1
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
2
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
3
|
Plasmid Characteristics Modulate the Propensity of Gene Exchange in Bacterial Vesicles. J Bacteriol 2019; 201:JB.00430-18. [PMID: 30670543 DOI: 10.1128/jb.00430-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/26/2018] [Indexed: 12/28/2022] Open
Abstract
Horizontal gene transfer is responsible for the exchange of many types of genetic elements, including plasmids. Properties of the exchanged genetic element are known to influence the efficiency of transfer via the mechanisms of conjugation, transduction, and transformation. Recently, an alternative general pathway of horizontal gene transfer has been identified, namely, gene exchange by extracellular vesicles. Although extracellular vesicles have been shown to facilitate the exchange of several types of plasmids, the influence of plasmid characteristics on genetic exchange within vesicles is unclear. Here, a set of different plasmids was constructed to systematically test the impact of plasmid properties, specifically, plasmid copy number, size, and origin of replication, on gene transfer in vesicles. The influence of each property on the production, packaging, and uptake of vesicles containing bacterial plasmids was quantified, revealing how plasmid properties modulate vesicle-mediated horizontal gene transfer. The loading of plasmids into vesicles correlates with the plasmid copy number and is influenced by characteristics that help set the number of plasmids within a cell, including size and origin of replication. Plasmid origin also has a separate impact on both vesicle loading and uptake, demonstrating that the origin of replication is a major determinant of the propensity of specific plasmids to transfer within extracellular vesicles.IMPORTANCE Extracellular vesicle formation and exchange are common within bacterial populations. Vesicles package multiple types of biomolecules, including genetic material. The exchange of extracellular vesicles containing genetic material facilitates interspecies DNA transfer and may be a promiscuous mechanism of horizontal gene transfer. Unlike other mechanisms of horizontal gene transfer, it is unclear whether characteristics of the exchanged DNA impact the likelihood of transfer in vesicles. Here, we systematically examine the influence of plasmid copy number, size, and origin of replication on the loading of DNA into vesicles and the uptake of DNA containing vesicles by recipient cells. These results reveal how each plasmid characteristic impacts gene transfer in vesicles and contribute to a greater understanding of the importance of vesicle-mediated gene exchange in the landscape of horizontal gene transfer.
Collapse
|
4
|
Ramachandran R, Ciaccia PN, Filsuf TA, Jha JK, Chattoraj DK. Chromosome 1 licenses chromosome 2 replication in Vibrio cholerae by doubling the crtS gene dosage. PLoS Genet 2018; 14:e1007426. [PMID: 29795553 PMCID: PMC5991422 DOI: 10.1371/journal.pgen.1007426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Initiation of chromosome replication in bacteria is precisely timed in the cell cycle. Bacteria that harbor multiple chromosomes face the additional challenge of orchestrating replication initiation of different chromosomes. In Vibrio cholerae, the smaller of its two chromosomes, Chr2, initiates replication after Chr1 such that both chromosomes terminate replication synchronously. The delay is due to the dependence of Chr2 initiation on the replication of a site, crtS, on Chr1. The mechanism by which replication of crtS allows Chr2 replication remains unclear. Here, we show that blocking Chr1 replication indeed blocks Chr2 replication, but providing an extra crtS copy in replication-blocked Chr1 permitted Chr2 replication. This demonstrates that unreplicated crtS copies have significant activity, and suggests that a role of replication is to double the copy number of the site that sufficiently increases its activity for licensing Chr2 replication. We further show that crtS activity promotes the Chr2-specific initiator function and that this activity is required in every cell cycle, as would be expected of a cell-cycle regulator. This study reveals how increase of gene dosage through replication can be utilized in a critical regulatory switch.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter N. Ciaccia
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tara A. Filsuf
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jyoti K. Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
6
|
Molina-García L, Gasset-Rosa F, Moreno-del Álamo M, Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Lurz R, Giraldo R. Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 2016; 6:25425. [PMID: 27147472 PMCID: PMC4857107 DOI: 10.1038/srep25425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | | | | | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D14195 Berlin, Germany
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
|
8
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
9
|
Milewska K, Węgrzyn G, Szalewska-Pałasz A. Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures. Plasmid 2015; 81:42-9. [PMID: 26170108 DOI: 10.1016/j.plasmid.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Abstract
The presence of natural plasmids has been reported for many Shewanella isolates. However, knowledge about plasmid replication origin and segregation mechanisms is not extensive for this genus. Shewanella baltica is an important species in the marine environment due to its denitrification ability in oxygen-deficient zones and the potential role in bioremediation processes. However, no information about possible use of plasmid vectors in this species has been reported to date. Here we report that plasmids with ColE1-type and plasmid P1 origin can transform S. baltica and replicate in this bacterium. Without the antibiotic selection pressure plasmid maintenance is less efficient than in Escherichia coli. Nevertheless, cultivation of S. baltica in the presence of appropriate antibiotics caused relatively stable maintenance of ColE1-like and P1-derived plasmids. This indicates that plasmid-based genetic manipulations and gene transfer in S. baltica are possible.
