1
|
Yang C, Yu C, Zhang Z, Wang D, Yuan X. Molecular Characteristics of Subgenomic RNAs and the Cap-Dependent Translational Advantage Relative to Corresponding Genomic RNAs of Tomato spotted wilt virus. Int J Mol Sci 2022; 23:ijms232315074. [PMID: 36499398 PMCID: PMC9741439 DOI: 10.3390/ijms232315074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) causes severe viral diseases on many economically important plants of Solanaceae. During the infection process of TSWV, a series of 3'-truncated subgenomic RNAs (sgRNAs) relative to corresponding genomic RNAs were synthesized, which were responsible for the expression of some viral proteins. However, corresponding genomic RNAs (gRNAs) seem to possess the basic elements for expression of these viral proteins. In this study, molecular characteristics of sgRNAs superior to genomic RNAs in viral protein expression were identified. The 3' ends of sgRNAs do not cover the entire intergenic region (IGR) of TSWV genomic RNAs and contain the remarkable A-rich characteristics. In addition, the 3' terminal nucleotides of sgRNAs are conserved among different TSWV isolates. Based on the eIF4E recruitment assay and subsequent northern blot, it is suggested that the TSWV sgRNA, but not gRNA, is capped in vivo; this is why sgRNA is competent for protein expression relative to gRNA. In addition, the 5' and 3' untranslated region (UTR) of sgRNA-Ns can synergistically enhance cap-dependent translation. This study further enriched the understanding of sgRNAs of ambisense RNA viruses.
Collapse
Affiliation(s)
| | | | | | - Deya Wang
- Correspondence: (D.W.); (X.Y.); Tel.: +86-632-3786776 (D.W.); +86-538-8205608 (X.Y.)
| | - Xuefeng Yuan
- Correspondence: (D.W.); (X.Y.); Tel.: +86-632-3786776 (D.W.); +86-538-8205608 (X.Y.)
| |
Collapse
|
2
|
Xu M, Risse J, Kormelink R. Cap-snatching as a possible contributor to photosynthesis shut-off. J Gen Virol 2022; 103. [PMID: 35947091 DOI: 10.1099/jgv.0.001763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cap-snatching is a mechanism applied by segmented, negative strand (-) RNA viruses (NSVs) to initiate genome transcription. So far, the cap donor source of cytoplasmic-replicating NSVs has remained elusive. Recently, studies pointed to processing body (P body, PB) as the potential source for providing capped RNAs but conclusive evidence is still lacking. To attempt identifying these sources, here the 5' non-viral leader sequences of Tomato spotted wilt virus (TSWV) N mRNAs were analysed by high-throughput sequencing (HTS) from plants subjected to normal and heat-stress conditions, and subsequently mapped on host donor transcripts. The majority of non-viral heterogenous, host-derived leader sequences ranged in size between ~10-20 nt and contained A or AG residues at the cleavage site and the presence of certain sequence motifs. Mapping the capped-leader sequences to the 5' UTR region of genes encoded by the Nicotiana tabacum genome, identified 348 donor genes and which were specifically enriched in cellular photosynthesis pathway. Nineteen of those were clearly expressed differentially at normal condition versus heat-stress conditions. Although the results did not point towards snatching of capped-RNA leader sequences from certain cytoplasmic RNA granules in particular, they indicated photosynthesis downregulation (and development of disease symptoms) partially result from cap-snatching.
Collapse
Affiliation(s)
- Min Xu
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Judith Risse
- Laboratory of Bioinformatics, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Bunyaviral N Proteins Localize at RNA Processing Bodies and Stress Granules: The Enigma of Cytoplasmic Sources of Capped RNA for Cap Snatching. Viruses 2022; 14:v14081679. [PMID: 36016301 PMCID: PMC9414089 DOI: 10.3390/v14081679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Most cytoplasmic-replicating negative-strand RNA viruses (NSVs) initiate genome transcription by cap snatching. The source of host mRNAs from which the cytoplasmic NSVs snatch capped-RNA leader sequences has remained elusive. Earlier reports have pointed towards cytoplasmic-RNA processing bodies (P body, PB), although several questions have remained unsolved. Here, the nucleocapsid (N) protein of plant- and animal-infecting members of the order Bunyavirales, in casu Tomato spotted wilt virus (TSWV), Rice stripe virus (RSV), Sin nombre virus (SNV), Crimean-Congo hemorrhagic fever virus (CCHFV) and Schmallenberg virus (SBV) have been expressed and localized in cells of their respective plant and animal hosts. All N proteins localized to PBs as well as stress granules (SGs), but extensively to docking stages of PB and SG. TSWV and RSV N proteins also co-localized with Ran GTPase-activating protein 2 (RanGAP2), a nucleo-cytoplasmic shuttling factor, in the perinuclear region, and partly in the nucleus when co-expressed with its WPP domain containing a nuclear-localization signal. Upon silencing of PB and SG components individually or concomitantly, replication levels of a TSWV minireplicon, as measured by the expression of a GFP reporter gene, ranged from a 30% reduction to a four-fold increase. Upon the silencing of RanGAP homologs in planta, replication of the TSWV minireplicon was reduced by 75%. During in vivo cap-donor competition experiments, TSWV used transcripts destined to PB and SG, but also functional transcripts engaged in translation. Altogether, the results implicate a more complex situation in which, besides PB, additional cytoplasmic sources are used during transcription/cap snatching of cytoplasmic-replicating and segmented NSVs.
Collapse
|
4
|
Wang W, Shin WJ, Zhang B, Choi Y, Yoo JS, Zimmerman MI, Frederick TE, Bowman GR, Gross ML, Leung DW, Jung JU, Amarasinghe GK. The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Rep 2020; 30:153-163.e5. [PMID: 31914382 PMCID: PMC7214099 DOI: 10.1016/j.celrep.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daisy W Leung
- Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Lin W, Wu R, Qiu P, Jing Jin, Yang Y, Wang J, Lin Z, Zhang J, Wu Z, Du Z. A convenient in vivo cap donor delivery system to investigate the cap snatching of plant bunyaviruses. Virology 2020; 539:114-120. [PMID: 31710910 DOI: 10.1016/j.virol.2019.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.
Collapse
Affiliation(s)
- Wenzhong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ran Wu
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jing Jin
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Yunyue Yang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jinglin Wang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zhonglong Lin
- China Tobacco Corporation Yunnan Company, Kunming, 650001, China
| | - Jie Zhang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Zhai Y, Peng H, Neff MM, Pappu HR. Putative Auxin and Light Responsive Promoter Elements From the Tomato spotted wilt tospovirus Genome, When Expressed as cDNA, Are Functional in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:804. [PMID: 31316531 PMCID: PMC6611158 DOI: 10.3389/fpls.2019.00804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 05/31/2023]
Abstract
Members of the virus order Bunyavirales cause serious diseases in animals, humans and plants. Family Tospoviridae in this order contains only one genus Orthotospovirus, and members in this genus exclusively infect plants. Tomato spotted wilt tospovirus (TSWV) is considered one of the most economically important plants viruses. Little is known about the regulatory elements in the TSWV genome. Here we show that, when in the cDNA form, the 5'-upstream region of the TSWV-coded GN/GC gene (pGN/GC) possesses putative cis-regulatory elements, including an auxin responsive element (AuxRE) for binding of auxin response factors (ARFs), as well as a circadian clock-associated 1 (CCA1) protein binding site (CBS). Due to the lack of a reverse genetics system, we verified the functionality of these elements in Arabidopsis. pGN/GC showed light-suppressive promoter activity in transgenic Arabidopsis, and mutation in the CBS was sufficient to switch the activity to light inducible. Additionally, exogenous auxin treatments repressed the promoter activity of both wild type and CBS-mutated pGN/GC. Mutation in AuxRE in both promoters abolished their sensitivity to auxin. As transcriptional repressors, both CCA1 and ARF2 were able to bind to pGN/GC directly. To our knowledge, this is the first report that a 5'-terminal sequence of an RNA virus has light-and hormone-responsive promoter activities when expressed as cDNA in host plant's nuclear background. Our findings suggest new clues on the possible origin, evolution and function of the TSWV genomic sequence and its non-coding regions.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Kaur R, Mudgal R, Narwal M, Tomar S. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res 2018; 256:209-218. [PMID: 29958924 DOI: 10.1016/j.virusres.2018.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m7GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m7GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m7G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m7GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m7GMP-nsP1 complex by utilizing anti-m7G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg2+) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC50 values were estimated to be 2.69 μM, 5.72 μM and 1.18 mM, respectively.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Mudgal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Manju Narwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
8
|
Oymans J, Te Velthuis AJW. A Mechanism for Priming and Realignment during Influenza A Virus Replication. J Virol 2018; 92:e01773-17. [PMID: 29118119 PMCID: PMC5774886 DOI: 10.1128/jvi.01773-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus genome consists of eight segments of single-stranded RNA. These segments are replicated and transcribed by a viral RNA-dependent RNA polymerase (RdRp) that is made up of the influenza virus proteins PB1, PB2, and PA. To copy the viral RNA (vRNA) genome segments and the cRNA segments, the replicative intermediate of viral replication, the RdRp must use two promoters and two different de novo initiation mechanisms. On the vRNA promoter, the RdRp initiates on the 3' terminus, while on the cRNA promoter, the RdRp initiates internally and subsequently realigns the nascent vRNA product to ensure that the template is copied in full. In particular, the latter process, which is also used by other RNA viruses, is not understood. Here we provide mechanistic insight into priming and realignment during influenza virus replication and show that it is controlled by the priming loop and a helix-loop-helix motif of the PB1 subunit of the RdRp. Overall, these observations advance our understanding of how the influenza A virus initiates viral replication and amplifies the genome correctly.IMPORTANCE Influenza A viruses cause severe disease in humans and are considered a major threat to our economy and health. The viruses replicate and transcribe their genome by using an enzyme called the RNA polymerases. To ensure that the genome is amplified faithfully and that abundant viral mRNAs are made for viral protein synthesis, the RNA polymerase must work correctly. In this report, we provide insight into the mechanism that the RNA polymerase employs to ensure that the viral genome is copied correctly.
