1
|
Scully TW, Jiao W, Mittelstädt G, Parker EJ. Structure, mechanism and inhibition of anthranilate phosphoribosyltransferase. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220039. [PMID: 36633281 PMCID: PMC9835598 DOI: 10.1098/rstb.2022.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Thomas W. Scully
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Gerd Mittelstädt
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Emily J. Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Kumar J, Gupta DS, Kesari R, Verma R, Murugesan S, Basu PS, Soren KR, Gupta S, Singh NP. Comprehensive RNAseq analysis for identification of genes expressed under heat stress in lentil. PHYSIOLOGIA PLANTARUM 2021; 173:1785-1807. [PMID: 33829491 DOI: 10.1111/ppl.13419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Lentils are highly sensitive to abrupt increases in temperature during the mid to late reproductive stages, leading to severe biomass and seed yield reduction. Therefore, we carried out an RNAseq analysis between IG4258 (heat tolerant) and IG3973 (heat sensitive) lentil genotypes at the reproductive stage under both normal and heat stress conditions in the field. It resulted in 209,549 assembled transcripts and among these 161,809 transcripts had coding regions, of which 94,437 transcripts were annotated. The differential gene expression analysis showed upregulation of 678 transcripts and downregulation of 680 transcripts between the tolerant and sensitive genotypes at the early reproductive stage. While 76 transcripts were upregulated and 47 transcripts were downregulated at the late reproductive stage under heat stress conditions. The validation of 12 up-or downregulated transcripts through RT-PCR corresponded well with the expression analysis data of RNAseq, with a correlation of R2 = 0.89. Among these transcripts, the DN364_c1_g1_i9 and DN2218_c0_g1_i5 transcripts encoded enzymes involved in the tryptophan pathway, indicating that tryptophan biosynthesis plays a role under heat stress in lentil. Moreover, KEGG pathways enrichment analysis identified transcripts associated with genes encoding proteins/regulating factors related to different metabolic pathways including signal transduction, fatty acid biosynthesis, rRNA processing, ribosome biogenesis, gibberellin (GA) biosynthesis, and riboflavin biosynthesis. This analysis also identified 6852 genic-SSRs leading to the development of 4968 SSR primers that are potential genomic resources for molecular mapping of heat-tolerant genes in lentil.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Ravi Kesari
- Department of Plant Breeding and Genetics, Bhola Paswan Shastri Agricultural College, Purnea, India
| | - Renu Verma
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - Partha Sarathi Basu
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Khela Ram Soren
- Division of Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sanjeev Gupta
- All India Co-ordinated Research Project on MULLaRP, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | |
Collapse
|
3
|
Wu X, Zhang M, Kuang Z, Yue J, Xue L, Zhu M, Zhu Z, Khan MH, Niu L. Crystal structures of anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2021; 77:61-69. [PMID: 33682790 PMCID: PMC7938636 DOI: 10.1107/s2053230x21001989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the transfer of the phosphoribosyl group of 5'-phosphoribosyl-1'-pyrophosphate (PRPP) to anthranilate to form phosphoribosyl-anthranilate. Crystal structures of AnPRTs from bacteria and archaea have previously been determined; however, the structure of Saccharomyces cerevisiae AnPRT (ScAnPRT) still remains unsolved. Here, crystal structures of ScAnPRT in the apo form as well as in complex with its substrate PRPP and the substrate analogue 4-fluoroanthranilate (4FA) are presented. These structures demonstrate that ScAnPRT exhibits the conserved structural fold of type III phosphoribosyltransferase enzymes and shares the similar mode of substrate binding found across the AnPRT protein family. In addition, crystal structures of ScAnPRT mutants (ScAnPRTSer121Ala and ScAnPRTGly141Asn) were also determined. These structures suggested that the conserved residue Ser121 is critical for binding PRPP, while Gly141 is dispensable for binding 4FA. In summary, these structures improved the preliminary understanding of the substrate-binding mode of ScAnPRT and laid foundations for future research.
