1
|
Meneau F, Lapébie P, Daldello EM, Le T, Chevalier S, Assaf S, Houliston E, Jessus C, Miot M. ARPP19 phosphorylation site evolution and the switch in cAMP control of oocyte maturation in vertebrates. Development 2024; 151:dev202655. [PMID: 39576213 DOI: 10.1242/dev.202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
cAMP-PKA signaling initiates the crucial process of oocyte meiotic maturation in many animals, but inhibits it in vertebrates. To address this 'cAMP paradox', we exchanged the key PKA substrate ARPP19 between representative species, the vertebrate Xenopus and the cnidarian Clytia, comparing its phosphorylation and function. We found that, as in Xenopus, Clytia maturing oocytes undergo ARPP19 phosphorylation on a highly conserved Gwl site, which inhibits PP2A and promotes M-phase entry. In contrast, despite a PKA phosphorylation signature motif recognizable across most animals, Clytia ARPP19 was only poorly phosphorylated by PKA in vitro and in vivo. Furthermore, unlike Xenopus ARPP19, exogenous Clytia ARPP19 did not delay Xenopus oocyte maturation. We conclude that, in Clytia, ARPP19 does not intervene in oocyte maturation initiation because of both poor recognition by PKA and the absence of effectors that mediate vertebrate oocyte prophase arrest. We propose that ancestral ARPP19 phosphorylated by Gwl has retained a key role in M-phase across eukaryotes and has acquired new functions during animal evolution mediated by enhanced PKA phosphorylation, allowing co-option into oocyte maturation regulation in the vertebrate lineage.
Collapse
Affiliation(s)
- Ferdinand Meneau
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Pascal Lapébie
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Sarah Assaf
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), F-06230 Villefranche-sur-mer, France
| | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| |
Collapse
|
2
|
Santoni M, Meneau F, Sekhsoukh N, Castella S, Le T, Miot M, Daldello EM. Unraveling the interplay between PKA inhibition and Cdk1 activation during oocyte meiotic maturation. Cell Rep 2024; 43:113782. [PMID: 38358892 DOI: 10.1016/j.celrep.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Oocytes are arrested in prophase I. In vertebrates, meiotic resumption is triggered by hormonal stimulation that results in cAMP-dependent protein kinase (PKA) downregulation leading to Cdk1 activation. Yet the pathways connecting PKA to Cdk1 remain unclear. Here, we identify molecular events triggered by PKA downregulation occurring upstream of Cdk1 activation. We describe a two-step regulation controlling cyclin B1 and Mos accumulation, which depends on both translation and stabilization. Cyclin B1 accumulation is triggered by PKA inhibition upstream of Cdk1 activation, while its translation requires Cdk1 activity. Conversely, Mos translation initiates in response to the hormone, but the protein accumulates only downstream of Cdk1. Furthermore, two successive translation waves take place, the first controlled by PKA inhibition and the second by Cdk1 activation. Notably, Arpp19, an essential PKA effector, does not regulate the early PKA-dependent events. This study elucidates how PKA downregulation orchestrates multiple pathways that converge toward Cdk1 activation and induce the oocyte G2/M transition.
Collapse
Affiliation(s)
- Martina Santoni
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Ferdinand Meneau
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Nabil Sekhsoukh
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Sandrine Castella
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Tran Le
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Marika Miot
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université-CNRS, Laboratoire de Biologie du Développement Institut de Biologie Paris Seine, LBD-IBPS, 75005 Paris, France.
| |
Collapse
|
3
|
Lemonnier T, Daldello EM, Poulhe R, Le T, Miot M, Lignières L, Jessus C, Dupré A. The M-phase regulatory phosphatase PP2A-B55δ opposes protein kinase A on Arpp19 to initiate meiotic division. Nat Commun 2021; 12:1837. [PMID: 33758202 PMCID: PMC7988065 DOI: 10.1038/s41467-021-22124-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.
Collapse
Affiliation(s)
- Tom Lemonnier
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Robert Poulhe
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Tran Le
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Marika Miot
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | | | - Catherine Jessus
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Aude Dupré
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France.
| |
Collapse
|
4
|
Meneau F, Dupré A, Jessus C, Daldello EM. Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells 2020; 9:E1502. [PMID: 32575604 PMCID: PMC7348711 DOI: 10.3390/cells9061502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
The study of oocytes has made enormous contributions to the understanding of the G2/M transition. The complementarity of investigations carried out on various model organisms has led to the identification of the M-phase promoting factor (MPF) and to unravel the basis of cell cycle regulation. Thanks to the power of biochemical approaches offered by frog oocytes, this model has allowed to identify the core signaling components involved in the regulation of M-phase. A central emerging layer of regulation of cell division regards protein translation. Oocytes are a unique model to tackle this question as they accumulate large quantities of dormant mRNAs to be used during meiosis resumption and progression, as well as the cell divisions during early embryogenesis. Since these events occur in the absence of transcription, they require cascades of successive unmasking, translation, and discarding of these mRNAs, implying a fine regulation of the timing of specific translation. In the last years, the Xenopus genome has been sequenced and annotated, enabling the development of omics techniques in this model and starting its transition into the genomic era. This review has critically described how the different phases of meiosis are orchestrated by changes in gene expression. The physiological states of the oocyte have been described together with the molecular mechanisms that control the critical transitions during meiosis progression, highlighting the connection between translation control and meiosis dynamics.