Collapse
Affiliation(s)
- Judith Oymans
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- University of Cambridge, Department of Pathology, Division of Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
9
|
Rice Stripe Tenuivirus Has a Greater Tendency To Use the Prime-and-Realign Mechanism in Transcription of Genomic than in Transcription of Antigenomic Template RNAs. J Virol 2017; 92:JVI.01414-17. [PMID: 29046442 DOI: 10.1128/jvi.01414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Most segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5' heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5' ends of Rice stripe tenuivirus (RSV) and Rice grassy stunt tenuivirus (RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5' ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U1G2 of the tenuiviral template 3'-U1G2U3G4UUUCG, were found to be prevalent at the 3' termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U1/U3 or G2/G4 of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses.IMPORTANCE Many segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5' heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.
Collapse
|
10
|
Amroun A, Priet S, Querat G. Toscana virus cap-snatching and initiation of transcription. J Gen Virol 2017; 98:2676-2688. [PMID: 29022865 DOI: 10.1099/jgv.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
Collapse
Affiliation(s)
- Abdennour Amroun
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Gilles Querat
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
11
|
Kumar S, Subbarao BL, Hallan V. Molecular characterization of emaraviruses associated with Pigeonpea sterility mosaic disease. Sci Rep 2017; 7:11831. [PMID: 28928453 PMCID: PMC5605523 DOI: 10.1038/s41598-017-11958-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Sterility Mosaic Disease (SMD) of pigeonpea (Cajanus cajan (L.) Millspaugh) is a complex disease due to various factors including the presence of a mixed infection. Comparison of dsRNA profile and small RNA (sRNA) deep sequencing analysis of samples from three locations revealed the presence of Pigeonpea sterility mosaic virus-I and II (PPSMV-I and II) from Chevella and only PPSMV-II from Bengaluru and Coimbatore. PPSMV-I genome consisted of four while PPSMV-II encompassed six RNAs. The two viruses have modest sequence homology between their corresponding RNA 1-4 encoding RdRp, glycoprotein precursor, nucleocapsid and movement proteins and the corresponding orthologs of other emaraviruses. However, PPSMV-II is more related to Fig mosaic virus (FMV) than to PPSMV-I. ELISA based detection methodology was standardized to identify these two viruses, uniquely. Mite inoculation of sub-isolate Chevella sometimes resulted in few- to- many pigeonpea plants containing PPSMV-I alone. The study shows that (i) the N-terminal region of RdRp (SRD-1) of both the viruses contain "cap-snatching" endonuclease domain and a 13 AA cap binding site at the C-terminal, essential for viral cap-dependent transcription similar to the members of Bunyaviridae family and (ii) P4 is the movement protein and may belong to '30 K superfamily' of MPs.
Collapse
Affiliation(s)
- Surender Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, 176061, India
- Plant Virology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - B L Subbarao
- House # B-88, 3rd Ave, 6th Cross, Sainikpuri, Secunderabad, 500 094, Telangana, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, 176061, India.
- Plant Virology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India.
| |
Collapse
|
12
|
Chou WC, Lin SS, Yeh SD, Li SL, Peng YC, Fan YH, Chen TC. Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses. PLoS One 2017; 12:e0182425. [PMID: 28771638 PMCID: PMC5542687 DOI: 10.1371/journal.pone.0182425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023] Open
Abstract
Chenopodium quinoa is a natural local lesion host of numerous plant viruses, including tospoviruses (family Bunyaviridae). Groundnut chlorotic fan-spot tospovirus (GCFSV) has been shown to consistently induce local lesions on the leaves of C. quinoa 4 days post-inoculation (dpi). To reveal the whole genome of GCFSV and its interactions with C. quinoa, RNA-seq was performed to determine the transcriptome profiles of C. quinoa leaves. The high-throughput reads from infected C. quinoa leaves were used to identify the whole genome sequence of GCFSV and its single nucleotide polymorphisms. Our results indicated that GCFSV is a phylogenetically distinct tospovirus. Moreover, 27,170 coding and 29,563 non-coding sequences of C. quinoa were identified through de novo assembly, mixing reads from mock and infected samples. Several key genes involved in the modulation of hypersensitive response (HR) were identified. The expression levels of 4,893 deduced complete genes annotated using the Arabidopsis genome indicated that several HR-related orthologues of pathogenesis-related proteins, transcription factors, mitogen-activated protein kinases, and defense proteins were significantly expressed in leaves that formed local lesions. Here, we also provide new insights into the replication progression of a tospovirus and the molecular regulation of the C. quinoa response to virus infection.
Collapse
Affiliation(s)
- Wan-Chen Chou
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Taiwan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Siang-Ling Li
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | | | - Ya-Hsu Fan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Tsung-Chi Chen
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Zheng Y, Navarro B, Wang G, Wang Y, Yang Z, Xu W, Zhu C, Wang L, Serio FD, Hong N. Actinidia chlorotic ringspot-associated virus: a novel emaravirus infecting kiwifruit plants. MOLECULAR PLANT PATHOLOGY 2017; 18:569-581. [PMID: 27125218 PMCID: PMC6638214 DOI: 10.1111/mpp.12421] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
By integrating next-generation sequencing (NGS), bioinformatics, electron microscopy and conventional molecular biology tools, a new virus infecting kiwifruit vines has been identified and characterized. Being associated with double-membrane-bound bodies in infected tissues and having a genome composed of RNA segments, each one containing a single open reading frame in negative polarity, this virus shows the typical features of members of the genus Emaravirus. Five genomic RNA segments were identified. Additional molecular signatures in the viral RNAs and in the proteins they encode, together with data from phylogenetic analyses, support the proposal of creating a new species in the genus Emaravirus to classify the novel virus, which is tentatively named Actinidia chlorotic ringspot-associated virus (AcCRaV). Bioassays showed that AcCRaV is mechanically transmissible to Nicotiana benthamiana plants which, in turn, may develop chlorotic spots and ringspots. Field surveys disclosed the presence of AcCRaV in four different species of kiwifruit vines in five different provinces of central and western China, and support the association of the novel virus with symptoms of leaf chlorotic ringspots in Actinidia. Data on the molecular features of small RNAs of 21-24 nucleotides, derived from AcCRaV RNAs targeted by host RNA silencing mechanisms, are also reported, and possible molecular pathways involved in their biogenesis are discussed.
Collapse
Affiliation(s)
- Yazhou Zheng
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, CNRBari70126Italy
| | - Guoping Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Yanxiang Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Zuokun Yang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Wenxing Xu
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Chenxi Zhu
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Liping Wang
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| | | | - Ni Hong
- National Key Laboratory of AgromicrobiologyHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
14
|
Amroun A, Priet S, de Lamballerie X, Quérat G. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Crit Rev Microbiol 2017; 43:753-778. [PMID: 28418734 DOI: 10.1080/1040841x.2017.1307805] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.