Collapse
Affiliation(s)
- Xiaofei Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Mengying Zhang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Zhiling Kuang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Jian Yue
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Lu Xue
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Muhammad Hidayatullah Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Division of Molecular and Cellular Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
4
|
The Semi-Enzymatic Origin of Metabolic Pathways: Inferring a Very Early Stage of the Evolution of Life. J Mol Evol 2021; 89:183-188. [PMID: 33506330 DOI: 10.1007/s00239-021-09994-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023]
Abstract
The early evolution of life is a period with many important events with a lot of big and open questions. One of them is the evolution of metabolic pathways, which means the origin and assembly of enzymes that act together. The retrograde hypothesis was the first attempt to explain the origin and evolutionary history of metabolic pathways; Norman Horowitz developed this first significant hypothesis. This idea was followed by relevant proposals developed by Sam Granick, who proposed the "forward direction hypothesis," and then the successful idea of "Patchwork" assembly proposed independently by Martynas Yčas and Roy Jensen. Since then, a few new hypotheses were proposed; one of the most influential was made by Antonio Lazcano and Stanley Miller in the Journal Molecular Evolution, the "semi-enzymatic origin" of metabolic pathways. This article was cited more than 160 times, including in most papers published about the early evolution of metabolism, placing it as influential work in the field. The ideas proposed in this work and their effects on studying the origin and early evolution of life are analyzed.
Collapse
|
5
|
Koike R, Amemiya T, Horii T, Ota M. Structural changes of homodimers in the PDB. J Struct Biol 2017; 202:42-50. [PMID: 29233747 DOI: 10.1016/j.jsb.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023]
Abstract
Protein complexes are involved in various biological phenomena. These complexes are intrinsically flexible, and structural changes are essential to their functions. To perform a large-scale automated analysis of the structural changes of complexes, we combined two original methods. An application, SCPC, compares two structures of protein complexes and decides the match of binding mode. Another application, Motion Tree, identifies rigid-body motions in various sizes and magnitude from the two structural complexes with the same binding mode. This approach was applied to all available homodimers in the Protein Data Bank (PDB). We defined two complex-specific motions: interface motion and subunit-spanning motion. In the former, each subunit of a complex constitutes a rigid body, and the relative movement between subunits occurs at the interface. In the latter, structural parts from distinct subunits constitute a rigid body, providing the relative movement spanning subunits. All structural changes were classified and examined. It was revealed that the complex-specific motions were common in the homodimers, detected in around 40% of families. The dimeric interfaces were likely to be small and flat for interface motion, while large and rugged for subunit-spanning motion. Interface motion was accompanied by a drastic change in contacts at the interface, while the change in the subunit-spanning motion was moderate. These results indicate that the interface properties of homodimers correlated with the type of complex-specific motion. The study demonstrates that the pipeline of SCPC and Motion Tree is useful for the massive analysis of structural change of protein complexes.
Collapse
Affiliation(s)
- Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayuki Amemiya
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuya Horii
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
6
|
Evans GL, Furkert DP, Abermil N, Kundu P, de Lange KM, Parker EJ, Brimble MA, Baker EN, Lott JS. Anthranilate phosphoribosyltransferase: Binding determinants for 5'-phospho-alpha-d-ribosyl-1'-pyrophosphate (PRPP) and the implications for inhibitor design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:264-274. [PMID: 28844746 DOI: 10.1016/j.bbapap.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC50 values of 10-60μM, and Ki values of 1.3-15μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.
Collapse
Affiliation(s)
- Genevieve L Evans
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand.
| | - Daniel P Furkert
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Nacim Abermil
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Preeti Kundu
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; Biomolecular Interaction Centre, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand; Department of Chemistry, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand
| | - Katrina M de Lange
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Emily J Parker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; Biomolecular Interaction Centre, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand; Department of Chemistry, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - J Shaun Lott
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
8
|
Schneider D, Kaiser W, Stutz C, Holinski A, Mayans O, Babinger P. YbiB from Escherichia coli, the Defining Member of the Novel TrpD2 Family of Prokaryotic DNA-binding Proteins. J Biol Chem 2015; 290:19527-39. [PMID: 26063803 DOI: 10.1074/jbc.m114.620575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10-100 nM) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.