Collapse
Affiliation(s)
- Klaudia Milewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | |
Collapse
|
10
|
Lilly J, Camps M. Mechanisms of Theta Plasmid Replication. Microbiol Spectr 2015; 3:PLAS-0029-2014. [PMID: 26005599 PMCID: PMC4441207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Plasmids are autonomously replicating pieces of DNA. This chapter discusses theta plasmid replication, which is class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading-strand at a pre-determined site and complete replication through recruitment of the host's replisome, which extends the leading-strand continuously while synthesizing the lagging-strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the chapter reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.
Collapse
Affiliation(s)
- Joshua Lilly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064
| |
Collapse
|
11
|
Raz Y, Tannenbaum ED. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments. PLoS One 2014; 9:e96839. [PMID: 24811122 PMCID: PMC4014554 DOI: 10.1371/journal.pone.0096839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/13/2014] [Indexed: 01/16/2023] Open
Abstract
We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants and , respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I) class, and the non-conjugators play the role of the susceptible (S) class.
Collapse
Affiliation(s)
- Yoav Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva, Israel
- * E-mail:
| | | |
Collapse
|
12
|
Negative feedback and transcriptional overshooting in a regulatory network for horizontal gene transfer. PLoS Genet 2014; 10:e1004171. [PMID: 24586200 PMCID: PMC3937220 DOI: 10.1371/journal.pgen.1004171] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection. In the environment, bacteria often evolve by the acquisition of new genes from different species. Plasmids are small DNA molecules that mediate horizontal gene transfer in bacteria, thus they are fundamental agents for the spread of antibiotic resistances. Plasmids replicate inside the bacterial cytoplasm, and propagate infectiously by contact. Plasmids control these two ways of multiplication, but like many other symbionts they suffer from a tradeoff. If plasmids become very infective, they can spread fast and successfully, but this damages the bacterial hosts they depend upon. If, on the contrary, plasmids become very mild, the host is able to grow better but the ability of plasmids to infect new hosts is hampered. We have studied the regulatory mechanisms plasmids use to overcome this paradox. We discovered that negative feedback, a regulatory motif ubiquitous in the plasmid network, allows transient activation of plasmid functions immediately after plasmids invade a new host. This might be an adaptive strategy for plasmids to be highly infective without damaging their hosts, and it illustrates a natural mechanism for DNA transplantation that could be implemented in synthetic genomic transplants.
Collapse
|
13
|
Wegrzyn K, Witosinska M, Schweiger P, Bury K, Jenal U, Konieczny I. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation. MICROBIOLOGY-SGM 2013; 159:1010-1022. [PMID: 23538715 DOI: 10.1099/mic.0.065490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Pawel Schweiger
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Urs Jenal
- Center for Molecular Life Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
14
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
15
|
Evolutionary competitiveness of two natural variants of the IncQ-like plasmids, pRAS3.1 and pRAS3.2. J Bacteriol 2010; 192:6182-90. [PMID: 20889750 DOI: 10.1128/jb.00176-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids pRAS3.1 and pRAS3.2 are natural variants of the IncQ-2 plasmid family, that except for two differences, have identical plasmid backbones. Plasmid pRAS3.1 has four 22-bp iterons in its oriV region, while pRAS3.2 has only three 6-bp repeats and pRAS3.1 has five 6-bp repeats in the promoter region of the mobB-mobA/repB genes and pRAS3.2 has only four. In previous work, we showed that the overall effect of these differences was that when the plasmid was in an Escherichia coli host, the copy numbers of pRAS3.1 and pRAS3.2 were approximately 41 and 30, respectively. As pRAS3.1 and pRAS3.2 are likely to have arisen from the same ancestor, we addressed the question of whether one of the variants had an evolutionary advantage over the other. By constructing a set of identical plasmids with the number of 22-bp iterons varying from three to seven, it was found that plasmids with four or five iterons displaced plasmids with three iterons even though they had lower copy numbers. Furthermore, the metabolic load that the plasmids placed on E. coli host cells compared with plasmid-free cells increased with copy number from 10.9% at a copy number of 59 to 2.6% at a copy number of 15. Plasmid pRAS3.1 with four 22-bp iterons was able to displace pRAS3.2 with three iterons when both were coresident in the same host. However, the lower-copy-number pRAS3.2 placed 2.8% less of a metabolic burden on an E. coli host population, and therefore, pRAS3.2 has a competitive advantage over pRAS3.1 at the population level, as pRAS3.2-containing cells would be expected to outgrow pRAS3.1-containing cells.