Collapse
Affiliation(s)
| | | | | | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine, LBD—IBPS, F-75005 Paris, France; (F.M.); (A.D.); (C.J.)
| |
Collapse
|
5
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
7
|
Effects of Ferrocenyl 4-(Imino)-1,4-Dihydro-quinolines on Xenopus laevis Prophase I - Arrested Oocytes: Survival and Hormonal-Induced M-Phase Entry. Int J Mol Sci 2020; 21:ijms21093049. [PMID: 32357477 PMCID: PMC7246863 DOI: 10.3390/ijms21093049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023] Open
Abstract
Xenopus oocytes were used as cellular and molecular sentinels to assess the effects of a new class of organometallic compounds called ferrocenyl dihydroquinolines that have been developed as potential anti-cancer agents. One ferrocenyl dihydroquinoline compound exerted deleterious effects on oocyte survival after 48 h of incubation at 100 μM. Two ferrocenyl dihydroquinoline compounds had an inhibitory effect on the resumption of progesterone induced oocyte meiosis, compared to controls without ferrocenyl groups. In these inhibited oocytes, no MPF (Cdk1/cyclin B) activity was detected by western blot analysis as shown by the lack of phosphorylation of histone H3. The dephosphorylation of the inhibitory Y15 residue of Cdk1 occurred but cyclin B was degraded. Moreover, two apoptotic death markers, the active caspase 3 and the phosphorylated histone H2, were detected. Only 7-chloro-1-ferrocenylmethyl-4-(phenylylimino)-1,4-dihydroquinoline (8) did not show any toxicity and allowed the assembly of a histologically normal metaphase II meiotic spindle while inhibiting the proliferation of cancer cell lines with a low IC50, suggesting that this compound appears suitable as an antimitotic agent.
Collapse
|
8
|
Hydrogen Sulfide Impairs Meiosis Resumption in Xenopus laevis Oocytes. Cells 2020; 9:cells9010237. [PMID: 31963573 PMCID: PMC7017156 DOI: 10.3390/cells9010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023] Open
Abstract
The role of hydrogen sulfide (H2S) is addressed in Xenopus laevis oocytes. Three enzymes involved in H2S metabolism, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
Collapse
|
9
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
10
|
Peng Y, Chang L, Wang Y, Wang R, Hu L, Zhao Z, Geng L, Liu Z, Gong Y, Li J, Li X, Zhang C. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds. Genomics 2018; 111:1395-1403. [PMID: 30268779 DOI: 10.1016/j.ygeno.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 01/27/2023]
Abstract
Bashang long-tail chickens are an indigenous breed with dual purpose in China (meat and eggs) but have low egg laying performance. To improve the low egg laying performance, a genome-wide analysis of mRNAs and long noncoding RNAs (lncRNAs) from Bashang long-tail chickens and Hy-Line brown layers was performed. A total of 16,354 mRNAs and 8691 lncRNAs were obtained from ovarian follicles. Between the breeds, 160 mRNAs and 550 lncRNAs were found to be significantly differentially expressed. Integrated network analysis suggested some differentially expressed genes were involved in ovarian follicular development through oocyte meiosis, progesterone-mediated oocyte maturation, and cell cycle. The impact of lncRNAs on cis and trans target genes, indicating some lncRNAs may play important roles in ovarian follicular development. The current results provided a catalog of chicken ovarian follicular lncRNAs and genes for further study to understand their roles in regulation of egg laying performance.
Collapse
Affiliation(s)
- Yongdong Peng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Li Chang
- College of Animal Science and Technology, Agricultural University of Hebei Province, Baoding 071001, Hebei, People's Republic of China; Qinhuangdao Animal Disease Control Center, Qinhuangdao 066001, Hebei, People's Republic of China
| | - Yaqi Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ruining Wang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Lulu Hu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Ziya Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Liying Geng
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Yuanfang Gong
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Jingshi Li
- College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, People's Republic of China.
| |
Collapse
|
11
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
12
|
Baek JI, Seol DW, Lee AR, Lee WS, Yoon SY, Lee DR. Maintained MPF Level after Oocyte Vitrification Improves Embryonic Development after IVF, but not after Somatic Cell Nuclear Transfer. Mol Cells 2017; 40:871-879. [PMID: 29145719 PMCID: PMC5712517 DOI: 10.14348/molcells.2017.0184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 12/23/2022] Open
Abstract
Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), 10 μM MG132 (MG), and 10 mM caffeine +10 μM MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.
Collapse
Affiliation(s)
- Ji I Baek
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Dong-Won Seol
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Ah-Reum Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| |
Collapse
|
13
|
Li JY, Pan LQ, Miao JJ, Xu RY, Xu WJ. De novo assembly and characterization of the ovarian transcriptome reveal mechanisms of the final maturation stage in Chinese scallop Chlamys farreri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:118-124. [DOI: 10.1016/j.cbd.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
|
14
|
Formation of mos RNA granules in the zebrafish oocyte that differ from cyclin B1 RNA granules in distribution, density and regulation. Eur J Cell Biol 2016; 95:563-573. [PMID: 27756483 DOI: 10.1016/j.ejcb.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Many translationally repressed mRNAs are deposited in the oocyte cytoplasm for progression of the meiotic cell cycle and early development. mos and cyclin B1 mRNAs encode proteins promoting oocyte meiosis, and translational control of these mRNAs is important for normal progression of meiotic cell division. We previously demonstrated that cyclin B1 mRNA forms RNA granules in the zebrafish and mouse oocyte cytoplasm and that the formation of RNA granules is crucial for regulating the timing of translational activation of the mRNA. However, whether the granule formation is specific to cyclin B1 mRNA remains unknown. In this study, we found that zebrafish mos mRNA forms granules distinct from those of cyclin B1 mRNA. Fluorescent in situ hybridization analysis showed that cyclin B1 RNA granules were assembled in dense clusters, while mos RNA granules were distributed diffusely in the animal polar cytoplasm. Sucrose density gradient ultracentrifugation analysis showed that the density of mos RNA granules was partly lower than that of cyclin B1 mRNA. Similar to cyclin B1 RNA granules, mos RNA granules were disassembled after initiation of oocyte maturation at the timing at which the poly(A) tail was elongated. However, while almost all of the granules of cyclin B1 were disassembled simultaneously, a fraction of mos RNA granules firstly disappeared and then a large part of them was disassembled. In addition, while cyclin B1 RNA granules were disassembled in a manner dependent on actin filament depolymerization, certain fractions of mos RNA granules were disassembled independently of actin filaments. These results suggest that cytoplasmic regulation of translationally repressed mRNAs by formation of different RNA granules is a key mechanism for translational control of distinct mRNAs in the oocyte.