Collapse
Affiliation(s)
- Daniel Schneider
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Wolfgang Kaiser
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cian Stutz
- the Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland, and
| | - Alexandra Holinski
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Olga Mayans
- the Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland, and the Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Patrick Babinger
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany,
| |
Collapse
|
9
|
Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis. Biochem J 2014; 461:87-98. [PMID: 24712732 DOI: 10.1042/bj20140209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP.
Collapse
|
10
|
Castell A, Short FL, Evans GL, Cookson TVM, Bulloch EMM, Joseph DDA, Lee CE, Parker EJ, Baker EN, Lott JS. The Substrate Capture Mechanism of Mycobacterium tuberculosis Anthranilate Phosphoribosyltransferase Provides a Mode for Inhibition. Biochemistry 2013; 52:1776-87. [DOI: 10.1021/bi301387m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alina Castell
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Francesca L. Short
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Genevieve L. Evans
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Tammie V. M. Cookson
- Maurice Wilkins Centre for Molecular
Biodiscovery and Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8140,
New Zealand
| | - Esther M. M. Bulloch
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Dmitri D. A. Joseph
- Maurice Wilkins Centre for Molecular
Biodiscovery and Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8140,
New Zealand
| | - Clare E. Lee
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Emily J. Parker
- Maurice Wilkins Centre for Molecular
Biodiscovery and Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8140,
New Zealand
| | - Edward N. Baker
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - J. Shaun Lott
- Maurice Wilkins
Centre for Molecular
Biodiscovery and School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Dietrich S, Borst N, Schlee S, Schneider D, Janda JO, Sterner R, Merkl R. Experimental assessment of the importance of amino acid positions identified by an entropy-based correlation analysis of multiple-sequence alignments. Biochemistry 2012; 51:5633-41. [PMID: 22737967 DOI: 10.1021/bi300747r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The analysis of a multiple-sequence alignment (MSA) with correlation methods identifies pairs of residue positions whose occupation with amino acids changes in a concerted manner. It is plausible to assume that positions that are part of many such correlation pairs are important for protein function or stability. We have used the algorithm H2r to identify positions k in the MSAs of the enzymes anthranilate phosphoribosyl transferase (AnPRT) and indole-3-glycerol phosphate synthase (IGPS) that show a high conn(k) value, i.e., a large number of significant correlations in which k is involved. The importance of the identified residues was experimentally validated by performing mutagenesis studies with sAnPRT and sIGPS from the archaeon Sulfolobus solfataricus. For sAnPRT, five H2r mutant proteins were generated by replacing nonconserved residues with alanine or the prevalent residue of the MSA. As a control, five residues with conn(k) values of zero were chosen randomly and replaced with alanine. The catalytic activities and conformational stabilities of the H2r and control mutant proteins were analyzed by steady-state enzyme kinetics and thermal unfolding studies. Compared to wild-type sAnPRT, the catalytic efficiencies (k(cat)/K(M)) were largely unaltered. In contrast, the apparent thermal unfolding temperature (T(M)(app)) was lowered in most proteins. Remarkably, the strongest observed destabilization (ΔT(M)(app) = 14 °C) was caused by the V284A exchange, which pertains to the position with the highest correlation signal [conn(k) = 11]. For sIGPS, six H2r mutant and four control proteins with alanine exchanges were generated and characterized. The k(cat)/K(M) values of four H2r mutant proteins were reduced between 13- and 120-fold, and their T(M)(app) values were decreased by up to 5 °C. For the sIGPS control proteins, the observed activity and stability decreases were much less severe. Our findings demonstrate that positions with high conn(k) values have an increased probability of being important for enzyme function or stability.
