-overexpressing and
vector control cells, we found that these differences were mainly related to
protein phosphorylation, gene expression, protein maturation, the cytoskeleton
and cell division. Further investigation of LCMT1 overexpression-specific
regulated proteins under H2O2 treatment supported the idea
that LCMT1 overexpression induced ageneral dephosphorylation of proteins and
indicated increased expression of non-erythrocytic hemoglobin, inactivation of
MAPK3 and regulation of proteins related to Rho signal transduction, which were
known to be linked to the regulation of the cytoskeleton. Discussion: These data provide proteomics and phosphoproteomics
insights into the association of LCMT1-dependent PP2Ac methylation and oxidative
stress and indirectly indicate that the methylation of PP2A plays an important
role against oxidative stress.
Collapse
Affiliation(s)
- Xinhang Wang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Shen Tang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Fu Qin
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Yuyang Liu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Ziwei Liang
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Haiqing Cai
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Laiming Mo
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Deqiang Xiao
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Songcao Guo
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Yiqiang Ouyang
- d Laboratory Animal Centre , Guangxi Medical University , Nanning , People's Republic of China
| | - Bin Sun
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Cailing Lu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Xiyi Li
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| |
Collapse
|
32
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
33
|
Frohner IE, Mudrak I, Kronlachner S, Schüchner S, Ogris E. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Sci Signal 2020; 13:13/616/eaax6490. [PMID: 31992581 DOI: 10.1126/scisignal.aax6490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits. The tested antibodies preferentially recognized the nonmethylated form of the enzyme, and they did not coimmunoprecipitate trimeric holoenzymes containing the regulatory subunits B or B', an issue that precludes their use to monitor PP2A holoenzyme activity. Furthermore, some of the antibodies also recognized the phosphatase PP4, demonstrating a lack of specificity for PP2A. Together, these findings suggest that reinterpretation of the data generated by using these reagents is required.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stephanie Kronlachner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
34
|
Jin N, Shi R, Jiang Y, Chu D, Gong CX, Iqbal K, Liu F. Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging (Albany NY) 2019; 11:9672-9688. [PMID: 31714894 PMCID: PMC6874473 DOI: 10.18632/aging.102413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is the major tau phosphatase. Its activity toward tau is regulated by the methylation of PP2A catalytic subunit (PP2Ac) at Leu309. Protein phosphatase methylesterase-1 (PME-1) demethylates PP2Ac and suppresses its activity. We previously found that glycogen synthase kinase-3β (GSK-3β) suppresses PME-1 expression. However, the underlying molecular mechanism is unknown. In the present study, we analyzed the promoter of PME-1 gene and found that human PME-1 promoter contains two lymphoid enhancer binding factor-1/T-cell factor (LEF1/TCF) cis-elements in which β-catenin serves as a co-activator. β-catenin acted on these two cis-elements and promoted PME-1 expression. GSK-3β phosphorylated β-catenin and suppressed its function in promoting PME-1 expression. Inhibition and activation of GSK-3β by PI3K-AKT pathway promoted and suppressed, respectively, PME-1 expression in primary cultured neurons, SH-SY5Y cells and in the mouse brain. These findings suggest that GSK-3β phosphorylates β-catenin and suppresses its function on PME-1 expression, resulting in an increase of PP2Ac methylation.
Collapse
Affiliation(s)
- Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ruirui Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| |
Collapse
|
35
|
Zheng XF, Acharya SS, Choe KN, Nikhil K, Adelmant G, Satapathy SR, Sharma S, Viccaro K, Rana S, Natarajan A, Sicinski P, Marto JA, Shah K, Chowdhury D. A mitotic CDK5-PP4 phospho-signaling cascade primes 53BP1 for DNA repair in G1. Nat Commun 2019; 10:4252. [PMID: 31534152 PMCID: PMC6751209 DOI: 10.1038/s41467-019-12084-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
Mitotic cells attenuate the DNA damage response (DDR) by phosphorylating 53BP1, a critical DDR mediator, to prevent its localization to damaged chromatin. Timely dephosphorylation of 53BP1 is critical for genome integrity, as premature recruitment of 53BP1 to DNA lesions impairs mitotic fidelity. Protein phosphatase 4 (PP4) dephosphorylates 53BP1 in late mitosis to allow its recruitment to DNA lesions in G1. How cells appropriately dephosphorylate 53BP1, thereby restoring DDR, is unclear. Here, we elucidate the underlying mechanism of kinetic control of 53BP1 dephosphorylation in mitosis. We demonstrate that CDK5, a kinase primarily functional in post-mitotic neurons, is active in late mitotic phases in non-neuronal cells and directly phosphorylates PP4R3β, the PP4 regulatory subunit that recognizes 53BP1. Specific inhibition of CDK5 in mitosis abrogates PP4R3β phosphorylation and abolishes its recognition and dephosphorylation of 53BP1, ultimately preventing the localization of 53BP1 to damaged chromatin. Our results establish CDK5 as a regulator of 53BP1 recruitment.