Collapse
|
15
|
Dupré A, Daldello EM, Nairn AC, Jessus C, Haccard O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun 2015; 5:3318. [PMID: 24525567 PMCID: PMC4014304 DOI: 10.1038/ncomms4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2014] [Indexed: 11/13/2022] Open
Abstract
During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long-sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessary and sufficient for maintaining Xenopus oocytes arrested in prophase. By downregulating PKA, progesterone, the meiotic inducer in Xenopus, promotes partial dephosphorylation of ARPP19 that is required for the formation of a threshold level of active Cdk1. Active Cdk1 then initiates MPF autoamplification loop that occurs independently of both PKA and ARPP19 phosphorylation at serine 109 but requires the Greatwall-dependent phosphorylation of ARPP19 at serine 67. Therefore, ARPP19 stands at a crossroads in the meiotic M-phase control network by integrating differential effects of PKA and Greatwall, two essential kinases for meiosis resumption.
Collapse
Affiliation(s)
- Aude Dupré
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3]
| | - Enrico M Daldello
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France [3] Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, cedex 05, Paris 75252, France [4]
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | - Catherine Jessus
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| | - Olivier Haccard
- 1] Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris F-75005, France [2] CNRS, UMR7622-Biologie du Développement, Paris F-75005, France
| |
Collapse
|
16
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|
17
|
Gelaude A, Marin M, Cailliau K, Jeseta M, Lescuyer‐Rousseau A, Vandame P, Nevoral J, Sedmikova M, Martoriati A, Bodart J. Nitric Oxide Donor
s
‐Nitroso‐
n
‐Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis in
Xenopus
Oocytes. J Cell Biochem 2015; 116:2445-54. [DOI: 10.1002/jcb.25211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Armance Gelaude
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Matthieu Marin
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Katia Cailliau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Michal Jeseta
- Veterinary Research InstituteBrno ‐ Genetics and ReproductionBrnoCzech Republic
| | - Arlette Lescuyer‐Rousseau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Pauline Vandame
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jan Nevoral
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Marketa Sedmikova
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Alain Martoriati
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jean‐François Bodart
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| |
Collapse
|
18
|
Daldello EM, Le T, Poulhe R, Jessus C, Haccard O, Dupré A. Fine-tuning of Cdc6 accumulation by Cdk1 and MAP kinase is essential for completion of oocyte meiotic divisions. J Cell Sci 2015; 128:2482-96. [DOI: 10.1242/jcs.166553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 01/28/2023] Open
Abstract
Vertebrate oocytes proceed through the 1st and the 2nd meiotic division without intervening S-phase to become haploid. Although DNA replication does not take place, unfertilized oocytes acquire the competence to replicate DNA one hour after the 1st meiotic division, by accumulating an essential factor of the replicative machinery, Cdc6. Here, we discovered that the turnover of Cdc6 is precisely regulated in oocytes to avoid inhibition of Cdk1. At meiosis resumption, Cdc6 starts to be expressed but cannot accumulate due to a degradation mechanism activated through Cdk1. During transition from 1st to 2nd meiotic division, Cdc6 is under antagonistic regulation of Cyclin B, whose interaction with Cdc6 stabilizes the protein, and Mos/MAPK that negatively controls its accumulation. Since overexpressing Cdc6 inhibits Cdk1 reactivation and drives oocytes into a replicative interphasic state, the fine-tuning of Cdc6 accumulation is essential to ensure two meiotic waves of Cdk1 activation and to avoid unscheduled DNA replication during meiotic maturation.
Collapse
Affiliation(s)
- Enrico M. Daldello
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Tran Le
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Robert Poulhe
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Catherine Jessus
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Olivier Haccard
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Aude Dupré
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| |
Collapse
|
19
|
Miyagaki Y, Kanemori Y, Tanaka F, Baba T. Possible role of p38 MAPK-MNK1-EMI2 cascade in metaphase-II arrest of mouse oocytes. Biol Reprod 2014; 91:45. [PMID: 24920040 DOI: 10.1095/biolreprod.113.116962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Mos-MAPK signaling pathway involving the Mos-MEK1/2-ERK1/2-RSK1/2/3 or MSK1-EMI2 cascade is directly linked to metaphase-II arrest of vertebrate oocytes. In this study, we examined whether p38, a member of the MAPK subfamily, is regulated under the control of Mos and contributes to metaphase-II arrest in the mouse oocyte. Morpholino oligonucleotide-mediated depletion of Mos revealed a remarkable decrease in phosphorylation of p38. Simultaneous treatment of oocytes with two chemical inhibitors of p38 and MEK1/2 induced both release from metaphase II and degradation of cyclin B1, whereas the treatment with each of these two inhibitors had little effect. Moreover, phosphorylation of EMI2 was dramatically abolished by addition of the two inhibitors. Indeed, MNK1, a kinase downstream of p38, exhibited the ability to phosphorylate EMI2. These results suggest that in addition to the Mos-MEK1/2 pathway, the Mos-mediated p38 pathway may be implicated in metaphase-II arrest.