Collapse
Affiliation(s)
- Susanne Dietrich
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Schwab T, Sterner R. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus. Chembiochem 2011; 12:1581-8. [PMID: 21455924 DOI: 10.1002/cbic.201000770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 11/11/2022]
Abstract
The anthranilate phosphoribosyl transferase from the hyperthermophilic archaeon Sulfolobus solfataricus (sAnPRT, encoded by strpD), which catalyzes the third step in tryptophan biosynthesis, is a thermostable homodimer with low enzymatic activity at room temperature. We have combined two mutations leading to the monomerization and two mutations leading to the activation of sAnPRT. The resulting "activated monomer" sAnPRT-I36E-M47D+D83G-F149S, which is much more labile than wild-type sAnPRT, was stabilized by a combination of random mutagenesis and metabolic library selection using the extremely thermophilic bacterium Thermus thermophilus as host. This approach led to the identification of five mutations that individually increased the thermal stability of sAnPRT-I36E-M47D+D83G-F149S by 1 to 8 °C, and by 13 °C when combined. The beneficial exchanges were located in different parts of the protein structure, but none of them led to the "re-dimerization" of the enzyme. We observed a negative correlation between thermal stability and catalytic activity of the mutants; this suggests that conformational flexibility is required for catalysis by sAnPRT.
Collapse
Affiliation(s)
- Thomas Schwab
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
13
|
Schlee S, Deuss M, Bruning M, Ivens A, Schwab T, Hellmann N, Mayans O, Sterner R. Activation of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus by removal of magnesium inhibition and acceleration of product release . Biochemistry 2009; 48:5199-209. [PMID: 19385665 DOI: 10.1021/bi802335s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.33 s(-1)). To understand the reason for the poor catalytic proficiency of ssAnPRT, we have isolated from an sstrpD library the activated ssAnPRT-D83G + F149S double mutant by metabolic complementation of an auxotrophic Escherichia coli strain. Whereas the activity of purified wild-type ssAnPRT is strongly reduced in the presence of high concentrations of Mg(2+) ions, this inhibition is no longer observed in the double mutant and the ssAnPRT-D83G single mutant. The comparison of the crystal structures of activated and wild-type ssAnPRT shows that the D83G mutation alters the binding mode of the substrate Mg.PRPP. Analysis of PRPP and Mg(2+)-dependent enzymatic activity indicates that this leads to a decreased affinity for a second Mg(2+) ion and thus reduces the concentration of enzymes with the inhibitory Mg(2).PRPP complex bound to the active site. Moreover, the turnover number of the double mutant ssAnPRT-D83G + F149S is elevated 40-fold compared to the wild-type enzyme, which can be attributed to an accelerated release of the product PRA. This effect appears to be mainly caused by an increased conformational flexibility induced by the F149S mutation, a hypothesis which is supported by the reduced thermal stability of the ssAnPRT-F149S single mutant.
Collapse
Affiliation(s)
- Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
di Luccio E, Wilson DK. Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae. Biochemistry 2008; 47:4039-50. [PMID: 18321072 DOI: 10.1021/bi7020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD (+) and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are approximately 30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.