Collapse
Affiliation(s)
- Abdennour Amroun
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Stéphane Priet
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Xavier de Lamballerie
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Gilles Quérat
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| |
Collapse
|
15
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
16
|
Liu X, Xiong G, Qiu P, Du Z, Kormelink R, Zheng L, Zhang J, Ding X, Yang L, Zhang S, Wu Z. Inherent properties not conserved in other tenuiviruses increase priming and realignment cycles during transcription of Rice stripe virus. Virology 2016; 496:287-298. [PMID: 27393974 DOI: 10.1016/j.virol.2016.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Two tenuiviruses Rice stripe virus (RSV) and Rice grassy stunt virus (RGSV) were found to co-infect rice with the same reovirus Rice ragged stunt virus (RRSV). During the co-infection, both tenuiviruses recruited 10-21 nucleotides sized capped-RNA leaders from the RRSV. A total of 245 and 102 RRSV-RGSV and RRSV-RSV chimeric mRNA clones, respectively, were sequenced. An analysis of the sequences suggested a scenario consistent with previously reported data on related viruses, in which capped leader RNAs having a 3' end complementary to the viral template are preferred and upon base pairing the leaders prime processive transcription directly or after one to several cycles of priming and realignment (repetitive prime-and-realign). Interestingly, RSV appeared to have a higher tendency to use repetitive prime-and-realign than RGSV even with the same leader derived from the same RRSV RNA. Combining with relevant data reported previously, this points towards an intrinsic feature of RSV.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guihong Xiong
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ping Qiu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Luping Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinlun Ding
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Yang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Songbai Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
17
|
Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Günther S, Cusack S. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathog 2016; 12:e1005636. [PMID: 27304209 PMCID: PMC4909276 DOI: 10.1371/journal.ppat.1005636] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. Segmented negative strand viruses (sNSV) such as Influenza, Lassa or Hantaan viruses are responsible for a large number of severe human infectious diseases. Currently, there are vaccines and antiviral treatments available for influenza but none for the infections caused by other sNSV. All carry out transcription by the cap-snatching mechanism, which requires the action of a metal ion dependent endonuclease (EN), a domain within their large viral polymerases. Here we provide the crystal structure of the Hantaan virus (family Bunyaviridae) and Lassa virus (family Arenaviridae) cap-snatching ENs in complex with manganese and a comparative functional study of their catalytic activity. Despite the high structural homology between the two ENs a few changes in the active site, involving a catalytic histidine, cause a different binding of the metal ions with dramatic consequences for their in vitro activity. Hantaan EN binds the metal ions as Influenza A (family Orthomyxoviridae) and LACV (family Bunyaviridae) ENs and all three are active in vitro. In contrast Lassa virus EN is inactive in the same experimental conditions. We can now classify sNSV into two functionally distinct groups (His+ and His- ENs), providing a broad view of the sNSV cap-snatching ENs properties that will be determinant for the comprehensive development of broad-spectrum antiviral drugs. These results also have implications for the viral transcription regulation in the light of recent studies on full-length sNSV polymerases.
Collapse
Affiliation(s)
- Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- * E-mail: (JR); (SC)
| | - Piotr Gerlach
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Maria Rosenthal
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Gaudon
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Francesca Coscia
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- Unit of Virus-Host Cell Interactions (UMI 3265), Univ. Grenoble-Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS90181, 38042 Grenoble Cedex 9, France
- * E-mail: (JR); (SC)
| |
Collapse
|
18
|
Patil BL, Kumar PL. Pigeonpea sterility mosaic virus: a legume-infecting Emaravirus from South Asia. MOLECULAR PLANT PATHOLOGY 2015; 16:775-86. [PMID: 25640756 PMCID: PMC6638375 DOI: 10.1111/mpp.12238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pigeonpea sterility mosaic virus (PPSMV), a species of the genus Emaravirus, is the causal agent of sterility mosaic disease (SMD) of pigeonpea [Cajanus cajan (L.) Millsp]. This disease, dubbed the 'green plague', as the infected plants remain in the vegetative state without flower production, has been reported from India and a few other South-East Asian countries. SMD is estimated to result in an annual yield loss of over US$300 million in India alone. The aetiology of SMD, which remained a mystery for over 70 years, was resolved with the discovery of PPSMV in 2000 and its complete genome sequence in 2014. AETIOLOGY AND VIRUS TRANSMISSION SMD is characterized by stunted and bushy plants, leaves of reduced size with chlorotic rings or mosaic symptoms, and partial or complete cessation of flower production (i.e. sterility). The causal agent of the disease is PPSMV, a virus with a segmented, negative-sense, single-stranded RNA genome, transmitted in a semi-persistent manner by an eriophyid mite Aceria cajani Channabassavanna (Acari: Arthropoda). Both the virus and vector are highly specific to pigeonpea and a few of its wild relatives, such as C. scarabaeoides and C. cajanifolius. Under experimental conditions, PPSMV was transmitted to Nicotiana benthamiana by sap inoculation using fresh extract of SMD-infected leaves (but not to pigeonpea); however, purified nucleoprotein preparations are not infectious. The virus was also transmitted to French bean (Phaseolus vulgaris L.) using viruliferous eriophyid mites. PPSMV is not seed transmitted in pigeonpea or other hosts known to be infected by this virus. On the basis of the differential host reactions in different geographical locations, the occurrence of diverse PPSMV strains was suspected. HOST RANGE AND EPIDEMIOLOGY PPSMV can infect several genotypes of cultivated and wild relatives of pigeonpea. Experimental hosts include N. benthamiana, N. clevelandii, P. vulgaris and Chrozophora rottleri. However, pigeonpea alone and a few wild species of Cajanus were found to support the vector A. cajani. SMD is endemic in most of the pigeonpea-growing regions of India, but the incidence varies widely between regions and years. In nature, A. cajani populations were almost exclusively observed on SMD-infected pigeonpea, but not on healthy plants, indicating a strong communalistic relationship between the virus-infected plants and the vector. The epidemiology of SMD involves the virus, mite vector, cultivar and environmental conditions. Infected perennial and volunteer plants serve as a source for both the virus and its vector mites, and play an important role in the disease cycle. GENOME ORGANIZATION, GENE FUNCTION AND TAXONOMY The PPSMV genome contains five segments of single-stranded RNA that are predicted to encode proteins in negative sense. The ribonucleoprotein complex is encased in quasi-spherical, membrane-bound virus particles of 100-150 nm. The largest segment, RNA-1, is 7022 nucleotides in length and codes for RNA-dependent RNA polymerase (2295 amino acids); RNA-2, with a sequence length of 2223 nucleotides, codes for glycoproteins (649 amino acids); RNA-3, with a sequence length of 1442 nucleotides, codes for nucleocapsid protein (309 amino acids); RNA-4, with a sequence length of 1563 nucleotides, codes for a putative movement protein p4 (362 amino acids); and RNA-5, with a sequence length of 1689 nucleotides, codes for p5 (474 amino acids), a protein with unknown function. PPSMV was recently classified as a species in the genus Emaravirus, a genus whose members show features resembling those of members of the genera Tospovirus (Family: Bunyaviridae) and Tenuivirus, both of which comprise single-stranded RNA viruses that encode proteins by an ambisense strategy. SMD CONTROL The disease is mainly controlled using SMD-resistant cultivars. However, the occurrence of distinct strains/isolates of PPSMV in different locations makes it difficult to incorporate broad-spectrum resistance. Studies on the inheritance of SMD resistance in different cultivars against different isolates of PPSMV indicate that the resistance is mostly governed by recessive genes, although there are contrasting interpretations of the data. Genetic engineering through RNA-interference (RNAi) and resistant gene-based strategies are some of the potential approaches for the transgenic control of SMD. Seed treatment or soil and foliar application of a number of organophosphorus-based insecticides or acaricides, which are recommended for the management of the vector mites, are seldom practised because of prohibitive costs and also their risks to human health and the environment.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, 110012, India
| | - P Lava Kumar
- International Institute of Tropical Agriculture, Oyo Road, PMB 5320, Ibadan, Nigeria
| |
Collapse
|
19
|
Koppstein D, Ashour J, Bartel DP. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 2015; 43:5052-64. [PMID: 25901029 PMCID: PMC4446424 DOI: 10.1093/nar/gkv333] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs.