Collapse
Affiliation(s)
- Yu Miyagaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | - Yoshinori Kanemori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | - Fumi Tanaka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki, Japan Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba Science City, Ibaraki, Japan
| |
Collapse
|
20
|
Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1034-46. [PMID: 23827238 DOI: 10.1016/j.bbagrm.2013.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Maternal mRNAs are translationally regulated during early development. Zar1 and its closely related homolog, Zar2, are both crucial in early development. Xenopus laevis Zygote arrest 2 (Zar2) binds to the Translational Control Sequence (TCS) in maternal mRNAs and regulates translation. The molecular mechanism of Zar1 has not been described. Here we report similarities and differences between Xenopus Zar1 and Zar2. Analysis of Zar sequences in vertebrates revealed two Zar family members with conserved, characteristic amino acid differences in the C-terminal domain. The presence of only two vertebrate Zar proteins was supported by analyzing Zar1 synteny. We propose that the criteria for naming Zar sequences are based on the characteristic amino acids and the chromosomal context. We also propose reclassification of some Zar sequences. We found that Zar1 is expressed throughout oogenesis and is stable during oocyte maturation. The N-terminal domain of Zar1 repressed translation of a reporter construct in immature oocytes. Both Zar1 and Zar2 bound to the TCS in the Wee1 and Mos 3' UTRs using a zinc finger in the C-terminal domain. However, Zar1 had much higher affinity for RNA than Zar2. To show the functional significance of the conserved amino acid substitutions, these residues in Zar2 were mutated to those found in Zar1. We show that these residues contributed to the different RNA binding characteristics of Zar1 compared to Zar2. Our study shows that Zar proteins have generally similar molecular functions in the translational regulation of maternal mRNAs, but they may have different roles in early development.
Collapse
|
21
|
Dupré A, Buffin E, Roustan C, Nairn AC, Jessus C, Haccard O. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes. J Cell Sci 2013; 126:3916-26. [PMID: 23781026 DOI: 10.1242/jcs.126599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.
Collapse
Affiliation(s)
- Aude Dupré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
23
|
Pfeuty B, Bodart JF, Blossey R, Lefranc M. A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions. PLoS Comput Biol 2012; 8:e1002329. [PMID: 22238511 PMCID: PMC3252271 DOI: 10.1371/journal.pcbi.1002329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/11/2011] [Indexed: 12/04/2022] Open
Abstract
Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions. In the life cycle of sexual organisms, a specialized cell division -meiosis- reduces the number of chromosomes in gametes or spores while fertilization or mating restores the original number. The essential feature that distinguishes meiosis from mitosis (the usual division) is the succession of two rounds of division following a single DNA replication, as well as the arrest at the second division in the case of oocyte maturation. The fact that meiosis and mitosis are similar but different raises several interesting questions: What is the meiosis-specific dynamics of cell-cycle regulators? Are there mechanisms which guarantee the occurence of two and only two rounds of division despite the presence of intrinsic and extrinsic noises ? The study of a model of the molecular network that underlies the meiotic maturation process in Xenopus oocytes provides unexpected answers to these questions. On the one hand, the modular organization of this network ensures separate controls of the first and second divisions. On the other hand, regulatory synergies ensure that these two stages are precisely and reliably sequenced during meiosis. We conclude that cells have evolved a sophisticated regulatory network to achieve a robust, albeit flexible, meiotic dynamics.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes, et Molécules, CNRS, UMR8523, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France.
| | | | | | | |
Collapse
|
24
|
Gaffré M, Martoriati A, Belhachemi N, Chambon JP, Houliston E, Jessus C, Karaiskou A. A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes. Development 2011; 138:3735-44. [DOI: 10.1242/dev.063974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.
Collapse
Affiliation(s)
- Melina Gaffré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Alain Martoriati
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Naima Belhachemi
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Jean-Philippe Chambon
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Evelyn Houliston
- UPMC Université Paris 06, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
- CNRS, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
| | - Catherine Jessus
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Anthi Karaiskou
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
25
|
Du Pasquier D, Dupré A, Jessus C. Unfertilized Xenopus eggs die by Bad-dependent apoptosis under the control of Cdk1 and JNK. PLoS One 2011; 6:e23672. [PMID: 21858202 PMCID: PMC3156807 DOI: 10.1371/journal.pone.0023672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation.