Collapse
Affiliation(s)
- Eric di Luccio
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
15
|
Schwab T, Skegro D, Mayans O, Sterner R. A Rationally Designed Monomeric Variant of Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus is as Active as the Dimeric Wild-type Enzyme but Less Thermostable. J Mol Biol 2008; 376:506-16. [DOI: 10.1016/j.jmb.2007.11.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 11/14/2007] [Accepted: 11/23/2007] [Indexed: 11/28/2022]
|
16
|
Patrick WM, Matsumura I. A study in molecular contingency: glutamine phosphoribosylpyrophosphate amidotransferase is a promiscuous and evolvable phosphoribosylanthranilate isomerase. J Mol Biol 2008; 377:323-36. [PMID: 18272177 DOI: 10.1016/j.jmb.2008.01.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/14/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
The prevalence of paralogous enzymes implies that novel catalytic functions can evolve on preexisting protein scaffolds. The weak secondary activities of proteins, which reflect catalytic promiscuity and substrate ambiguity, are plausible starting points for this evolutionary process. In this study, we observed the emergence of a new enzyme from the ASKA (A Complete Set of E. coli K-12 ORF Archive) collection of Escherichia coli open reading frames. The overexpression of (His)(6)-tagged glutamine phosphoribosylpyrophosphate amidotransferase (PurF) unexpectedly rescued a Delta trpF E. coli strain from starvation on minimal media. The wild-type PurF and TrpF enzymes are unrelated in sequence, tertiary structure and catalytic mechanism. The promiscuous phosphoribosylanthranilate isomerase activity of the ASKA PurF variant apparently stems from a preexisting affinity for phosphoribosylated substrates. The relative fitness of the (His)(6)-PurF/Delta trpF strain was improved 4.8-fold to nearly wild-type levels by random mutagenesis of purF and genetic selection. The evolved and ancestral PurF proteins were purified and reacted with phosphoribosylanthranilate in vitro. The best evolvant (k(cat)/K(M)=0.3 s(-1) M(-1)) was approximately 25-fold more efficient than its ancestor but >10(7)-fold less efficient than the wild-type phosphoribosylanthranilate isomerase. These observations demonstrate in quantitative terms that the weak secondary activities of promiscuous enzymes can dramatically improve the fitness of contemporary organisms.
Collapse
Affiliation(s)
- Wayne M Patrick
- Department of Biochemistry, Center for Fundamental and Applied Molecular Evolution, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
17
|
Marino M, Deuss M, Svergun DI, Konarev PV, Sterner R, Mayans O. Structural and mutational analysis of substrate complexation by anthranilate phosphoribosyltransferase from Sulfolobus solfataricus. J Biol Chem 2006; 281:21410-21421. [PMID: 16714288 DOI: 10.1074/jbc.m601403200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolic synthesis and degradation of essential nucleotide compounds are primarily carried out by phosphoribosyltransferases (PRT) and nucleoside phosphorylases (NP), respectively. Despite the resemblance of their reactions, five classes of PRTs and NPs exist, where anthranilate PRT (AnPRT) constitutes the only evolutionary link between synthesis and degradation processes. We have characterized the active site of dimeric AnPRT from Sulfolobus solfataricus by elucidating crystal structures of the wild-type enzyme complexed to its two natural substrates anthranilate and 5-phosphoribosyl-1-pyrophosphate/Mg(2+). These bind into two different domains within each protomer and are brought together during catalysis by rotational domain motions as shown by small angle x-ray scattering data. Steady-state kinetics of mutated AnPRT variants address the role of active site residues in binding and catalysis. Results allow the comparative analysis of PRT and pyrimidine NP families and expose related structural motifs involved in nucleotide/nucleoside recognition by these enzyme families.
Collapse
Affiliation(s)
- Marco Marino
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Miriam Deuss
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany; Institut für Biochemie, Universität zu Köln, Otto-Fischer-Strasse 12-14, D-50674 Köln, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Petr V Konarev
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Reinhard Sterner
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany; Institut für Biochemie, Universität zu Köln, Otto-Fischer-Strasse 12-14, D-50674 Köln, Germany
| | - Olga Mayans
- Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
18
|
Lee CE, Goodfellow C, Javid-Majd F, Baker EN, Shaun Lott J. The Crystal Structure of TrpD, a Metabolic Enzyme Essential for Lung Colonization by Mycobacterium tuberculosis, in Complex with its Substrate Phosphoribosylpyrophosphate. J Mol Biol 2006; 355:784-97. [PMID: 16337227 DOI: 10.1016/j.jmb.2005.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/02/2005] [Accepted: 11/06/2005] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis, the cause of tuberculosis, presents a major threat to human health worldwide. Biosynthetic enzymes that are essential for the survival of the bacterium, especially in activated macrophages, are important potential drug targets. Although the tryptophan biosynthesis pathway is thought to be non-essential for many pathogens, this appears not to be the case for M.tuberculosis, where a trpD gene knockout fails to cause disease in mice. We therefore chose the product of the trpD gene, anthranilate phosphoribosyltransferase, which catalyses the second step in tryptophan biosynthesis, for structural analysis. The structure of TrpD from M.tuberculosis was solved by X-ray crystallography, at 1.9 A resolution for the native enzyme (R = 0.191, Rfree = 0.230) and at 2.3 A resolution for the complex with its substrate phosphoribosylpyrophosphate (PRPP) and Mg2+ (R = 0.194, Rfree = 0.255). The enzyme is folded into two domains, separated by a hinge region. PRPP binds in the C-terminal domain, together with a pair of Mg ions. In the substrate complex, two flexible loops change conformation compared with the apo protein, to close over the PRPP and to complete an extensive network of hydrogen-bonded interactions. A nearby pocket, adjacent to the hinge region, is postulated by in silico docking as the binding site for anthranilate. A bound molecule of benzamidine, which was essential for crystallization and is also found in the hinge region, appears to reduce flexibility between the two domains.