Collapse
|
16
|
The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics 2010; 185:327-37. [PMID: 20194966 DOI: 10.1534/genetics.109.113613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is believed to be a major source of genetic variation, particularly for prokaryotes. It is believed that horizontal gene transfer plays a major role in shaping bacterial genomes and is also believed to be responsible for the relatively rapid dissemination and acquisition of new, adaptive traits across bacterial strains. Despite the importance of horizontal gene transfer as a major source of genetic variation, the bulk of research on theoretical evolutionary dynamics and population genetics has focused on point mutations (sometimes coupled with gene duplication events) as the main engine of genomic change. Here, we seek to specifically model HGT processes in bacterial cells, by developing a mathematical model describing the influence that conjugation-mediated HGT has on the mutation-selection balance in an asexually reproducing population of unicellular, prokaryotic organisms. It is assumed that mutation-selection balance is reached in the presence of a fixed background concentration of antibiotic, to which the population must become resistant to survive. We find that HGT has a nontrivial effect on the mean fitness of the population. However, one of the central results that emerge from our analysis is that, at mutation-selection balance, conjugation-mediated HGT has a slightly deleterious effect on the mean fitness of a population. Therefore, we conclude that HGT does not confer a selection advantage in static environments. Rather, its advantage must lie in its ability to promote faster adaptation in dynamic environments, an interpretation that is consistent with the observation that HGT can be promoted by environmental stresses on a population.
Collapse
|
17
|
Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 2009; 62:57-70. [PMID: 19465049 PMCID: PMC2752045 DOI: 10.1016/j.plasmid.2009.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/21/2022]
Abstract
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load.
Collapse
Affiliation(s)
- Richard Meyer
- Institute for Cell and Molecular Biology, University of Texas at Austin, 78712-0162, USA.
| |
Collapse
|
18
|
Matcher GF, Rawlings DE. The effect of the location of the proteic post-segregational stability system within the replicon of plasmid pTF-FC2 on the fine regulation of plasmid replication. Plasmid 2009; 62:98-107. [PMID: 19481568 DOI: 10.1016/j.plasmid.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
The broad host-range IncQ-2 family plasmid, pTF-FC2, is a mobilizable, medium copy number plasmid that lacks an active partitioning system. Plasmid stability is enhanced by a toxin-antitoxin (TA) system known as pas (plasmid addiction system) that is located within the replicon between the repB (primase) and the repA (helicase) and repC (DNA-binding) genes. The discovery of a closely related IncQ-2 plasmid, pRAS3, with a completely different TA system located between the repB and repAC genes raised the question of whether the location of pas within the replicon had an effect on the plasmid in addition to its ability to act as a TA system. In this work we demonstrate that the presence of the strongly expressed, autoregulated pas operon within the replicon resulted in an increase in the expression of the downstream repAC genes when autoregulation was relieved. While deletion of the pas module did not affect the average plasmid copy number, a pas-containing plasmid exhibited increased stability compared with a pas deletion plasmid even when the TA system was neutralized. It is proposed that the location of a strongly expressed, autoregulated operon within the replicon results in a rapid, but transient, expression of the repAC genes that enables the plasmid to rapidly restore its normal copy number should it fall below a threshold.
Collapse
Affiliation(s)
- Gwynneth F Matcher
- Department of Microbiology, University of Stellenbosch, Matieland, South Africa
| | | |
Collapse
|
19
|
Diederix REM, Dávila C, Giraldo R, Lillo MP. Fluorescence studies of the replication initiator protein RepA in complex with operator and iteron sequences and free in solution. FEBS J 2008; 275:5393-407. [PMID: 18959764 DOI: 10.1111/j.1742-4658.2008.06669.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RepA, the replication initiator protein from the Pseudomonas plasmid pPS10, regulates plasmid replication and copy number. It is capable of autorepression, in which case it binds as a dimer to the inverted repeat operator sequence preceding its own gene. RepA initiates plasmid replication by binding as a monomer to a series of four adjacent iterons, which contain the same half-repeat as found in the operator sequence. RepA contains two domains, one of which binds specifically to the half-repeat. The other is the dimerization domain, which is involved in protein-protein interactions in the dimeric RepA-operon complex, but which actually binds DNA in the monomeric RepA-iteron complex. Here, detailed fluorescence studies on RepA and an N-(iodoacetyl)aminoethyl-8-naphthylamine-1-sulfonic acid-labeled single-cysteine mutant of RepA (Cys160) are described. Using time-resolved fluorescence depolarization measurements, the global rotational correlation times of RepA free in solution and bound to the operator and to two distinct iteron dsDNA oligonucleotides were determined. These provide indications that, in addition to the monomeric RepA-iteron complex, a stable dimeric RepA-iteron complex can also exist. Further, Förster resonance energy transfer between Trp94, located in the dimerization domain, and N-(iodoacetyl)aminoethyl-8-naphthylamine-1-sulfonic acid-Cys160, located on the DNA-binding domain, is observed and used to estimate the distance between the two fluorophores. This distance may serve as an indicator of the orientation between both domains in the unbound protein and RepA bound to the various cognate DNA sequences. No major change in distance is observed and this is taken as evidence for little to no re-orientation of both domains upon complex formation.