Collapse
Affiliation(s)
- David Du Pasquier
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
| | - Aude Dupré
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
| | - Catherine Jessus
- CNRS, UMR 7622-Biologie du Développement, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR 7622-Biologie du Développement, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Kishimoto T. A primer on meiotic resumption in starfish oocytes: the proposed signaling pathway triggered by maturation-inducing hormone. Mol Reprod Dev 2011; 78:704-7. [PMID: 21714029 DOI: 10.1002/mrd.21343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 05/22/2011] [Indexed: 11/06/2022]
Abstract
This short review updates the maturation-inducing hormonal signaling in starfish oocytes. In this system, the activation of cyclin B-Cdc2 kinase (Cdk1) that leads to meiotic resumption does not require new protein synthesis. The key intracellular mediator after hormonal stimulation by 1-methyladenine is the protein kinase Akt/PKB, which in turn directly downregulates Myt1 and upregulates Cdc25 toward the activation of cyclin B-Cdc2. Mitotic kinases including Aurora, Plk1 and Greatwall are activated downstream of cyclin B-Cdc2. The starfish oocyte thus provides a simple model system for the study of meiotic resumption.
Collapse
Affiliation(s)
- Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama, Japan.
| |
Collapse
|
27
|
Ota R, Kotani T, Yamashita M. Possible Involvement of Nemo-like Kinase 1 in Xenopus Oocyte Maturation As a Kinase Responsible for Pumilio1, Pumilio2, and CPEB Phosphorylation. Biochemistry 2011; 50:5648-59. [DOI: 10.1021/bi2002696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryoma Ota
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoya Kotani
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakane Yamashita
- Laboratory of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
28
|
Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development 2011; 138:885-95. [DOI: 10.1242/dev.057133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca2+ oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rémi Dumollard
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Mark Levasseur
- Institute of Cell and Molecular Bioscences, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Céline Hebras
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Philippe Huitorel
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Michael Carroll
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Jean-Philippe Chambon
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
29
|
Blossey R, Bodart JF, Devys A, Goudon T, Lafitte P. Signal propagation of the MAPK cascade in Xenopus oocytes: role of bistability and ultrasensitivity for a mixed problem. J Math Biol 2011; 64:1-39. [DOI: 10.1007/s00285-011-0403-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 12/17/2010] [Indexed: 10/18/2022]
|
30
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
31
|
MacNicol MC, MacNicol AM. Developmental timing of mRNA translation--integration of distinct regulatory elements. Mol Reprod Dev 2010; 77:662-9. [PMID: 20652998 DOI: 10.1002/mrd.21191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Targeted mRNA translation is emerging as a critical mechanism to control gene expression during developmental processes. Exciting new findings have revealed a critical role for regulatory elements within the mRNA untranslated regions to direct the timing of mRNA translation. Regulatory elements can be targeted by sequence-specific binding proteins to direct either repression or activation of mRNA translation in response to developmental signals. As new regulatory elements continue to be identified it has become clear that targeted mRNAs can contain multiple regulatory elements, directing apparently contradictory translational patterns. How is this complex regulatory input integrated? In this review, we focus on a new challenge area-how sequence-specific RNA binding proteins respond to developmental signals and functionally integrate to regulate the extent and timing of target mRNA translation. We discuss current understanding with a particular emphasis on the control of cell cycle progression that is mediated through a complex interplay of distinct mRNA regulatory elements during Xenopus oocyte maturation.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
32
|
Yang Y, Han SM, Miller MA. MSP hormonal control of the oocyte MAP kinase cascade and reactive oxygen species signaling. Dev Biol 2010; 342:96-107. [PMID: 20380830 DOI: 10.1016/j.ydbio.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/12/2010] [Accepted: 03/31/2010] [Indexed: 11/28/2022]
Abstract
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.
Collapse
Affiliation(s)
- Youfeng Yang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
33
|
Ruiz EJ, Vilar M, Nebreda AR. A two-step inactivation mechanism of Myt1 ensures CDK1/cyclin B activation and meiosis I entry. Curr Biol 2010; 20:717-23. [PMID: 20362450 DOI: 10.1016/j.cub.2010.02.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
Activation of CDK1 is essential for M-phase entry both in mitosis and meiosis. G2-arrested oocytes contain a pool of CDK1/cyclin B complexes that are maintained inactive because of the phosphorylation of CDK1 on Thr14 and Tyr15 by the Wee1 family protein kinase Myt1, whose inhibition suffices to induce meiosis I entry [1-5]. CDK1/XRINGO and p90Rsk can both phosphorylate and downregulate Myt1 activity in vitro [6, 7]. Here we identify five p90Rsk phosphorylation sites on Myt1 that are different from the CDK1/XRINGO sites, and we show how both kinases synergize during oocyte maturation to inhibit Myt1, ensuring meiotic progression. We found that phosphorylation of Myt1 by CDK1/XRINGO early during oocyte maturation not only downregulates Myt1 kinase activity but also facilitates the recruitment of p90Rsk and further phosphorylation of Myt1. Mutation of the five p90Rsk residues to alanine impairs Myt1 hyperphosphorylation during oocyte maturation and makes Myt1 resistant to the inhibition by p90Rsk. Importantly, Myt1 phosphorylated by p90Rsk does not interact with CDK1/cyclin B, ensuring that the inhibitory phosphorylations of CDK1 cannot take place after meiosis I entry and contributing to the all-or-none meiotic response.