Collapse
Affiliation(s)
- Clare E Lee
- Laboratory of Structural Biology and Centre for Molecular Biodiscovery, School of Biological Sciences University of Auckland, Private Bag 92019, Auckland 1020, New Zealand
| | | | | | | | | |
Collapse
|
19
|
Chappie JS, Cànaves JM, Han GW, Rife CL, Xu Q, Stevens RC. The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 2005; 13:1385-96. [PMID: 16154095 DOI: 10.1016/j.str.2005.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/18/2005] [Accepted: 05/18/2005] [Indexed: 11/16/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for cellular redox reactions and can act as an important substrate in numerous biological processes. As a result, nature has evolved multiple biosynthetic pathways to meet this high chemical demand. In Saccharomyces cerevisiae, the NAD salvage pathway relies on the activity of nicotinic acid phosphoribosyltransferase (NAPRTase), a member of the phosphoribosyltransferase (PRTase) superfamily. Here, we report the structure of a eukaryotic (yeast) NAPRTase at 1.75 A resolution (locus name: YOR209C, gene name: NPT1). The structure reveals a two-domain fold that resembles the architecture of quinolinic acid phosphoribosyltransferases (QAPRTases), but with completely different dispositions that provide evidence for structural heterogeneity among the Type II PRTases. The identification of a third domain in NAPRTases provides a structural basis and possible mechanism for the functional modulation of this family of enzymes by ATP.
Collapse
Affiliation(s)
- Joshua S Chappie
- The Joint Center for Structural Genomics, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
20
|
Champagne KS, Sissler M, Larrabee Y, Doublié S, Francklyn CS. Activation of the hetero-octameric ATP phosphoribosyl transferase through subunit interface rearrangement by a tRNA synthetase paralog. J Biol Chem 2005; 280:34096-104. [PMID: 16051603 DOI: 10.1074/jbc.m505041200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP phosphoribosyl transferase (ATP-PRT) joins ATP and 5-phosphoribosyl-1-pyrophosphate (PRPP) in a highly regulated reaction that initiates histidine biosynthesis. The unusual hetero-octameric version of ATP-PRT includes four HisG(S) catalytic subunits based on the periplasmic binding protein fold and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. Here, we present the first structure of a PRPP-bound ATP-PRT at 2.9 A and provide a structural model for allosteric activation based on comparisons with other inhibited and activated ATP-PRTs from both the hetero-octameric and hexameric families. The activated state of the octameric enzyme is characterized by an interstitial phosphate ion in the HisZ-HisG interface and new contacts between the HisZ motif 2 loop and the HisG(S) dimer interface. These contacts restructure the interface to recruit conserved residues to the active site, where they activate pyrophosphate to promote catalysis. Additionally, mutational analysis identifies the histidine binding sites within a region highly conserved between HisZ and the functional HisRS. Through the oligomerization and functional re-assignment of protein domains associated with aminoacylation and phosphate binding, the HisZ-HisG octameric ATP-PRT acquired the ability to initiate the synthesis of a key metabolic intermediate in an allosterically regulated fashion.