Collapse
Affiliation(s)
- Rutger E M Diederix
- Departamento de Biofísica, Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Gasset-Rosa F, Díaz-López T, Lurz R, Prieto A, Fernández-Tresguerres ME, Giraldo R. Negative regulation of pPS10 plasmid replication: origin pairing by zipping-up DNA-bound RepA monomers. Mol Microbiol 2008; 68:560-72. [PMID: 18284592 DOI: 10.1111/j.1365-2958.2008.06166.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many plasmid replicons of gram-negative bacteria, Rep protein dimers are transcriptional self-repressors of their genes, whereas monomers are initiators of DNA replication. Switching between both functions implies conformational remodelling of Rep, and is promoted by Rep binding to the origin DNA repeats (iterons) or chaperones. Rep proteins play another key role: they bridge together two iteron DNA stretches, found either on the same or on different plasmid molecules. These so-called, respectively, 'looped' and 'handcuffed' complexes are thought to be negative regulators of plasmid replication. Although evidence for Rep-dependent plasmid handcuffing has been found in a number of replicons, the structure of these Rep-DNA assemblies is still unknown. Here, by a combination of proteomics, electron microscopy, genetic analysis and modelling, we provide insight on a possible three-dimensional structure for two handcuffed arrays of the iterons found at the origin of pPS10 replicon. These are brought together in parallel register by zipping-up DNA-bound RepA monomers. We also present evidence for a distinct role of RepA dimers in DNA looping. This work defines a new regulatory interface in Rep proteins.
Collapse
Affiliation(s)
- Fátima Gasset-Rosa
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
MacDonald AI, Lu Y, Kilbride EA, Akopian A, Colloms SD. PepA and ArgR do not regulate Cre recombination at the bacteriophage P1 loxP site. Plasmid 2008; 59:119-26. [PMID: 18226834 PMCID: PMC2409434 DOI: 10.1016/j.plasmid.2007.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/27/2007] [Accepted: 12/04/2007] [Indexed: 11/17/2022]
Abstract
In the lysogenic state, bacteriophage P1 is maintained as a low copy-number circular plasmid. Site-specific recombination at loxP by the phage-encoded Cre protein keeps P1 monomeric, thus helping to ensure stable plasmid inheritance. Two Escherichia coli DNA-binding proteins, PepA and ArgR, were recently reported to be necessary for maintenance or establishment of P1 lysogeny. PepA and ArgR bind to regulatory DNA sequences upstream of the ColE1 cer recombination site to regulate site-specific recombination by the XerCD recombinases. This recombination keeps ColE1 in a monomeric state and helps to ensure stable plasmid maintenance. It has been suggested that ArgR and PepA play a similar role in P1 maintenance, regulating Cre recombination by binding to DNA sequences upstream of loxP. Here, we show that ArgR does not bind to its proposed binding site upstream of loxP, and that Cre recombination at loxP in its natural P1 context is not affected by PepA and ArgR in vitro. When sequences upstream of loxP were mutated to allow ArgR binding, PepA and ArgR still had no effect on Cre recombination. Our results demonstrate that PepA requires specific DNA sequences for binding, and that PepA and ArgR have no direct role in Cre recombination at P1 loxP.
Collapse
|
22
|
Abstract
Most bacteria have one chromosome but some have more than one, as is common in eukaryotes. How multiple chromosomes are maintained in bacteria remains largely obscure. Here we have examined the behaviour of the two Vibrio cholerae chromosomes as a function of growth rate. At slow growth rates, both chromosomes were maintained at copy numbers of one to two per cell. Increasing the growth rate by nutritional shift-up amplified the origin-proximal DNA of the larger chromosome (chrI) to four copies per cell, but not that of the smaller chrII. The latter was amplified when its specific initiator was supplied in excess or a specific negative regulator was deleted. The growth rate-insensitive behaviour of chrII, whose origin is similar to origins of members of a major class of plasmids, was shared by some but not all of several representative plasmids tested in V. cholerae. Also, unlike plasmid replication, chrII replication is known to be initiated at a specific stage of the cell cycle. Raising chrII copy number decreased growth rate, suggesting that this chromosome might serve as a repository for necessary but potentially deleterious genes.
Collapse
Affiliation(s)
- Preeti Srivastava
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-4260, USA
| | | |
Collapse
|
23
|
Zakrzewska-Czerwińska J, Jakimowicz D, Zawilak-Pawlik A, Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007; 31:378-87. [PMID: 17459114 DOI: 10.1111/j.1574-6976.2007.00070.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.
Collapse
|
24
|
Bowers LM, Krüger R, Filutowicz M. Mechanism of origin activation by monomers of R6K-encoded pi protein. J Mol Biol 2007; 368:928-38. [PMID: 17383678 PMCID: PMC2001305 DOI: 10.1016/j.jmb.2007.02.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
One recurring theme in plasmid duplication is the recognition of the origin of replication (ori) by specific Rep proteins that bind to DNA sequences called iterons. For plasmid R6K, this process involves a complex interplay between monomers and dimers of the Rep protein, pi, with seven tandem iterons of gamma ori. Remarkably, both pi monomers and pi dimers can bind to iterons, a new paradigm in replication control. Dimers, the predominant form in the cell, inhibit replication, while monomers facilitate open complex formation and activate the ori. Here, we investigate a mechanism by which pi monomers out-compete pi dimers for iteron binding, and in so doing activate the ori. With an in vivo plasmid incompatibility assay, we find that pi monomers bind cooperatively to two adjacent iterons. Cooperative binding is eliminated by insertion of a half-helical turn between two iterons but is diminished only slightly by insertion of a full helical turn between two iterons. These studies show also that pi bound to a consensus site promotes occupancy of an adjacent mutated site, another hallmark of cooperative interactions. pi monomer/iteron interactions were quantified using a monomer-biased pi variant in vitro with the same collection of two-iteron constructs. The cooperativity coefficients mirror the plasmid incompatibility results for each construct tested. pi dimer/iteron interactions were quantified with a dimer-biased mutant in vitro and it was found that pi dimers bind with negligible cooperativity to two tandem iterons.