Collapse
Affiliation(s)
- E Josué Ruiz
- Spanish National Cancer Center, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
34
|
Russo C, Beaujois R, Bodart JF, Blossey R. Kicked by Mos and tuned by MPF-the initiation of the MAPK cascade in Xenopus oocytes. HFSP JOURNAL 2009; 3:428-40. [PMID: 20514133 DOI: 10.2976/1.3265771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a paradigmatic signaling cascade, which plays a crucial role in many aspects of cellular events. The main initiator of the cascade in Xenopus oocytes is the oncoprotein Mos. After activation of the cascade, Mos activity is stabilized by MAPK via a feedback loop. Mos concentration levels are, however, not controlled by MAPK alone. In this paper we show, by imposing either a sustained or a peaked activity of M-phase promoting factor (MPF) (Cdc2-cyclin B), how the latter regulates the dynamics of Mos. Our experiments are supported by a detailed kinetic model for the Mos-MPF-MAPK network, which takes into account the three different phosphorylation states of Mos and, as a consequence, allows us to determine the time evolution of Mos under control of MPF. Our work opens a path toward a more complete and biologically realistic quantitative understanding of the dynamic interdependence of Mos and MPF in Xenopus oocytes.
Collapse
|
35
|
Arumugam K, Wang Y, Hardy LL, MacNicol MC, MacNicol AM. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2009; 29:387-97. [PMID: 19959990 DOI: 10.1038/emboj.2009.337] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023] Open
Abstract
Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi-binding element (MBE) and the MBE-binding protein, Musashi. Our findings indicate that although the cyclin B5 3' UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3' UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE-dependant mRNA translation.
Collapse
Affiliation(s)
- Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | |
Collapse
|
36
|
Git A, Allison R, Perdiguero E, Nebreda AR, Houliston E, Standart N. Vg1RBP phosphorylation by Erk2 MAP kinase correlates with the cortical release of Vg1 mRNA during meiotic maturation of Xenopus oocytes. RNA (NEW YORK, N.Y.) 2009; 15:1121-1133. [PMID: 19376927 PMCID: PMC2685525 DOI: 10.1261/rna.1195709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
Xenopus Vg1RBP is a member of the highly conserved IMP family of four KH-domain RNA binding proteins, with roles in RNA localization, translational control, RNA stability, and cell motility. Vg1RBP has been implicated in localizing Vg1 mRNAs to the vegetal cortex during oogenesis, in a process mediated by microtubules and microfilaments, and in migration of neural crest cells in embryos. Using c-mos morpholino, kinase inhibitors, and constitutely active recombinant kinases we show that Vg1RBP undergoes regulated phosphorylation by Erk2 MAPK during meiotic maturation, on a single residue, S402, located between the KH2 and KH3 domains. Phosphorylation temporally correlates with the release of Vg1 mRNA from its tight cortical association, assayed in lysates in physiological salt buffers, but does not affect RNA binding, nor self-association of Vg1RBP. U0126, a MAP kinase inhibitor, prevents Vg1RBP cortical release and Vg1 mRNA solubilization in meiotically maturing eggs, while injection of MKK6-DD, a constitutively activated MAP kinase kinase, promotes the release of both Vg1RBP and Vg1 mRNA from insoluble cortical structures. We propose that Erk2 MAP kinase phosphorylation of Vg1RBP regulates the protein:protein-mediated association of Vg1 mRNP with the cytoskeleton and/or ER. Since the MAP kinase site in Vg1RBP is conserved in several IMP homologs, this modification also has important implications for the regulation of IMP proteins in somatic cells.
Collapse
Affiliation(s)
- Anna Git
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Ruiz EJ, Hunt T, Nebreda AR. Meiotic Inactivation of Xenopus Myt1 by CDK/XRINGO, but Not CDK/Cyclin, via Site-Specific Phosphorylation. Mol Cell 2008; 32:210-20. [DOI: 10.1016/j.molcel.2008.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/11/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
38
|
Oocyte selection is concurrent with meiosis resumption in the coenocystic oogenesis of Oikopleura. Dev Biol 2008; 324:266-76. [PMID: 18845138 DOI: 10.1016/j.ydbio.2008.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 09/14/2008] [Indexed: 11/22/2022]
Abstract
Oogenesis in the tunicate, Oikopleura, is unusual for a chordate, in that the thousands of nuclei comprising the entire germline are contained in a unique giant cell, the coenocyst. We examined progression through meiotic prophase I in concert with cellular mechanisms implicated in selection, growth and maturation of oocytes in this shared cytoplasm. Unlike sister vertebrates, no germinal vesicle was formed and maternal transcripts were instead synthesized by polyploid nurse nuclei present in equal numbers to transcriptionally quiescent meiotic nuclei. Meiosis resumption was concomitant with MAPK cascade activation during which pERK translocated to nurse nuclei. Simultaneously, the coenocyst partitioned into hundreds of synchronously growing oocytes. Significantly, only the subset of meiotic nuclei selected to populate maturing oocytes displayed histone H3 serine 28 phosphorylation. Disruption of the MAPK cascade, or microtubule dynamics, did not inhibit meiotic resumption but generated oocytes with multiple nurse and meiotic nuclei. As these supernumerary nuclei also became H3S28P enriched, growing oocytes defined a selective kinase environment in the common coenocyst cytoplasm. Vitellogenesis preceded the timing of oocyte selection among excess germ line nuclei in contrast to Drosophila and vertebrates. This unique feature enables late adjustment of oocyte number in accordance with the cytoplasmic volume of the germline cyst accumulated during vitellogenesis.
Collapse
|
39
|
Prasad CK, Mahadevan M, MacNicol MC, MacNicol AM. Mos 3' UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation. Mol Reprod Dev 2008; 75:1258-68. [PMID: 18246541 DOI: 10.1002/mrd.20877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.
Collapse
Affiliation(s)
- C Krishna Prasad
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
40
|
Tang W, Wu JQ, Guo Y, Hansen DV, Perry JA, Freel CD, Nutt L, Jackson PK, Kornbluth S. Cdc2 and Mos regulate Emi2 stability to promote the meiosis I-meiosis II transition. Mol Biol Cell 2008; 19:3536-43. [PMID: 18550795 DOI: 10.1091/mbc.e08-04-0417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.