Collapse
Affiliation(s)
- Xiao-Feng Zheng
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sanket S Acharya
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Katherine N Choe
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shakti Ranjan Satapathy
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
37
|
Abstract
All proteins end with a carboxyl terminus that has unique biophysical properties and is often disordered. Although there are examples of important C-termini functions, a more global role for the C-terminus is not yet established. In this review, we summarize research on C-termini, a unique region in proteins that cells exploit. Alternative splicing and proteolysis increase the diversity of proteins and peptides in cells with unique C-termini. The C-termini of proteins contain minimotifs, short peptides with an encoded function generally characterized as binding, posttranslational modifications, and trafficking. Many of these activities are specific to minimotifs on the C-terminus. Approximately 13% of C-termini in the human proteome have a known minimotif, and the majority, if not all of the remaining termini have conserved motifs inferring a function that remains to be discovered. C-termini, their predictions, and their functions are collated in the C-terminome, Proteus, and Terminus Oriented Protein Function INferred Database (TopFIND) database/web systems. Many C-termini are well conserved, and some have a known role in health and disease. We envision that this summary of C-termini will guide future investigation of their biochemical and physiological significance.
Collapse
Affiliation(s)
- Surbhi Sharma
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| | - Martin R Schiller
- a Nevada Institute of Personalized Medicine and School of Life Sciences , University of Nevada , Las Vegas , NV , USA
| |
Collapse
|
38
|
Ye C, Sutter BM, Wang Y, Kuang Z, Zhao X, Yu Y, Tu BP. Demethylation of the Protein Phosphatase PP2A Promotes Demethylation of Histones to Enable Their Function as a Methyl Group Sink. Mol Cell 2019; 73:1115-1126.e6. [PMID: 30772176 PMCID: PMC6628921 DOI: 10.1016/j.molcel.2019.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9093, USA
| | - Xiaozheng Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
39
|
Zhang Y, Zhang J, Wang E, Qian W, Fan Y, Feng Y, Yin H, Li Y, Wang Y, Yuan T. Microcystin-Leucine-Arginine Induces Tau Pathology Through Bα Degradation via Protein Phosphatase 2A Demethylation and Associated Glycogen Synthase Kinase-3β Phosphorylation. Toxicol Sci 2019; 162:475-487. [PMID: 29228318 DOI: 10.1093/toxsci/kfx271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microcystin-leucine-arginine (MC-LR) has been implicated as a potential environmental factor in Alzheimer's disease because of its potent inhibition of protein phosphatase 2A (PP2A) activity, but experimental evidence to support its detailed neurotoxic effects and their underlying mechanisms has been lacking. The present study investigated the role of PP2A catalytic subunit (PP2Ac) demethylation and its link with glycogen synthase kinase-3β (GSK)-3β in tau hyperphosphorylation induced by MC-LR. The results showed that MC-LR treatment significantly increased demethylation of PP2Ac, with a concomitant increase in GSK-3β phosphorylation at Ser9 resulting in elevated tau hyperphosphorylation at PP2A-favorable sites in SH-SY5Y cells and rat hippocampus. Coimmunoprecipitation experiments showed that MC-LR treatment dissociated PP2Ac from Bα, making it incompetent in binding tau, thus causing tau hyperphosphorylation. Moreover, we found that inhibition of PP2A resulted in an increase in phosphorylation of GSK-3β at Ser9 and a decrease in GSK-3β activity, which further promoted demethylation of PP2Ac induced by MC-LR. These findings suggest a scenario in which MC-LR-mediated demethylation of PP2Ac is associated with GSK-3β phosphorylation at Ser9 and contributes to dissociation of Bα from PP2Ac, which would result in Bα degradation and disruption of PP2A/Bα-tau interactions, thus promoting tau hyperphosphorylation and paired helical filaments-tau accumulation and, consequently, axonal degeneration and cell death.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Enhao Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, School of Medicine.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jangsu 226001, China
| | - Yan Fan
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Ying Feng
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Haimeng Yin
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yang Li
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yuning Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine
| |
Collapse
|
40
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
41
|
Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int J Mol Sci 2019; 20:ijms20010231. [PMID: 30626145 PMCID: PMC6337226 DOI: 10.3390/ijms20010231] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy can be caused by deficiency of either vitamin B12 or folate. Hyperhomocysteinemia (HHcy) can be responsible of different systemic and neurological disease. Actually, HHcy has been considered as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and HHcy has been reported in many neurologic disorders including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. HHcy is typically defined as levels >15 micromol/L. Treatment of hyperhomocysteinemia with folic acid and B vitamins seems to be effective in the prevention of the development of atherosclerosis, CVD, and strokes. However, data from literature show controversial results regarding the significance of homocysteine as a risk factor for CVD and stroke and whether patients should be routinely screened for homocysteine. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum (ER) stress have been considered to play an important role in the pathogenesis of several diseases including atherosclerosis and stroke. The aim of our research is to review the possible role of HHcy in neurodegenerative disease and stroke and to understand its pathogenesis.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Paola Caruso
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
42
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB. Proc Natl Acad Sci U S A 2018; 115:E12053-E12062. [PMID: 30509990 PMCID: PMC6304960 DOI: 10.1073/pnas.1813365115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyperphosphorylated α-synuclein in Lewy bodies and Lewy neurites is a characteristic neuropathological feature of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). The catalytic subunit of the specific phosphatase, protein phosphatase 2A (PP2A) that dephosphorylates α-synuclein, is hypomethylated in these brains, thereby impeding the assembly of the active trimeric holoenzyme and reducing phosphatase activity. This phosphatase deficiency contributes to the accumulation of hyperphosphorylated α-synuclein, which tends to fibrillize more than unmodified α-synuclein. Eicosanoyl-5-hydroxytryptamide (EHT), a fatty acid derivative of serotonin found in coffee, inhibits the PP2A methylesterase so as to maintain PP2A in a highly active methylated state and mitigates the phenotype of α-synuclein transgenic (SynTg) mice. Considering epidemiologic and experimental evidence suggesting protective effects of caffeine in PD, we sought, in the present study, to test whether there is synergy between EHT and caffeine in models of α-synucleinopathy. Coadministration of these two compounds orally for 6 mo at doses that were individually ineffective in SynTg mice and in a striatal α-synuclein preformed fibril inoculation model resulted in reduced accumulation of phosphorylated α-synuclein, preserved neuronal integrity and function, diminished neuroinflammation, and improved behavioral performance. These indices were associated with increased levels of methylated PP2A in brain tissue. A similar profile of greater PP2A methylation and cytoprotection was found in SH-SY5Y cells cotreated with EHT and caffeine, but not with each compound alone. These findings suggest that these two components of coffee have synergistic effects in protecting the brain against α-synuclein-mediated toxicity through maintenance of PP2A in an active state.
Collapse
|
44
|
Zeng P, Shi Y, Wang XM, Lin L, Du YJ, Tang N, Wang Q, Fang YY, Wang JZ, Zhou XW, Lu Y, Tian Q. Emodin Rescued Hyperhomocysteinemia-Induced Dementia and Alzheimer's Disease-Like Features in Rats. Int J Neuropsychopharmacol 2018; 22:57-70. [PMID: 30407508 PMCID: PMC6313134 DOI: 10.1093/ijnp/pyy090] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia is an independent risk factor for dementia, including Alzheimer's disease. Lowering homocysteine levels with folic acid treatment with or without vitamin B12 has shown few clinical benefits on cognition. METHODS To verify the effect of emodin, a naturally active compound from Rheum officinale, on hyperhomocysteinemia-induced dementia, rats were treated with homocysteine injection (HCY, 400 μg/kg/d, 2 weeks) via vena caudalis. Afterwards, HCY rats with cognitive deficits were administered intragastric emodin at different concentrations for 2 weeks: 0 (HCY-E0), 20 (HCY-E20), 40 (HCY-E40), and 80 mg/kg/d (HCY-E80). RESULTS β-Amyloid overproduction, tau hyperphosphorylation, and losses of neuron and synaptic proteins were detected in the hippocampi of HCY-E0 rats with cognitive deficits. HCY-E40 and HCY-E80 rats had better behavioral performance. Although it did not reduce the plasma homocysteine level, emodin (especially 80 mg/kg/d) reduced the levels of β-amyloid and tau phosphorylation, decreased the levels of β-site amyloid precursor protein-cleaving enzyme 1, and improved the activity of protein phosphatase 2A. In the hippocampi of HCY-E40 and HCY-E80 rats, the neuron numbers, levels of synaptic proteins, and phosphorylation of the cAMP responsive element-binding protein at Ser133 were increased. In addition, depressed microglial activation and reduced levels of 5-lipoxygenase, interleukin-6, and tumor necrosis factor α were also observed. Lastly, hyperhomocysteinemia-induced microangiopathic alterations, oxidative stress, and elevated DNA methyltransferases 1 and 3β were rescued by emodin. CONCLUSIONS Emodin represents a novel potential candidate agent for hyperhomocysteinemia-induced dementia and Alzheimer's disease-like features.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yan-Jun Du