Collapse
Affiliation(s)
- Lisa M. Bowers
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Marcin Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
- *Corresponding author (M. Filutowicz): Tel. 608-262-6947; Fax. 608-262-9865; E-mail:
| |
Collapse
|
25
|
Fong R, Vroom JA, Hu Z, Hutchinson CR, Huang J, Cohen SN, Cohen S, Kao CM, Kao C. Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 2006; 73:1296-307. [PMID: 17142363 PMCID: PMC1828658 DOI: 10.1128/aem.01888-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance.
Collapse
Affiliation(s)
- Ryan Fong
- Department of Chemical Engineering, Stanford University, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
HIV infection is the leading cause of death worldwide and despite major advances in treatment, more new cases were diagnosed in 2004 than any previous year. Current treatment regimens are based on the use of two or more drugs from two or more classes of inhibitors termed highly active antiretroviral therapy (HAART). Although HAART is capable of suppressing viral loads to undetectable levels, problems of toxicity, patient adherence, and particularly the emergence of drug-resistant viruses continues to spur the development of new chemotherapeutics to combat HIV. Clinical candidates from the four existing classes of inhibitors are presented in this review along with lead compounds against new viral targets, with special emphasis on HIV integrase.
Collapse
Affiliation(s)
- D Christopher Meadows
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
27
|
Titok M, Suski C, Dalmais B, Ehrlich SD, Jannière L. The replicative polymerases PolC and DnaE are required for theta replication of the Bacillus subtilis plasmid pBS72. MICROBIOLOGY-SGM 2006; 152:1471-1478. [PMID: 16622063 DOI: 10.1099/mic.0.28693-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plasmids are the tools of choice for studying bacterial functions involved in DNA maintenance. Here a genetic study on the replication of a novel, low-copy-number, Bacillus subtilis plasmid, pBS72, is reported. The results show that two plasmid elements, the initiator protein RepA and an iteron-containing origin, and at least nine host-encoded replication proteins, the primosomal proteins DnaB, DnaC, DnaD, DnaG and DnaI, the DNA polymerases DnaE and PolC, and the polymerase cofactors DnaN and DnaX, are required for pBS72 replication. On the contrary, the cellular initiators DnaA and PriA, the helicase PcrA and DNA polymerase I are dispensable. From this, it is inferred that pBS72 replication is of the theta type and is initiated by an original mechanism. Indirect evidence suggests that during this process the DnaC helicase might be delivered to the plasmid origin by the weakly active DnaD pathway stimulated by a predicted interaction between DnaC and a domain of RepA homologous to the major DnaC-binding domain of the cellular initiator DnaA. The plasmid pBS72 replication fork appears to require the same functions as the bacterial chromosome and the unrelated plasmid pAMbeta1. Most importantly, this replication machinery contains the two type C polymerases, PolC and DnaE. As the mechanism of initiation of the three genomes is substantially different, this suggests that both type C polymerases might be required in any Cairns replication in B. subtilis and presumably in other bacteria encoding PolC and DnaE.
Collapse
Affiliation(s)
- Marina Titok
- Belarussian State University, Biological Faculty, Department of Genetics and Biotechnology, Minsk 220050, 4 Scorina Avenue, Belarus
| | | | - Bérengère Dalmais
- Laboratoire de Génétique Microbienne, Bâtiment des Biotechnologies, INRA, 78352 Jouy en Josas, France
| | - S Dusko Ehrlich
- Laboratoire de Génétique Microbienne, Bâtiment des Biotechnologies, INRA, 78352 Jouy en Josas, France
| | - Laurent Jannière
- Laboratoire de Génétique Microbienne, Bâtiment des Biotechnologies, INRA, 78352 Jouy en Josas, France
| |
Collapse
|
28
|
Smulczyk-Krawczyszyn A, Jakimowicz D, Ruban-Osmialowska B, Zawilak-Pawlik A, Majka J, Chater K, Zakrzewska-Czerwinska J. Cluster of DnaA boxes involved in regulation of Streptomyces chromosome replication: from in silico to in vivo studies. J Bacteriol 2006; 188:6184-94. [PMID: 16923885 PMCID: PMC1595370 DOI: 10.1128/jb.00528-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022] Open
Abstract
In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation.