Collapse
Affiliation(s)
- David Koppstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph Ashour
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Bag S, Schwartz HF, Cramer CS, Havey MJ, Pappu HR. Iris yellow spot virus (Tospovirus: Bunyaviridae): from obscurity to research priority. MOLECULAR PLANT PATHOLOGY 2015; 16:224-37. [PMID: 25476540 PMCID: PMC6638421 DOI: 10.1111/mpp.12177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMY Iris yellow spot virus (IYSV) is in the genus Tospovirus, family Bunyaviridae, with a single-stranded, tri-segmented RNA genome with an ambisense genome organization. Members of the other genera in the family infect predominantly vertebrates and insects. GEOGRAPHICAL DISTRIBUTION IYSV is present in most Allium-growing regions of the world. PHYSICAL PROPERTIES Virions are pleomorphic particles of 80-120 nm in size. The particle consists of RNA, protein, glycoprotein and lipids. GENOME IYSV shares the genomic features of other tospoviruses: a segmented RNA genome of three RNAs, referred to as large (L), medium (M) and small (S). The L RNA codes for the RNA-dependent RNA polymerase (RdRp) in negative sense. The M RNA uses an ambisense coding strategy and codes for the precursor for the GN /GC glycoprotein in the viral complementary (vc) sense and a non-structural protein (NSm) in the viral (v) sense. The S RNA also uses an ambisense coding strategy with the coat protein (N) in vc sense and a non-structural protein (NSs) in the v sense. TRANSMISSION The virus is transmitted by Thrips tabaci Lindeman (Order: Thysanoptera; Family: Thripidae; onion thrips) and with less efficiency by Frankliniella fusca Hinds (tobacco thrips). HOST: IYSV has a relatively broad host range, including cultivated and wild onions, garlic, chives, leeks and several ornamentals. Some weeds are naturally infected by IYSV and may serve as alternative hosts for the virus. SYMPTOMS IYSV symptoms in Allium spp. are yellow- to straw-coloured, diamond-shaped lesions on leaves and flowering scapes. Diamond-shaped lesions are particularly pronounced on scapes. As the disease progresses, the lesions coalesce, leading to lodging of the scapes. In seed crops, this could lead to a reduction in yield and quality. Early to mid-season infection in bulb crops results in reduced vigour and bulb size. CONTROL Resistant varieties are not available, but a limited number of accessions with field tolerance have been identified. Integrated disease management tactics, including sanitation, crop rotation, thrips management, maintenance of optimal plant vigour, soil fertility, irrigation and physical separation of bulb and seed crops, can mitigate the effect of the disease. Virus code: 00.011.0.85.009 Useful link: http://www.alliumnet.com/.
Collapse
Affiliation(s)
- Sudeep Bag
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
21
|
Deep sequencing reveals the eight facets of the influenza A/HongKong/1/1968 (H3N2) virus cap-snatching process. Sci Rep 2014; 4:6181. [PMID: 25154590 PMCID: PMC4143772 DOI: 10.1038/srep06181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022] Open
Abstract
The influenza A virus RNA polymerase cleaves the 5′ end of host pre-mRNAs and uses the capped RNA fragments as primers for viral mRNA synthesis. We performed deep sequencing of the 5′ ends of viral mRNAs from all genome segments transcribed in both human (A549) and mouse (M-1) cells infected with the influenza A/HongKong/1/1968 (H3N2) virus. In addition to information on RNA motifs present, our results indicate that the host primers are divergent between the viral transcripts. We observed differences in length distributions, nucleotide motifs and the identity of the host primers between the viral mRNAs. Mapping the reads to known transcription start sites indicates that the virus targets the most abundant host mRNAs, which is likely caused by the higher expression of these genes. Our findings suggest negligible competition amongst RdRp:vRNA complexes for individual host mRNA templates during cap-snatching and provide a better understanding of the molecular mechanism governing the first step of transcription of this influenza strain.
Collapse
|
22
|
Komoda K, Ishibashi K, Kawamura-Nagaya K, Ishikawa M. Possible involvement of eEF1A in Tomato spotted wilt virus RNA synthesis. Virology 2014; 468-470:81-87. [PMID: 25151062 DOI: 10.1016/j.virol.2014.07.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/16/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a negative-strand RNA virus in the family Bunyaviridae and propagates in both insects and plants. Although TSWV can infect a wide range of plant species, host factors involved in viral RNA synthesis of TSWV in plants have not been characterized. In this report, we demonstrate that the cell-free extract derived from one of the host plants can activate mRNA transcriptional activity of TSWV. Based on activity-guided fractionation of the cell-free extract, we identified eukaryotic elongation factor (eEF) 1A as a possible host factor facilitating TSWV transcription and replication. The RNA synthesis-supporting activity decreased in the presence of an eEF1A inhibitor, suggesting that eEF1A plays an important role in RNA synthesis of TSWV.
Collapse
Affiliation(s)
- Keisuke Komoda
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | - Kazuhiro Ishibashi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Kazue Kawamura-Nagaya
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Masayuki Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Elbeaino T, Digiaro M, Uppala M, Sudini H. Deep sequencing of pigeonpea sterility mosaic virus discloses five RNA segments related to emaraviruses. Virus Res 2014; 188:27-31. [DOI: 10.1016/j.virusres.2014.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
|
24
|
Coupeau D, Claine F, Wiggers L, Martin B, Kirschvink N, Muylkens B. Characterization of messenger RNA termini in Schmallenberg virus and related Simbuviruses. J Gen Virol 2013; 94:2399-2405. [PMID: 23939979 DOI: 10.1099/vir.0.055954-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Schmallenberg virus (SBV) is an emerging arbovirus infecting ruminants in Europe. SBV belongs to the Bunyaviridae family within the Simbu serogroup. Its genome comprises three segments, small (S), medium (M) and large (L), that together encode six proteins and contain NTRs. NTRs are involved in initiation and termination of transcription and in genome packaging. This study explored the 3' mRNA termini of SBV and related Simbuviruses. In addition, the 5' termini of SBV messenger RNA (mRNA) were characterized. For the three SBV segments, cap-snatching was found to initiate mRNA transcription both in vivo and in vitro. The presence of extraneous nucleotides between host RNA leaders and the viral termini fits with the previously described prime-and-realign theory. At the 3' termini, common features were identified for SBV and related Simbuviruses. However, different patterns were observed for the termini of the three segments from the same virus type.
Collapse
Affiliation(s)
- Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - François Claine
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Laetitia Wiggers
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Beer Martin
- Friedrich-Loeffler-Institut, Greifswald-Insel-Riems, Germany
| | - Nathalie Kirschvink
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Benoît Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| |
Collapse
|
25
|
Datta K, Wolkerstorfer A, Szolar OHJ, Cusack S, Klumpp K. Characterization of PA-N terminal domain of Influenza A polymerase reveals sequence specific RNA cleavage. Nucleic Acids Res 2013; 41:8289-99. [PMID: 23847103 PMCID: PMC3783182 DOI: 10.1093/nar/gkt603] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3′ end of a guanine (G) base in RNA. The G specificity is exhibited by the native influenza polymerase complex associated with viral ribonucleoprotein particles and is conferred by an intrinsic G specificity of the isolated PA endonuclease domain PA-Nter. In addition, RNA cleavage site choice by the full polymerase is also guided by cap binding to the PB2 subunit, from which RNA cleavage preferentially occurs at the 12th nt downstream of the cap. However, if a G residue is present in the region of 10–13 nucleotides from the cap, cleavage preferentially occurs at G. This is the first biochemical evidence of influenza polymerase PA showing intrinsic sequence selective endonuclease activity.