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China,Correspondence: Dr Youming Lu and Dr Qing Tian, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China (, )
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China,Correspondence: Dr Youming Lu and Dr Qing Tian, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China (, )
| |
Collapse
|
45
|
Tang S, Lu C, Mo L, Wang X, Liang Z, Qin F, Liu Y, Liu Y, Huang H, Huang Y, Cai H, Xiao D, Guo S, Ouyang Y, Sun B, Li X. Hydrogen peroxide redistributes the localization of protein phosphatase methylesterase 1. Life Sci 2018; 213:166-173. [DOI: 10.1016/j.lfs.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
46
|
Yabe R, Tsuji S, Mochida S, Ikehara T, Usui T, Ohama T, Sato K. A stable association with PME-1 may be dispensable for PP2A demethylation - implications for the detection of PP2A methylation and immunoprecipitation. FEBS Open Bio 2018; 8:1486-1496. [PMID: 30186749 PMCID: PMC6120246 DOI: 10.1002/2211-5463.12485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 12/03/2022] Open
Abstract
Reversible methyl-esterification (methylation) of Leu309 in the protein phosphatase 2A catalytic subunit (PP2Ac) is essential for proper biogenesis of the PP2A holoenzyme. Accumulating evidence links PP2Ac methylation to diseases, including cancer and neurodegenerative disorders. Protein phosphatase methyl-esterase (PME-1) specifically catalyzes PP2Ac demethylation. We demonstrate that PP2Ac is demethylated in cell extracts even at 0 °C unless prevented by a PME-1 methyl-esterase inhibitor. This promotes dissociation of PP2A heterotrimers with B55 or PR72 subunits, but not those with B56 subunits. These results reveal differential sensitivity of ABC heterotrimers to methylation status of the C subunit. Our study advocates caution when interpreting earlier findings, offers an effective protocol for preserving PP2A complexes, and reveals key distinctions between B subunits and their interactions with the AC core dimer of PP2A.
Collapse
Affiliation(s)
- Ryotaro Yabe
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Shunya Tsuji
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Satoru Mochida
- Priority Organization for Innovation and ExcellenceKumamoto UniversityJapan
| | - Tsuyoshi Ikehara
- Department of Food Science and TechnologyNational Fisheries UniversityShimonosekiJapan
| | - Tatsuya Usui
- Laboratory of Veterinary PharmacologyFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takashi Ohama
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| | - Koichi Sato
- Laboratory of Veterinary PharmacologyJoint Faculty of Veterinary MedicineYamaguchi UniversityJapan
| |
Collapse
|
47
|
Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis 2018; 9:747. [PMID: 29970878 PMCID: PMC6030060 DOI: 10.1038/s41419-018-0774-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Cisplatin is still one of the first-line drugs for chemotherapy of head and neck squamous cell carcinoma (HNSCC) and shows a survival advantage for HNSCC. However, a substantial proportion of HNSCC eventually becomes resistance to cisplatin and the underlying mechanisms remain to be fully understood. Yin Yang 1 (YY1) is a multifunctional protein regulating both gene transcription and protein modifications and also plays a role in chemotherapy resistance. Here, we reported that knockdown of YY1 by lentivirus-mediated short hairpin RNA or tetracycline-inducible short hairpin RNA enhanced cisplatin-induced apoptosis and inhibition of cell proliferation, migration and invasion in the HNSCC cell lines, and inhibition of the xenograft tumor growth. The underlying mechanisms were revealed that knockdown of YY1 downregulated both S473 and T308 phosphorylation of AKT (protein kinase B), which was mainly responsible for cisplatin resistance, whereas overexpression of YY1 upregulated both S473 and T308 phosphorylation. Cisplatin upregulated YY1 mRNA and protein expression and both S473 and T308 phosphorylation of AKT. In the presence of cisplatin, knockdown of YY1 not only blocked cisplatin-induced increase in S473 and T308 phosphorylation of AKT, but still downregulated T308 phosphorylation. Moreover, protein phosphatase 2A (PP2A) antagonist, okadaic acid, upregulated T308, but not S473, phosphorylation, and simultaneously abolished YY1 knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. In addition, knockdown of YY1 promoted PP2A activity through upregulating mRNA and protein expressions of PP2A catalytic subunit alpha (PPP2CA) through the binding of YY1 in the promoter of PPP2CA. Conversely, activating PP2A by forskolin also promoted YY1 degradation and subsequently inhibited T308 phosphorylation. These results suggested that knockdown of YY1 enhanced anticancer effects of cisplatin through PP2A mediating T308 dephosphorylation of AKT, and that targeting YY1 or PP2A would enhance the efficiency of cisplatin chemotherapy in treatment of HNSCC.