Collapse
Affiliation(s)
- Aleksandra Smulczyk-Krawczyszyn
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
29
|
Chai Y, Winans SC. RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid partitioning and autorepression. Mol Microbiol 2006; 58:1114-29. [PMID: 16262794 DOI: 10.1111/j.1365-2958.2005.04886.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmids of Agrobacterium tumefaciens replicate using the products of the repABC operon, which are highly conserved among plasmids and some chromosomes of the alpha-Proteobacteria. The products of repA and repB direct plasmid partitioning, while the repC gene encodes a replication initiator protein. The transcription of the repABC operon of tumour inducing (Ti) plasmids is both negatively autoregulated by the RepA and RepB proteins, and positively regulated by TraR. In the present study, we have identified a fourth gene (repD) in the repABC operon of an octopine-type Ti plasmid. repD is 78 codons in length, and maps between repA and repB genes. A repD-lacZ protein fusion demonstrated that repD is strongly expressed. Two identical binding sites for the RepB protein were found within the repD coding sequence, and these sites are required for plasmid stability and for maximal repression of repABC transcription. RepA protein enhances the binding of RepB at these binding sites, just as RepB increases the affinity of RepA for binding sites at the repABC P4 promoter. We propose that RepA and RepB form complexes that bind both sites, possibly causing a loop that is important for repression of the repABC operon. Binding at one or both sites may also be required for accurate plasmid partitioning.
Collapse
Affiliation(s)
- Yunrong Chai
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
30
|
Das N, Chattoraj DK. Origin pairing ('handcuffing') and unpairing in the control of P1 plasmid replication. Mol Microbiol 2005; 54:836-49. [PMID: 15491371 DOI: 10.1111/j.1365-2958.2004.04322.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P1 plasmid origin has an array of five binding sites (iterons) for the plasmid-encoded initiator protein RepA. Saturation of these sites is required for initiation. Iterons can also pair via their bound RepAs. The reaction, called handcuffing, is believed to be the key to control initiation negatively. Here we have determined some of the mechanistic details of the reaction. We show that handcuffed RepA-iteron complexes dissociate when they are diluted or challenged with cold competitor iterons, suggesting spontaneous reversibility of the handcuffing reaction. The complex formation increases with increased RepA binding, but decreases upon saturation of binding. Complex formation also decreases in the presence of molecular chaperones (DnaK and DnaJ) that convert RepA dimers to monomers. This indicates that dimers participate in handcuffing, and that chaperones are involved in reversing handcuffing. They could play a direct role by reducing dimers and an indirect role by increasing monomers that would compete out the weaker binding dimers from the origin. We propose that an increased monomer to dimer ratio is the key to reverse handcuffing.
Collapse
Affiliation(s)
- Nilangshu Das
- Laboratory of Biochemistry, CCR, NCI, NIH, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
31
|
Pickett MA, Everson JS, Pead PJ, Clarke IN. The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology (Reading) 2005; 151:893-903. [PMID: 15758234 DOI: 10.1099/mic.0.27625-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 7·5 kbp cryptic plasmid is found in almost all isolates of Chlamydia trachomatis. Real-time PCR assays, using TaqMan chemistry, were set up to quantify accurately both the chlamydial plasmid and the single copy, chromosomal omcB gene in the infectious, elementary bodies (EBs) of C. trachomatis L1 440. Plasmid copy number was also determined in the EBs of six other lymphogranuloma venereum (LGV) isolates (serovars L1–L3), ten trachoma isolates (serovars A–C) and nine urogenital isolates (serovars D–J). The results indicated an average plasmid copy number of 4·0±0·8 (mean±95 % confidence interval) plasmids per chromosome. During the chlamydial developmental cycle, up to 7·6 plasmids per chromosome were detected, indicating an increased plasmid copy number in the actively replicating reticulate bodies. Attempts to eliminate the plasmid from strain L1 440 using the plasmid-curing agents ethidium bromide, acridine orange or imipramine/novobiocin led to a paradoxical increase in plasmid copy number. It is speculated that the stress induced by chemical curing agents may stimulate the activity of plasmid-encoded replication (Rep) proteins. In contrast to C. trachomatis, only a single isolate of Chlamydophila pneumoniae bears a plasmid. C. pneumoniae strain N16 supports a 7·4 kbp plasmid in which ORF1, encoding one of the putative Rep proteins, is disrupted by a deletion and split into two smaller ORFs. Similar assay techniques revealed 1·3±0·2 plasmids per chromosome (mean±95 % confidence interval) in EBs of this strain. These findings are in agreement with the hypothesis that the ORF1-encoded protein is involved in, but not essential for, plasmid replication and control of copy number.