Collapse
Affiliation(s)
- Kausiki Datta
- Hoffmann-La Roche Inc., Virology Discovery, Nutley, NJ 07110, USA, Savira pharmaceuticals GmbH, Veterinaerplatz 1/IA, A-1210, Vienna, Austria, European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France, Unit of Virus Host Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France and RiboScience LLC, 3901 Laguna Avenue, Palo Alto, CA 94306, USA
| | | | | | | | | |
Collapse
|
26
|
Cheng E, Mir MA. Signatures of host mRNA 5' terminus for efficient hantavirus cap snatching. J Virol 2012; 86:10173-85. [PMID: 22787213 PMCID: PMC3446632 DOI: 10.1128/jvi.05560-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/04/2012] [Indexed: 02/06/2023] Open
Abstract
Hantaviruses, similarly to other negative-strand segmented RNA viruses, initiate the synthesis of translation-competent capped mRNAs by a unique cap-snatching mechanism. Hantavirus nucleocapsid protein (N) binds to host mRNA caps and requires four nucleotides adjacent to the 5' cap for high-affinity binding. N protects the 5' caps of cellular transcripts from degradation by the cellular decapping machinery. The rescued 5' capped mRNA fragments are stored in cellular P bodies by N, which are later efficiently used as primers by the hantaviral RNA-dependent RNA polymerase (RdRp) for transcription initiation. We showed that N also protects the host mRNA caps in P-body-deficient cells. However, the rescued caps were not effectively used by the hantavirus RdRp during transcription initiation, suggesting that caps stored in cellular P bodies by N are preferred for cap snatching. We examined the characteristics of the 5' terminus of a capped test mRNA to delineate the minimum requirements for a capped transcript to serve as an efficient cap donor during hantavirus cap snatching. We showed that hantavirus RdRp preferentially snatches caps from the nonsense mRNAs compared to mRNAs engaged in translation. Hantavirus RdRp preferentially cleaves the cap donor mRNA at a G residue located 14 nucleotides downstream of the 5' cap. The sequence complementarity between the 3' terminus of viral genomic RNA and the nucleotides located in the vicinity of the cleavage site of the cap donor mRNA favors cap snatching. Our results show that hantavirus RdRp snatches caps from viral mRNAs. However, the negligible cap-donating efficiency of wild-type mRNAs in comparison to nonsense mRNAs suggests that viral mRNAs will not be efficiently used for cap snatching during viral infection due to their continuous engagement in protein synthesis. Our results suggest that efficiency of an mRNA to donate caps for viral mRNA synthesis is primarily regulated at the translational level.
Collapse
Affiliation(s)
- Erdong Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | |
Collapse
|
27
|
Mielke-Ehret N, Mühlbach HP. Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses. Viruses 2012; 4:1515-36. [PMID: 23170170 PMCID: PMC3499817 DOI: 10.3390/v4091515] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022] Open
Abstract
Ringspot symptoms in European mountain ash (Sorbus aucuparia L.), fig mosaic, rose rosette, raspberry leaf blotch, pigeonpea sterility mosaic (Cajanus cajan) and High Plains disease of maize and wheat were found to be associated with viruses that share several characteristics. They all have single-stranded multipartite RNA genomes of negative orientation. In some cases, double membrane-bound virus-like particles of 80 to 200 nm in diameter were found in infected tissue. Furthermore, at least five of these viruses were shown to be vectored by eriophyid mites. Sequences of European mountain ash ringspot-associated virus (EMARaV), Fig mosaic virus (FMV), rose rosette virus (RRV), raspberry leaf blotch virus (RLBV), pigeonpea sterility mosaic virus and High Plains virus strongly support their potential phylogenetic relationship. Therefore, after characterization of EMARaV, the novel genus Emaravirus was established, and FMV was the second virus species assigned to this genus. The recently sequenced RRV and RLBV are supposed to be additional members of this new group of plant RNA viruses.
Collapse
Affiliation(s)
- Nicole Mielke-Ehret
- Biocentre Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, Hamburg 22609, Germany.
| | | |
Collapse
|
28
|
Analysis of the Tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation. PLoS One 2012; 7:e31013. [PMID: 22363535 PMCID: PMC3283609 DOI: 10.1371/journal.pone.0031013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/29/2011] [Indexed: 12/18/2022] Open
Abstract
Background The intergenic region (IR) of ambisense RNA segments from animal- and plant-infecting (-)RNA viruses functions as a bidirectional transcription terminator. The IR sequence of the Tomato spotted wilt virus (TSWV) ambisense S RNA contains stretches that are highly rich in A-residues and U-residues and is predicted to fold into a stable hairpin structure. The presence of this hairpin structure sequence in the 3′ untranslated region (UTR) of TSWV mRNAs implies a possible role in translation. Methodology/Principal Findings To analyse the role of the predicted hairpin structure in translation, various Renilla luciferase constructs containing modified 3′ and/or 5′ UTR sequences of the TSWV S RNA encoded nucleocapsid (N) gene were analyzed for expression. While good luciferase expression levels were obtained from constructs containing the 5′ UTR and the 3′ UTR, luciferase expression was lost when the hairpin structure sequence was removed from the 3′ UTR. Constructs that only lacked the 5′ UTR, still rendered good expression levels. When in addition the entire 3′ UTR was exchanged for that of the S RNA encoded non-structural (NSs) gene transcript, containing the complementary hairpin folding sequence, the loss of luciferase expression could only be recovered by providing the 5′ UTR sequence of the NSs transcript. Luciferase activity remained unaltered when the hairpin structure sequence was swapped for the analogous one from Tomato yellow ring virus, another distinct tospovirus. The addition of N and NSs proteins further increased luciferase expression levels from hairpin structure containing constructs. Conclusions/Significance The results suggest a role for the predicted hairpin structure in translation in concert with the viral N and NSs proteins. The presence of stretches highly rich in A-residues does not rule out a concerted action with a poly(A)-tail-binding protein. A common transcription termination and translation strategy for plant- and animal-infecting ambisense RNA viruses is being discussed.
Collapse
|
29
|
Walia JJ, Falk BW. Fig mosaic virus mRNAs show generation by cap-snatching. Virology 2012; 426:162-6. [PMID: 22356803 DOI: 10.1016/j.virol.2012.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/09/2011] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
Fig mosaic virus (FMV), a member of the newly described genus Emaravirus, has four negative-sense single-stranded genomic RNAs, and each codes for a single protein in the viral complementary RNA (vcRNA). In this study we show that FMV mRNAs for genome segments 2 and 3 contain short (12-18 nucleotides) heterogeneous nucleotide leader sequences at their 5' termini. Furthermore, by using the high affinity cap binding protein eIF4E(K119A), we also determined that a 5' cap is present on a population of the FMV positive-sense RNAs, presumably as a result of cap-snatching. Northern hybridization results showed that the 5' capped RNA3 segments are slightly smaller than the homologous vcRNA3 and are not polyadenylated. These data suggest that FMV generates 5' capped mRNAs via cap-snatching, similar to strategies used by other negative-sense multipartite ssRNA viruses.
Collapse
Affiliation(s)
- Jeewan Jyot Walia
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
30
|
Abstract
The Bunyaviridae family is comprised of a large number of negative-sense, single-stranded RNA viruses that infect animals, insects, and plants. The tripartite genome of bunyaviruses, encapsidated in the form of individual ribonucleoprotein complexes, encodes four structural proteins, the glycoproteins Gc and Gn, the nucleoprotein N, and the viral polymerase L. Some bunyaviruses also use an ambi-sense strategy to encode the nonstructural proteins NSs and NSm. While some bunyaviruses have a T = 12 icosahedral symmetry, others only have locally ordered capsids, or capsids with no detectable symmetry. Bunyaviruses enter cells through clathrin-mediated endocytosis or phagocytosis. In endosome, viral glycoproteins facilitate membrane fusion at acidic pH, thus allowing bunyaviruses to uncoat and deliver their genomic RNA into host cytoplasm. Bunyaviruses replicate in cytoplasm where the viral polymerase L catalyzes both transcription and replication of the viral genome. While transcription requires a cap primer for initiation and ends at specific termination signals before the 3' end of the template is reached, replication copies the entire template and does not depend on any primer for initiation. This review will discuss some of the most interesting aspects of bunyavirus replication, including L protein/N protein-mediated cap snatching, prime-and-realign for transcription and replication initiation, translation-coupled transcription, sequence/secondary structure-dependent transcription termination, ribonucleoprotein encapsidation, and N protein-mediated initiation of viral protein translation. Recent developments on the structure and functional characterization of the bunyavirus capsid and the RNA synthesis machineries (including both protein L and N) will also be discussed.
Collapse
|
31
|
Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J Gen Virol 2012; 93:194-202. [PMID: 21918010 DOI: 10.1099/vir.0.033902-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucumber mosaic virus (CMV) RNAs were found to serve as cap donors for rice stripe virus (RSV) transcription initiation during their co-infection of Nicotiana benthamiana. The 5' end of CMV RNAs was cleaved preferentially at residues that had multiple-base complementarity to the 3' end of the RSV template. The length requirement for CMV capped primers to be suitable for elongation varied between 12 and 20 nt, and those of 12-16 nt were optimal for elongation and generated more CMV-RSV chimeric mRNA transcripts. The original cap donors that were cleaved from CMV RNAs were predominantly short (10-13 nt). However, the CMV capped RNA leaders that underwent long-distance elongation were found to contain up to five repetitions of additional AC dinucleotides. Sequence analysis revealed that these AC dinucleotides were used to increase the size of short cap donors in multiple prime-and-realign cycles. Each prime-and-realign cycle added an AC dinucleotide onto the capped RNA leaders; thus, the original cap donors were gradually converted to longer capped RNA leaders (of 12-20 nt). Interestingly, the original 10 nt (or 11 nt) cap donor cleaved from CMV RNA1/2 did not undergo direct extension; only capped RNA leaders that had been increased to ≥12 nt were used for direct elongation. These findings suggest that this repetitive priming and realignment may serve to convert short capped CMV RNA leaders into longer, more suitable sizes to render a more stabilized transcription complex for elongation during RSV transcription initiation.