Collapse
Affiliation(s)
- Wanli Tang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Perry ACF, Verlhac MH. Second meiotic arrest and exit in frogs and mice. EMBO Rep 2008; 9:246-51. [PMID: 18311174 DOI: 10.1038/embor.2008.22] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/09/2022] Open
Abstract
Mature vertebrate oocytes typically undergo programmed arrest at the second meiotic cell cycle until they are signalled to initiate embryonic development at fertilization. Here, we describe the underlying molecular mechanisms of this second meiotic arrest and release in Xenopus, and compare and contrast them with their counterparts in mice.
Collapse
Affiliation(s)
- Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | | |
Collapse
|
43
|
Zhao Y, Haccard O, Wang R, Yu J, Kuang J, Jessus C, Goldberg ML. Roles of Greatwall kinase in the regulation of cdc25 phosphatase. Mol Biol Cell 2008; 19:1317-27. [PMID: 18199678 DOI: 10.1091/mbc.e07-11-1099] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates the mitotic G2/M transition in cycling egg extracts and induces meiotic maturation in G2-arrested Xenopus oocytes in the absence of progesterone. Activated Greatwall can induce phosphorylations of Cdc25 in the absence of the activity of Cdc2, Plx1 (Xenopus Polo-like kinase) or mitogen-activated protein kinase, or in the presence of an activator of protein kinase A that normally blocks mitotic entry. The effects of active Greatwall mimic in many respects those associated with addition of the phosphatase inhibitor okadaic acid (OA); moreover, OA allows cycling extracts to enter M phase in the absence of Greatwall. Taken together, these findings support a model in which Greatwall negatively regulates a crucial phosphatase that inhibits Cdc25 activation and M phase induction.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
45
|
Kaphzan H, Doron G, Rosenblum K. Co-application of NMDA and dopamine-induced rapid translation of RSK2 in the mature hippocampus. J Neurochem 2007; 103:388-99. [PMID: 17645456 DOI: 10.1111/j.1471-4159.2007.04774.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ribosomal S6 kinase2 (RSK2) is known to take part in several signal transduction cascades including Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK). Following our recent observation that ERK can serve as a coincidence detector for fast and slow neurotransmission in the hippocampus, we analyzed the status of RSK2 phosphorylation subsequent to application of NMDA, dopamine, or both to preparations of mature hippocampal slices in Sprague-Dawley rats. RSK2 was indeed phosphorylated; however, in addition, the amount of RSK2 protein (60%) was induced within 10 min following stimulation. Moreover, the induced expression of RSK2 could be detected in both the cell body layer and the dendrites of hippocampal CA1 cells. Pharmacological analysis showed that RSK2 induction was MAPK ERK Kinase (MEK)-ERK independent, but mammalian Target of Rapamycin (mTOR) and translation dependent. We suggest that the fast kinetics of RSK2 translation that follows physiological stimulations, together with recent observations that its over-expression is vital for the attenuation of major signal transduction cascades, indicate an expanded physiological function of RSK2 in neurons, and sheds new light on the role of RSK2 in the Coffin-Lowry syndrome.
Collapse
Affiliation(s)
- Hanoch Kaphzan
- Department of Neurobiology and Ethology, Faculty of Science, Haifa University, Haifa, Israel
| | | | | |
Collapse
|
46
|
Nishiyama T, Ohsumi K, Kishimoto T. Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature 2007; 446:1096-9. [PMID: 17410129 DOI: 10.1038/nature05696] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 02/19/2007] [Indexed: 11/08/2022]
Abstract
Until fertilization, the meiotic cell cycle of vertebrate eggs is arrested at metaphase of meiosis II by a cytoplasmic activity termed cytostatic factor (CSF), which causes inhibition of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets mitotic cyclins-regulatory proteins of meiosis and mitosis-for degradation. Recent studies indicate that Erp1/Emi2, an inhibitor protein for the APC/C, has an essential role in establishing and maintaining CSF arrest, but its relationship to Mos, a mitogen-activated protein kinase (MAPK) kinase kinase that also has an essential role in establishing CSF arrest through activation of p90 ribosomal S6 kinase (p90rsk), is unclear. Here we report that in Xenopus eggs Erp1 is a substrate of p90rsk, and that Mos-dependent phosphorylation of Erp1 by p90rsk at Thr 336, Ser 342 and Ser 344 is crucial for both stabilizing Erp1 and establishing CSF arrest in meiosis II oocytes. Semi-quantitative analysis with CSF-arrested egg extracts reveals that the Mos-dependent phosphorylation of Erp1 enhances, but does not generate, the activity of Erp1 that maintains metaphase arrest. Our results also suggest that Erp1 inhibits cyclin B degradation by binding the APC/C at its carboxy-terminal destruction box, and this binding is also enhanced by the Mos-dependent phosphorylation. Thus, Mos and Erp1 collaboratively establish and maintain metaphase II arrest in Xenopus eggs. The link between Mos and Erp1 provides a molecular explanation for the integral mechanism of CSF arrest in unfertilized vertebrate eggs.