Collapse
|
48
|
Lee JA, Wang Z, Sambo D, Bunting KD, Pallas DC. Global loss of leucine carboxyl methyltransferase-1 causes severe defects in fetal liver hematopoiesis. J Biol Chem 2018; 293:9636-9650. [PMID: 29735529 PMCID: PMC6016458 DOI: 10.1074/jbc.ra118.002012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/12/2018] [Indexed: 11/06/2022] Open
Abstract
Leucine carboxyl methyltransferase-1 (LCMT-1) methylates the C-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In this study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ∼30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and usually death by embryonic day 16.5. Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit+Lin-Sca1+ cells. The percent cycling cells and mitotic indices of WT and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, noncompetitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multilineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis.
Collapse
Affiliation(s)
- Jocelyn A Lee
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Zhengqi Wang
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Danielle Sambo
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Kevin D Bunting
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David C Pallas
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| |
Collapse
|
49
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
50
|
Ma Q, Feng Y, Deng K, Shao H, Sui T, Zhang X, Sun X, Jin L, Ma Z, Luo G. Unique Responses of Hepatocellular Carcinoma and Cholangiocarcinoma Cell Lines toward Cantharidin and Norcantharidin. J Cancer 2018; 9:2183-2190. [PMID: 29937938 PMCID: PMC6010690 DOI: 10.7150/jca.25454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate whether cell lines from human gastric and liver cancers respond differently toward cantharidin (CTD) and norcantharidin (NCTD) than other types of cancer cells. We first established the half maximal inhibitory concentrations (IC50s) of CTD for a large panel of cancer cell lines representing the 12 major types of human cancers and the mode of cell death induced by the two compounds. We next compared the growth inhibitory effects as well as the corresponding modes of action of CTD and NCTD. The IncuCyte ZOOM system was used as a semi-high throughput means to define IC50s and 90% inhibitory doses (IC90s) as a reference for the maximal tolerable doses (MTDs) for the two compounds in 72 cancer cell lines. Classical clonogenic survival assay was used to assess the anti-proliferative effect of CTD on selected cell lines of interest. In addition, DNA content-based flow was used to interrogate the modes of cell death following CTD or NCTD exposure. The results of these experiments led to several findings. 1). Cell lines representing hepatocellular carcinomas (HCCs) and cholangiocarcinomas (CCs) were among the most sensitive toward CTD, consistent with the previous clinical study of this compound and its source of origin, Mylabris. 2). Among the individual cell lines of a given cancer types, the sensitivity trends for CTD and NCTD did not exhibit a good correlation. 3) CTD and NCTD caused distinctive cytotoxic effects on HepG2 cells. Specifically, while a cytostatic effect is the primary cause of growth inhibition of CTD, cytotoxic effect is the main contributing factor for the growth inhibition of NTCD. These results indicate that liver cancer cell lines are among the most sensitive to CTD and that CTD and NCTD exhibit their effects through distinct mechanisms.
Collapse
Affiliation(s)
- Qixiang Ma
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Yanyan Feng
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Kaiwen Deng
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Haozhen Shao
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Tongtong Sui
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Xin Zhang
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Xiao Sun
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Lin Jin
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Zhitao Ma
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China
| | - Guangbin Luo
- School of Life Sciences, Centre For Translational Oncology, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, People's Republic of China.,Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|