Collapse
Affiliation(s)
- Min Yao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianqi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, PR China
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
32
|
Molecular mechanisms of transcription and replication of the influenza A virus genome. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1151-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011; 162:184-202. [PMID: 21963660 DOI: 10.1016/j.virusres.2011.09.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes.
Collapse
|
34
|
Heterologous production, purification and characterization of enzymatically active Sindbis virus nonstructural protein nsP1. Protein Expr Purif 2011; 79:277-84. [PMID: 21693190 DOI: 10.1016/j.pep.2011.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/22/2022]
Abstract
Alphavirus nonstructural protein nsP1 possesses distinct methyltransferase (MTase) and guanylyltransferase (GTase) activities involved in the capping of viral RNAs. In alphaviruses, the methylation of GTP occurs before RNA transguanylation and nsP1 forms a covalent complex with m(7)GMP unlike the host mRNA guanylyltransferase which forms GMP-enzyme complex. In this study, full length SINV nsP1 was expressed in a soluble form with an N-terminal histidine tag in Escherichia coli and purified to homogeneity. The purified protein is enzymatically active and contains both MTase and GTase activity indicating that SINV nsP1 does not require membrane association for its enzymatic function. Biochemical analysis shows that detergents abolish nsP1 GTase activity, whereas nonionic detergents do not affect MTase activity. Furthermore, SINV nsP1 contains the metal-ion dependent GTase, whereas MTase does not require a metal ion. Circular dichroism spectroscopic analysis of purified protein indicate that nsP1 has a mixed α/β structure and is in the folded native conformation.
Collapse
|
35
|
Bertran AGM, Oliveira AS, Nagata T, Resende RO. Molecular characterization of the RNA-dependent RNA polymerase from groundnut ringspot virus (genus Tospovirus, family Bunyaviridae). Arch Virol 2011; 156:1425-9. [PMID: 21442231 DOI: 10.1007/s00705-011-0973-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022]
Abstract
Groundnut ringspot virus is a negative-sense single-stranded RNA virus that belongs to the genus Tospovirus and is the prevalent member of this genus in Brazil. This work presents the nucleotide sequence of the L RNA, with a single open reading frame of 2873 amino acids in the complementary strand corresponding to the RNA-dependent RNA polymerase (L protein), as well as the characterization of conserved domains of the L protein by in silico analysis. Phylogenetic analysis of different L protein domains confirmed that GRSV is a member of the American clade, and comparison with a N-protein indicates that phylogeny based on L protein sequences may be more reliable than that based on the N protein.
Collapse
Affiliation(s)
- A G M Bertran
- Laboratory of Plant Virology, Department of Cellular Biology, Biological Sciences Institute, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal, 70910-900, Brazil
| | | | | | | |
Collapse
|
36
|
Base-pairing promotes leader selection to prime in vitro influenza genome transcription. Virology 2010; 409:17-26. [PMID: 21051068 DOI: 10.1016/j.virol.2010.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022]
Abstract
The requirements for alignment of capped leader sequences along the viral genome during influenza transcription initiation (cap-snatching) have long been an enigma. In this study, competition experiments using an in vitro transcription assay revealed that influenza virus transcriptase prefers leader sequences with base complementarity to the 3'-ultimate residues of the viral template, 10 or 11 nt from the 5' cap. Internal priming at the 3'-penultimate residue, as well as prime-and-realign was observed. The nucleotide identity immediately 5' of the base-pairing residues also affected cap donor usage. Application to the in vitro system of RNA molecules with increased base complementarity to the viral RNA template showed stronger reduction of globin RNA leader initiated influenza transcription compared to those with a single base-pairing possibility. Altogether the results indicated an optimal cap donor consensus sequence of (7m)G-(N)(7-8)-(A/U/G)-(A/U)-AGC-3'.
Collapse
|
37
|
Brown BA, Panganiban AT. Identification of a region of hantavirus nucleocapsid protein required for RNA chaperone activity. RNA Biol 2010; 7:830-7. [PMID: 21378500 DOI: 10.4161/rna.7.6.13862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre hantavirus (SNV) is a New World hantavirus and causes hantavirus cardiopulmonary syndrome. The viral nucleocapsid protein (N) is an RNA chaperone and has multiple functions important in virus replication. The three negative sense RNA segments of hantaviruses form panhandle structures through imperfect hydrogen bonding of the 5' and 3' termini, and the chaperone activity of N can mediate correct panhandle formation. N also functions during transcription and translation initiation and the chaperone activity of N is likely to be involved in aspects of these processes. Using a series of mutations in the N gene we identified a region of N required for chaperone activity. The N-terminal 100 amino acids of N contain a domain that is both necessary and sufficient for RNA chaperone activity. We propose that this region of N may reside in one of two potential states. First, the region may be highly disordered and function in N-mediated RNA chaperone activity. Alternatively, in trimeric form, the region likely becomes ordered and serves in high affinity vRNA panhandle recognition.
Collapse
Affiliation(s)
- Bradley A Brown
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | |
Collapse
|
38
|
Geerts-Dimitriadou C, Goldbach R, Kormelink R. Preferential use of RNA leader sequences during influenza A transcription initiation in vivo. Virology 2010; 409:27-32. [PMID: 21030059 DOI: 10.1016/j.virol.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/21/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022]
Abstract
In vitro transcription initiation studies revealed a preference of influenza A virus for capped RNA leader sequences with base complementarity to the viral RNA template. Here, these results were verified during an influenza infection in MDCK cells. Alfalfa mosaic virus RNA3 leader sequences mutated in their base complementarity to the viral template, or the nucleotides 5' of potential base-pairing residues, were tested for their use either singly or in competition. These analyses revealed that influenza transcriptase is able to use leaders from an exogenous mRNA source with a preference for leaders harboring base complementarity to the 3'-ultimate residues of the viral template, as previously observed during in vitro studies. Internal priming at the 3'-penultimate residue, as well as "prime-and-realign" was observed. The finding that multiple base-pairing promotes cap donor selection in vivo, and the earlier observed competitiveness of such molecules in vitro, offers new possibilities for antiviral drug design.
Collapse
|
39
|
Abstract
Segmented negative-sense viruses of the family Arenaviridae encode a large polymerase (L) protein that contains all of the enzymatic activities required for RNA synthesis. These activities include an RNA-dependent RNA polymerase (RdRP) and an RNA endonuclease that cleaves capped primers from cellular mRNAs to prime transcription. Using purified catalytically active Machupo virus L, we provide a view of the overall architecture of this multifunctional polymerase and reconstitute complex formation with an RNA template in vitro. The L protein contains a central ring domain that is similar in appearance to the RdRP of dsRNA viruses and multiple accessory appendages that may be responsible for 5' cap formation. RNA template recognition by L requires a sequence-specific motif located at positions 2-5 in the 3' terminus of the viral genome. Moreover, L-RNA complex formation depends on single-stranded RNA, indicating that inter-termini dsRNA interactions must be partially broken for complex assembly to occur. Our results provide a model for arenavirus polymerase-template interactions and reveal the structural organization of a negative-strand RNA virus L protein.