Collapse
Affiliation(s)
- Karen S Champagne
- Department of Microbiology and Molecular Genetics and Biochemistry, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
21
|
Vega MC, Zou P, Fernandez FJ, Murphy GE, Sterner R, Popov A, Wilmanns M. Regulation of the hetero-octameric ATP phosphoribosyl transferase complex from Thermotoga maritima by a tRNA synthetase-like subunit. Mol Microbiol 2005; 55:675-86. [PMID: 15660995 DOI: 10.1111/j.1365-2958.2004.04422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular structure of the ATP phosphoribosyl transferase from the hyperthermophile Thermotoga maritima is composed of a 220 kDa hetero-octameric complex comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). Steady-state kinetics indicate that only the complete octameric complex is active and non-competitively inhibited by the pathway product histidine. The rationale for these findings is provided by the crystal structure revealing a total of eight histidine binding sites that are located within each of the four HisGS-HisZ subunit interfaces formed by the ATP phosphoribosyl transferase complex. While the structure of the catalytic HisGS subunit is related to the catalytic domain of another family of (HisGL)2 ATP phosphoribosyl transferases that is functional in the absence of additional regulatory subunits, the structure of the regulatory HisZ subunit is distantly related to class II aminoacyl-tRNA synthetases. However, neither the mode of the oligomeric subunit arrangement nor the type of histidine binding pockets is found in these structural relatives. Common ancestry of the regulatory HisZ subunit and class II aminoacyl-tRNA synthetase may reflect the balanced need of regulated amounts of a cognate amino acid (histidine) in the translation apparatus, ultimately linking amino acid biosynthesis and protein biosynthesis in terms of function, structure and evolution.
Collapse
Affiliation(s)
- M Cristina Vega
- EMBL Hamburg Outstation, Notkestrasse 85, Building 25A, D-22603 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ. The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 2004; 336:131-44. [PMID: 14741209 DOI: 10.1016/j.jmb.2003.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme of the histidine pathway, is a complex allosterically regulated enzyme, which controls the flow of intermediates through this biosynthetic pathway. The crystal structures of Escherichia coli ATP-PRT have been solved in complex with the inhibitor AMP at 2.7A and with product PR-ATP at 2.9A (the ribosyl-triphosphate could not be resolved). On the basis of binding of AMP and PR-ATP and comparison with type I PRTs, the PRPP and parts of the ATP-binding site are identified. These structures clearly identify the AMP as binding in the 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP)-binding site, with the adenosine ring occupying the ATP-binding site. Comparison with the recently solved Mycobacterium tuberculosis ATP-PRT structures indicates that histidine is solely responsible for the large conformational changes observed between the hexameric forms of the enzyme. The role of oligomerisation in inhibition and the structural basis for the synergistic inhibition by histidine and AMP are discussed.
Collapse
Affiliation(s)
- Bernhard Lohkamp
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
23
|
Schramm VL, Grubmeyer C. Phosphoribosyltransferase Mechanisms and Roles in Nucleic Acid Metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:261-304. [PMID: 15210333 DOI: 10.1016/s0079-6603(04)78007-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | |
Collapse
|
24
|
Ramos I, Downs DM. Anthranilate synthase can generate sufficient phosphoribosyl amine for thiamine synthesis in Salmonella enterica. J Bacteriol 2003; 185:5125-32. [PMID: 12923085 PMCID: PMC180985 DOI: 10.1128/jb.185.17.5125-5132.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.
Collapse
Affiliation(s)
- I Ramos
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
25
|
Xie G, Keyhani NO, Bonner CA, Jensen RA. Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev 2003; 67:303-42, table of contents. [PMID: 12966138 PMCID: PMC193870 DOI: 10.1128/mmbr.67.3.303-342.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.
Collapse
Affiliation(s)
- Gary Xie
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|