Collapse
Affiliation(s)
- Mark A Pickett
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| | - J Sylvia Everson
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| | - Patrick J Pead
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| | - Ian N Clarke
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| |
Collapse
|
32
|
Das N, Valjavec-Gratian M, Basuray AN, Fekete RA, Papp PP, Paulsson J, Chattoraj DK. Multiple homeostatic mechanisms in the control of P1 plasmid replication. Proc Natl Acad Sci U S A 2005; 102:2856-61. [PMID: 15708977 PMCID: PMC549481 DOI: 10.1073/pnas.0409790102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many organisms control initiation of DNA replication by limiting supply or activity of initiator proteins. In plasmids, such as P1, initiators are limited primarily by transcription and dimerization. However, the relevance of initiator limitation to plasmid copy number control has appeared doubtful, because initiator oversupply increases the copy number only marginally. Copy number control instead has been attributed to initiator-mediated plasmid pairing ("handcuffing"), because initiator mutations to handcuffing deficiency elevates the copy number significantly. Here, we present genetic evidence of a role for initiator limitation in plasmid copy number control by showing that autorepression-defective initiator mutants also can elevate the plasmid copy number. We further show, by quantitative modeling, that initiator dimerization is a homeostatic mechanism that dampens active monomer increase when the protein is oversupplied. This finding implies that oversupplied initiator proteins are largely dimeric, partly accounting for their limited ability to increase copy number. A combination of autorepression, dimerization, and handcuffing appears to account fully for control of P1 plasmid copy number.
Collapse
Affiliation(s)
- Nilangshu Das
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
DeNap JCB, Hergenrother PJ. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 2005; 3:959-66. [PMID: 15750634 DOI: 10.1039/b500182j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.
Collapse
Affiliation(s)
- Johna C B DeNap
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
34
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
35
|
Giraldo R, Fernández-Tresguerres ME. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 2004; 52:69-83. [PMID: 15336485 DOI: 10.1016/j.plasmid.2004.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 10/26/2022]
Abstract
This review focuses on the contributions of the Pseudomonas replicon pPS10 to understanding the initiation of DNA replication in iteron-containing plasmids from Gram-negative bacteria. Dimers of the pPS10 initiator protein (RepA) repress repA transcription by binding to the two halves of an inverted repeat operator. RepA monomers are the active initiator species that bind to four directly repeated sequences (iterons). pPS10 initiator was the first Rep protein whose domains were defined (two "winged-helix," WH modules) and their binding sites were identified at each half of the iteron repeat. This was confirmed by the crystal structure of the monomer of a homologous initiator (RepE from F plasmid) bound to iteron DNA. The recently solved structure of the dimeric N-terminal domain (WH1) of pPS10 RepA, when compared to the RepE monomer, shows that upon dimer dissociation an alpha-helix at WH1 C-terminus becomes part of an interdomain beta-sheet. In solution, the iteron sequence, by itself, can induce the same kind of structural transformation in RepA. This seems to alter the package of both WH domains to adapt their DNA reading heads (HTH motifs) to the distinct spacing between half repeats in iterons and operator. Based on biochemical and spectroscopic work, structural and functional similarities were proposed between RepA and archaeal/eukaryal initiators. This was independently confirmed by the crystal structure of the archaeal initiator Cdc6. Characterization of mutants, either in pPS10 or in the Escherichia coli chromosome, has provided some evidence on a WH1-mediated interaction between RepA and the chromosomal initiator DnaA that results in a broadened-host range.
Collapse
Affiliation(s)
- Rafael Giraldo
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas--CSIC, C/Ramiro de Maeztu, 9. 28040 Madrid, Spain.
| | | |
Collapse
|
36
|
Abhyankar MM, Reddy JM, Sharma R, Büllesbach E, Bastia D. Biochemical investigations of control of replication initiation of plasmid R6K. J Biol Chem 2003; 279:6711-9. [PMID: 14665626 DOI: 10.1074/jbc.m312052200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanistic basis of control of replication initiation of plasmid R6K was investigated by addressing the following questions. What are the biochemical attributes of mutations in the pi initiator protein that caused loss of negative control of initiation? Did the primary control involve only initiator protein-ori DNA interaction or did it also involve protein-protein interactions between pi and several host-encoded proteins? Mutations at two different regions of the pi-encoding sequence individually caused some loss of negative control as indicated by a relatively modest increase in copy number. However, combinations of the mutation P42L, which caused loss of DNA looping, with those located in the region between the residues 106 and 113 induced a robust enhancement of copy number. These mutant forms promoted higher levels of replication in vitro in a reconstituted system consisting of 22 purified proteins. The mutant forms of pi were susceptible to pronounced iteron-induced monomerization in comparison with the WT protein. As contrasted with the changes in DNA-protein interaction, we found no detectable differences in protein-protein interaction between wild type pi with DnaA, DnaB helicase, and DnaG primase on one hand and between the high copy mutant forms and the same host proteins on the other. The DnaG-pi interaction reported here is novel. Taken together, the results suggest that both loss of negative control due to iteron-induced monomerization of the initiator and enhanced iteron-initiator interaction appear to be the principal causes of enhanced copy number.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
37
|
Song JY, Choi SH, Byun EY, Lee SG, Park YH, Park SG, Lee SK, Kim KM, Park JU, Kang HL, Baik SC, Lee WK, Cho MJ, Youn HS, Ko GH, Bae DW, Rhee KH. Characterization of a small cryptic plasmid, pHP51, from a Korean isolate of strain 51 of Helicobacter pylori. Plasmid 2003; 50:145-51. [PMID: 12932740 DOI: 10.1016/s0147-619x(03)00059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleotide sequence of a 3955-bp Helicobacter pylori plasmid, pHP51 was determined, and two open reading frames, ORF1 and ORF2, were identified. The deduced amino acid sequence of ORF1 was highly conserved (87-89%) among plasmid replication initiation proteins, RepBs. The function of ORF2 was not assigned because it lacked known functional domains or sequence similarity with other known proteins, although it had a HPFXXGNG motif that was also found in the cAMP-induced filamentation (fic) gene. Three kinds of repeats were present on the plasmid outside of the ORFs, including the R1 and R2 repeats that are common in H. pylori plasmids. One 100-bp sequence detected in the noncoding region of pHP51 was highly similar to the genomic sequence of H. pylori 26695.