Collapse
|
40
|
Reguera J, Weber F, Cusack S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 2010; 6:e1001101. [PMID: 20862319 PMCID: PMC2940753 DOI: 10.1371/journal.ppat.1001101] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/13/2010] [Indexed: 01/17/2023] Open
Abstract
Bunyaviruses are a large family of segmented RNA viruses which, like influenza virus, use a cap-snatching mechanism for transcription whereby short capped primers derived by endonucleolytic cleavage of host mRNAs are used by the viral RNA-dependent RNA polymerase (L-protein) to transcribe viral mRNAs. It was recently shown that the cap-snatching endonuclease of influenza virus resides in a discrete N-terminal domain of the PA polymerase subunit. Here we structurally and functionally characterize a similar endonuclease in La Crosse orthobunyavirus (LACV) L-protein. We expressed N-terminal fragments of the LACV L-protein and found that residues 1-180 have metal binding and divalent cation dependent nuclease activity analogous to that of influenza virus endonuclease. The 2.2 Å resolution X-ray crystal structure of the domain confirms that LACV and influenza endonucleases have similar overall folds and identical two metal binding active sites. The in vitro activity of the LACV endonuclease could be abolished by point mutations in the active site or by binding 2,4-dioxo-4-phenylbutanoic acid (DPBA), a known influenza virus endonuclease inhibitor. A crystal structure with bound DPBA shows the inhibitor chelating two active site manganese ions. The essential role of this endonuclease in cap-dependent transcription was demonstrated by the loss of transcriptional activity in a RNP reconstitution system in cells upon making the same point mutations in the context of the full-length LACV L-protein. Using structure based sequence alignments we show that a similar endonuclease almost certainly exists at the N-terminus of L-proteins or PA polymerase subunits of essentially all known negative strand and cap-snatching segmented RNA viruses including arenaviruses (2 segments), bunyaviruses (3 segments), tenuiviruses (4–6 segments), and orthomyxoviruses (6–8 segments). This correspondence, together with the well-known mapping of the conserved polymerase motifs to the central regions of the L-protein and influenza PB1 subunit, suggests that L-proteins might be architecturally, and functionally equivalent to a concatemer of the three orthomyxovirus polymerase subunits in the order PA-PB1-PB2. Furthermore, our structure of a known influenza endonuclease inhibitor bound to LACV endonuclease suggests that compounds targeting a potentially broad spectrum of segmented RNA viruses, several of which are serious or emerging human, animal and plant pathogens, could be developed using structure-based optimisation. Bunyaviruses are a large family of RNA viruses that include serious human, animal and plant pathogens. The viral RNA-dependent RNA polymerase (L-protein) is responsible for replication and transcription of the viral RNA, but apart from its central polymerase domain, it is poorly characterized. Like influenza virus polymerase, bunyavirus L-proteins employ a cap-snatching mechanism to transcribe viral mRNAs, by which host mRNAs are endonucleolytically cleaved as a source of short capped primers. Influenza polymerase endonuclease has recently been located at the PA subunit N-terminus. Here we show biochemically and by crystal structure determination that a similar two-manganese dependent nuclease exists at the N-terminus of La Crosse orthobunyavirus L-protein, whose function is required for cap-dependent transcription. By sequence analysis we show that similar endonuclease signature motifs exist in almost all known segmented RNA, cap-snatching viruses including arenaviruses, bunyaviruses, tenuiviruses and orthomyxoviruses. This suggests that the polymerases of these viruses might share a conserved global architecture with the L-protein being equivalent to a concatenation of the orthomxyovirus PA-PB1-PB2 subunits. We also propose that broad spectrum drugs targeting the endonuclease domain of such viruses could be developed, as exemplified by our structure of the LACV endonuclease complexed with a known influenza endonuclease inhibitor.
Collapse
MESH Headings
- Amino Acid Sequence
- Aminobutyrates/metabolism
- Bunyaviridae/enzymology
- Bunyaviridae/genetics
- Bunyaviridae Infections/genetics
- Bunyaviridae Infections/metabolism
- Bunyaviridae Infections/virology
- Catalytic Domain
- Crystallization
- Crystallography, X-Ray
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Humans
- Influenza, Human/genetics
- Influenza, Human/virology
- Molecular Sequence Data
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Orthomyxoviridae/metabolism
- Phenylbutyrates
- Protein Structure, Tertiary
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
- Unit of Virus Host-Cell Interactions (UMI 3265), UJF-EMBL-CNRS, Grenoble, France
| | - Friedemann Weber
- Department of Virology, Institute for Medical Microbiology and Hygiene, Freiburg, Germany
- Institute for Virology, Philipps University Marburg, Marburg, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
- Unit of Virus Host-Cell Interactions (UMI 3265), UJF-EMBL-CNRS, Grenoble, France
- * E-mail:
| |
Collapse
|
41
|
Mir MA, Sheema S, Haseeb A, Haque A. Hantavirus nucleocapsid protein has distinct m7G cap- and RNA-binding sites. J Biol Chem 2010; 285:11357-68. [PMID: 20164193 DOI: 10.1074/jbc.m110.102459] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hantaviruses, members of the Bunyaviridae family, are emerging category A pathogens that carry three negative stranded RNA molecules as their genome. Hantavirus nucleocapsid protein (N) is encoded by the smallest S segment genomic RNA (viral RNA). N specifically binds mRNA caps and requires four nucleotides adjacent to the cap for high affinity binding. We show that the N peptide has distinct cap- and RNA-binding sites that independently interact with mRNA cap and viral genomic RNA, respectively. In addition, N can simultaneously bind with both mRNA cap and vRNA. N undergoes distinct conformational changes after binding with either mRNA cap or vRNA or both mRNA cap and vRNA simultaneously. Hantavirus RNA-dependent RNA polymerase (RdRp) uses a capped RNA primer for transcription initiation. The capped RNA primer is generated from host cell mRNA by the cap-snatching mechanism and is supposed to anneal with the 3' terminus of vRNA template during transcription initiation by single G-C base pairing. We show that the capped RNA primer binds at the cap-binding site and induces a conformational change in N. The conformationally altered N with a capped primer loaded at the cap-binding site specifically binds the conserved 3' nine nucleotides of vRNA and assists the bound primer to anneal at the 3' terminus. We suggest that the cap-binding site of N, in conjunction with RdRp, plays a key role during the transcription and replication initiation of vRNA genome.
Collapse
Affiliation(s)
- Mohammad A Mir
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA.
| | | | | | | |
Collapse
|
42
|
An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J Virol 2009; 84:1934-44. [PMID: 20007273 DOI: 10.1128/jvi.01657-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The central domain of the 200-kDa Lassa virus L protein is a putative RNA-dependent RNA polymerase. N- and C-terminal domains may harbor enzymatic functions important for viral mRNA synthesis, including capping enzymes or cap-snatching endoribonucleases. In the present study, we have employed a large-scale mutagenesis approach to map functionally relevant residues in these regions. The main targets were acidic (Asp and Glu) and basic residues (Lys and Arg) known to form catalytic and binding sites of capping enzymes and endoribonucleases. A total of 149 different mutants were generated and tested in the Lassa virus replicon system. Nearly 25% of evolutionarily highly conserved acidic and basic side chains were dispensable for function of L protein in the replicon context. The vast majority of the remaining mutants had defects in both transcription and replication. Seven residues (Asp-89, Glu-102, Asp-119, Lys-122, Asp-129, Glu-180, and Arg-185) were selectively important for mRNA synthesis. The phenotype was particularly pronounced for Asp-89, Glu-102, and Asp-129, which were indispensable for transcription but could be replaced by a variety of amino acid residues without affecting genome replication. Bioinformatics disclosed the remote similarity of this region to type IIs endonucleases. The mutagenesis was complemented by experiments with the RNA polymerase II inhibitor alpha-amanitin, demonstrating dependence of viral transcription from the cellular mRNA pool. In conclusion, this paper describes an N-terminal region in L protein being important for mRNA, but not genome synthesis. Bioinformatics and cell biological experiments lend support to the hypothesis that this region could be part of a cap-snatching enzyme.
Collapse
|
43
|
Elbeaino T, Digiaro M, Alabdullah A, De Stradis A, Minafra A, Mielke N, Castellano MA, Martelli GP. A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. J Gen Virol 2009; 90:1281-1288. [PMID: 19264612 DOI: 10.1099/vir.0.008649-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several dsRNA bands (approx. 0.6-7 kbp in size) were recovered from tissues of mosaic-diseased fig seedlings which contained the enveloped round structures known as double membrane bodies (DMBs). blast analysis of a 4353 and a 1120 nt sequence from the two largest RNA segments showed homology with the polymerase and the putative glycoprotein precursor genes of negative-sense single-stranded RNA viruses of the family Bunyaviridae. Negative- and positive-sense riboprobes designed from both RNA segments hybridized to two bands of approximately 7 and 2.3 kbp in Northern blots of dsRNAs. Thus, these segments were identified as putative RNA-1 and RNA-2 of a novel virus for which the name fig mosaic virus (FMV) is proposed. Identity levels of predicted amino acids of the protein encoded by FMV RNA-1 with those of species of the family Bunyaviridae and European mountain ash ringspot-associated virus (EMERaV) were 28 and 54 %, respectively. RNA-2 showed 38 % identity at the amino acid level only with EMARaV. RNA-1 segment contained five conserved motifs (A-E) and an endonucleolytic centre of comparable genes of L RNA of bunyaviruses and EMARaV RNA-1. In a phylogenetic tree constructed with RdRp sequences, EMARaV grouped with FMV in a clade distinct from those of all bunyavirus genera. The consistent association of DMBs with mosaic symptoms and the results of molecular investigations strongly indicate that DMBs are particles of FMV, the aetiological agent of fig mosaic disease.