Collapse
Affiliation(s)
- Tomoko Nishiyama
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
47
|
Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, Stukenberg PT, Kirschner MW, Kuang J. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128:1119-32. [PMID: 17382881 DOI: 10.1016/j.cell.2006.11.053] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/31/2006] [Accepted: 11/21/2006] [Indexed: 02/08/2023]
Abstract
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as HECT-domain protein NEDD4-1. In cells NEDD4-1 negatively regulates PTEN stability by catalyzing PTEN polyubiquitination. Consistent with the tumor-suppressive role of PTEN, overexpression of NEDD4-1 potentiated cellular transformation. Strikingly, in a mouse cancer model and multiple human cancer samples where the genetic background of PTEN was normal but its protein levels were low, NEDD4-1 was highly expressed, suggesting that aberrant upregulation of NEDD4-1 can posttranslationally suppress PTEN in cancers. Elimination of NEDD4-1 expression inhibited xenotransplanted tumor growth in a PTEN-dependent manner. Therefore, NEDD4-1 is a potential proto-oncogene that negatively regulates PTEN via ubiquitination, a paradigm analogous to that of Mdm2 and p53.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ito J, Shimada M, Hochi S, Hirabayashi M. Involvement of Ca2+-dependent proteasome in the degradation of both cyclin B1 and Mos during spontaneous activation of matured rat oocytes. Theriogenology 2007; 67:475-85. [PMID: 17027076 DOI: 10.1016/j.theriogenology.2006.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/14/2006] [Indexed: 11/19/2022]
Abstract
In matured rat oocytes, spontaneous activation from the metaphase-II (MII) stage occurred after collection from the oviducts. It is well known that the mitogen-activated protein kinase (MAPK) pathway and p34(cdc2) kinase play an important role in the arrest at MII in other species. However, there is no information about the difference in these factors among strains of rats. In the present study, in spontaneously activated oocytes from the Wistar rat, the Mos protein level and the activity of MAPK kinase (MEK)/MAPK were decreased at 120 min (13.8, 25.7, and 19.3, respectively, P<0.05), whereas Sprague-Dawley (SD) oocytes, which were not spontaneously activated, had a high level of Mos protein and MEK/MAPK activity (75.9, 76.2, and 87.9, respectively, P<0.05). Phosphorylation of MAPK in the SD oocytes was significantly suppressed by MEK inhibitor, U0126 at 60 min; this treatment decreased p34(cdc2) kinase activity via cyclin B1 degradation in a time-dependent manner. The treatment with proteasome inhibitor, MG132 or Ca2+-chelator, BAPTA-AM, overcame the spontaneous degradation of both Mos and cyclin B1 in a dose-dependent manner in Wistar oocytes. More than 90% of Wistar oocytes treated with BAPTA-AM were arrested at MII until 120 min. In conclusion, SD oocytes carrying Mos/MEK/MAPK, maintained a high activity of p34(cdc2) kinase by stabilizing cyclin B1, thus involved in their meiotic arrest. In contrast, Wistar oocytes had a relatively low cytostatic factor activity; rapid decrease of Mos/MEK/MAPK failed to stabilize both cyclin B1 and Mos, and these oocytes were likely to spontaneously activate.
Collapse
Affiliation(s)
- Junya Ito
- Section of Molecular Genetics, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | | | | | | |
Collapse
|
49
|
Abstract
Oocyte maturation is an essential cellular differentiation pathway that prepares the egg for activation at fertilization leading to the initiation of embryogenesis. An integral attribute of oocyte maturation is the remodeling of Ca2+ signaling pathways endowing the egg with the capacity to produce a specialized Ca2+ transient at fertilization that is necessary and sufficient for egg activation. Consequently, mechanistic elucidation of Ca2+ signaling differentiation during oocyte maturation is fundamental to our understanding of egg activation, and offers a glimpse into Ca2+ signaling regulation during the cell cycle.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
50
|
Grimison B, Liu J, Lewellyn AL, Maller JL. Metaphase arrest by cyclin E-Cdk2 requires the spindle-checkpoint kinase Mps1. Curr Biol 2006; 16:1968-73. [PMID: 17027495 DOI: 10.1016/j.cub.2006.08.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/09/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Cytostatic factor (CSF) arrests vertebrate eggs in metaphase of meiosis II through several pathways that inhibit activation of the anaphase-promoting complex/cyclosome (APC/C). In Xenopus, the Mos-MEK1-MAPK-p90(Rsk) cascade utilizes spindle-assembly-checkpoint components to effect metaphase arrest. Another pathway involves cyclin E-Cdk2, and sustained cyclin E-Cdk2 activity in egg extracts causes metaphase arrest in the absence of Mos; this latter finding suggests that an independent pathway contributes to CSF arrest. Here, we demonstrate that metaphase arrest with cyclin E-Cdk2, but not with Mos, requires the spindle-checkpoint kinase monopolar spindles 1 (Mps1), a cyclin E-Cdk2 target that is also implicated in centrosome duplication. xMps1 is synthesized and activated during oocyte maturation and inactivated upon CSF release. In egg extracts, CSF release by calcium was inhibited by constitutively active cyclin E-Cdk2 and delayed by wild-type xMps1. Ablation of cyclin E by antisense oligonucleotides blocked accumulation of xMps1, suggesting that cyclin E-Cdk2 controls Mps1 levels. During meiosis II, activated cyclin E-Cdk2 significantly inhibited the APC/C even in the absence of the Mos-MAPK pathway, but this inhibition was not sufficient to suppress S phase between meiosis I and II. These results uniquely place xMps1 downstream of cyclin E-Cdk2 in mediating a pathway of APC/C inhibition and metaphase arrest.
Collapse
Affiliation(s)
- Bryn Grimison
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|