Collapse
Affiliation(s)
- Jae-Young Song
- Department of Microbiology, Gyeongsang Institute of Health Science, Gyeongsang National University College of Medicine, 90 Chiram-dong, Jinju, Gyeongsangnam-do 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Zhang S, Meyer RJ. Molecular handcuffing of the relaxosome at the origin of conjugative transfer of the plasmid R1162. Nucleic Acids Res 2003; 31:4762-8. [PMID: 12907717 PMCID: PMC169967 DOI: 10.1093/nar/gkg687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly of plasmid-encoded proteins at a unique site (oriT) on the plasmid R1162, to form a complex called the relaxosome, is required for conjugative transfer of the plasmid and for negative regulation of neighboring promoters. Two-dimensional chloroquine gel electrophoresis was used to show that oriTs are physically coupled at the relaxosome. This interaction requires all the relaxosome proteins, which are assembled into a structure resulting in a decrease in the average linking number of the plasmid DNA in the cell. Molecules with higher superhelical densities are preferentially selected for assembly of the relaxosome. Genetic data obtained earlier indicate that the molecular coupling reported here is a 'handcuffing' reaction that contributes to the regulation of adjacent plasmid promoters. However, although these promoters affect the expression of the genes for replication, plasmid copy-control is regulated independently. This is the first time 'handcuffing' has been observed at an oriT, and its possible significance for transfer is discussed.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Section of Molecular Genetics and Microbiology and The Institute for Molecular Biology, School of Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
39
|
Giraldo R, Fernández-Tornero C, Evans PR, Díaz-Orejas R, Romero A. A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nat Struct Mol Biol 2003; 10:565-71. [PMID: 12766757 DOI: 10.1038/nsb937] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 05/01/2003] [Indexed: 11/08/2022]
Abstract
Plasmids are natural vectors for gene transfer. In Gram-negative bacteria, plasmid DNA replication is triggered when monomers of an initiator protein (Rep) bind to direct repeats at the origin sequence. Rep dimers, which are inactive as initiators, bind to an inverse repeat operator, repressing transcription of the rep gene. Rep proteins are composed of N-terminal dimerization and C-terminal DNA-binding domains. Activation of Rep is coupled to dimer dissociation, converting the dimerization domain into a second origin-binding module. Although the structure of the monomeric F plasmid initiator (mRepE) has been determined, the molecular nature of Rep activation remains unknown. Here we report the crystal structure of the dimeric N-terminal domain of the pPS10 plasmid initiator (dRepA). dRepA has a winged-helix fold, as does its homologous domain in mRepE. However, dimerization transforms an interdomain loop and beta-strand (monomeric RepE) into an alpha-helix (dimeric RepA). dRepA resemble the C terminus of eukaryotic and archaeal Cdc6, giving clues to the phylogeny of DNA replication initiators.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology Centro de Investigaciones Biológicas-CSIC, C/ Velázquez 144, Madrid, 28006, Spain.
| | | | | | | | | |
Collapse
|
40
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
42
|
Parker C, Zhang XL, Henderson D, Becker E, Meyer R. Conjugative DNA synthesis: R1162 and the question of rolling-circle replication. Plasmid 2002; 48:186-92. [PMID: 12460534 DOI: 10.1016/s0147-619x(02)00105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Strand-replacement synthesis during conjugative mating has been characterized by introducing into donor cells R1162 plasmid DNA containing a base-pair mismatch. Conjugative synthesis in donors occurs in the absence of vegetative plasmid replication, but with a lag between rounds of transfer, and with most strands being initiated at the normal site within the replicative origin. These characteristics argue against the idea that multiple plasmid copies are generated for successive rounds of transfer by rolling-circle replication. However, the R1162 relaxase protein can process molecules containing multiple transfer origins in the manner expected for the conversion of single-strand multimers, generated by rolling-circle replication, to unit-length molecules. This capability appears to be the result of a secondary cleavage reaction carried out by the protein. The possibility is raised that the processing of molecules with more than one origin of transfer might be a repair mechanism directed against adventitious DNA synthesis during transfer.
Collapse
Affiliation(s)
- Christopher Parker
- Section of Molecular Genetics and Microbiology, School of Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|