Collapse
Affiliation(s)
- Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano (BA), Italy
| | - Michele Digiaro
- Istituto Agronomico Mediterraneo di Bari, Via Ceglie 9, 70010 Valenzano (BA), Italy
| | | | - Angelo De Stradis
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Angelantonio Minafra
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Nicole Mielke
- Department of Molecular Phytopathology and Genetics, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Maria Antonietta Castellano
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Giovanni P Martelli
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
44
|
Storage of cellular 5' mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci U S A 2008; 105:19294-9. [PMID: 19047634 DOI: 10.1073/pnas.0807211105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The minus strand and ambisense segmented RNA viruses include multiple important human pathogens and are divided into three families, the Orthomyxoviridae, the Bunyaviridae, and the Arenaviridae. These viruses all initiate viral transcription through the process of "cap-snatching," which involves the acquisition of capped 5' oligonucleotides from cellular mRNA. Hantaviruses are emerging pathogenic viruses of the Bunyaviridae family that replicate in the cytoplasm of infected cells. Cellular mRNAs can be actively translated in polysomes or physically sequestered in cytoplasmic processing bodies (P bodies) where they are degraded or stored for subsequent translation. Here we show that the hantavirus nucleocapsid protein binds with high affinity to the 5' cap of cellular mRNAs, protecting the 5' cap from degradation. We also show that the hantavirus nucleocapsid protein accumulates in P bodies, where it sequesters protected 5' caps. P bodies then serve as a pool of primers during the initiation of viral mRNA synthesis by the viral polymerase. We propose that minus strand segmented viruses replicating in the cytoplasm have co-opted the normal degradation machinery of P bodies for storage of cellular caps. Our data also indicate that modification of the cap-snatching model is warranted to include a role for the nucleocapsid protein in cap acquisition and storage.
Collapse
|
45
|
Abstract
Viruses are obligate molecular pathogens. They depend on living host cells for their multiplication, including synthesis of the viral nucleic acids and proteins. The infection cycle of viruses in plants includes three main phases: i) replication, ii) cell to cell movement via plasmodesmata, and iii) long distance movement to different parts of the plant. During all these steps of the infection cycle viruses are challenged by the genetic variability of their hosts, which requires the virus to be adjusted to minor or major differences in virus-host interactions. These adjustments require mutations in the viral genome. Most plant viruses are also dependent on vector organisms for their spread to new host plants. The changes in virus genomes for better adaptability to the host should not compromise vector-transmissibility of progeny viruses. Host adaptation and vector adaptation can therefore be seen as the main forces influencing plant virus evolution.
Collapse
|
46
|
Mielke N, Muehlbach HP. A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). J Gen Virol 2007; 88:1337-1346. [PMID: 17374780 DOI: 10.1099/vir.0.82715-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Four RNAs from a new plant-pathogenic virus, which we have tentatively named European mountain ash ringspot-associated virus (EMARAV), were identified and sequenced completely. All four viral RNAs could be detected in previous double-stranded RNA preparations. RNA 1 (7040 nt) encodes a protein with similarity to the RNA-dependent RNA polymerase of different members of the Bunyaviridae, a family containing five genera with viruses infecting invertebrates, vertebrates and plants. RNA 2 (2335 nt) encodes a 75 kDa protein containing a conserved motif of the glycoprotein precursor of the genus Phlebovirus. Immunological detection indicated the presence of proteins with the expected size of the precursor and one of its processing products. The amino acid sequence of protein p3 (35 kDa) encoded by RNA 3 shows similarities to a putative nucleocapsid protein of two still unclassified plant viruses. The fourth viral RNA encodes a 27 kDa protein that has no significant homology to any known protein. As is typical for members of the family Bunyaviridae, the 5′ and 3′ ends of all viral RNAs are complementary, which allows the RNA to form a panhandle structure. Comparison of these sequences demonstrates a conserved terminal part of 13 nt, similar to that of the bunyaviral genus Orthobunyavirus. Despite the high agreement of the EMARAV genome with several characteristics of the family Bunyaviridae, there are a few features that make it difficult to allocate the virus to this group. It is therefore more likely that this plant pathogen belongs to a novel virus genus.
Collapse
Affiliation(s)
- Nicole Mielke
- University of Hamburg, Biocentre Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Hans-Peter Muehlbach
- University of Hamburg, Biocentre Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
47
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
48
|
Okuda M, Kato K, Hanada K, Iwanami T. Nucleotide sequence of melon yellow spot virus M RNA segment and characterization of non-viral sequences in subgenomic RNA. Arch Virol 2005; 151:1-11. [PMID: 16132174 DOI: 10.1007/s00705-005-0627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/16/2005] [Indexed: 11/26/2022]
Abstract
The nucleotide sequence of melon yellow spot virus (MYSV) M RNA segment was determined. The M RNA segment contains one open reading frame (ORF) encoding 308 amino acids (aa) in the sense orientation and another ORF encoding 1,127 aa in the complementary orientation, which were homologous to the NSm protein and G1/G2 glycoprotein precursor (Gp) protein, respectively. Amino acid sequences identities with the other tospovirus suggested that MYSV is closely related to groundnut bud necrosis virus and watermelon silver mottle virus. To analyze subgenomic RNA of the M RNA segment, RNA transcripts corresponding to the NSm and Gp genes were specifically amplified, and the nucleotide sequence of the 5' terminal region was determined. Sequence analysis of the NSm and Gp transcripts showed that they had a non-viral sequence 12-18 and 10-18 nucleotides long, respectively. Although these sequences varied considerably, in more than half of the cases, a cytosine residue was observed at the 3' end of the non-viral leader sequence, which suggests that the viral transcriptase prefers certain cap-donor sequences harboring a 3'CA dinucleotide.
Collapse
Affiliation(s)
- M Okuda
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan.
| | | | | | | |
Collapse
|
49
|
Prins M, Lohuis D, Schots A, Goldbach R. Phage display-selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. J Gen Virol 2005; 86:2107-2113. [PMID: 15958689 DOI: 10.1099/vir.0.80958-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rational design of antibodies targeting essential viral proteins can complement the palette of antiviral resistance strategies. Here, stable and high expression of single-chain monoclonal antibodies targeting the nucleoprotein of the economically important plant virus Tomato spotted wilt virus, a protein that is involved in multiple steps in the viral infection cycle, is reported. High cytoplasmic expression levels of three selected phage display-derived anti-viral single-chain antibodies were established. Of these antibodies, two led to high levels of resistance against this plant virus. Protoplast experiments provided evidence that the two resistance-conferring antibodies may have a different mode of action and could be combined for higher durability of resistance in the field.
Collapse
Affiliation(s)
- Marcel Prins
- Laboratory of Virology, Wageningen University, The Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Wageningen University, The Netherlands
| | - Arjen Schots
- Laboratory of Molecular Recognition and Antibody Technology, Wageningen University, The Netherlands
| | - Rob Goldbach
- Laboratory of Virology, Wageningen University, The Netherlands
| |
Collapse
|
50
|
van Knippenberg I, Lamine M, Goldbach R, Kormelink R. Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology 2005; 335:122-30. [PMID: 15823611 DOI: 10.1016/j.virol.2005.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/05/2005] [Accepted: 01/31/2005] [Indexed: 11/20/2022]
Abstract
Transcription of segmented negative-strand RNA viruses is initiated by cap snatching: a host mRNA is cleaved generally at 10-20 nt from its 5' capped end and the resulting capped leader used to prime viral transcription. For Tomato spotted wilt virus (TSWV), type species of the plant-infecting Tospovirus genus within the Bunyaviridae, cap donors were previously shown to require a single base complementarity to the ultimate or penultimate viral template sequence. More recently, the occurrence in vitro of "re-snatching" of viral mRNAs, i.e., the use of viral mRNAs as cap donors, has been demonstrated for TSWV. To estimate the relative occurrence of re-snatching compared to snatching of host mRNAs, the use of cap donors with either single, double, or multiple complementarity to the viral template was analyzed in pair-wise competition in TSWV in vitro transcription assays. A strong preference was observed for multiple-basepairing donors.
Collapse
Affiliation(s)
- Ingeborg van Knippenberg
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|