1
|
Gustaw K, Koper P, Polak-Berecka M, Rachwał K, Skrzypczak K, Waśko A. Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB-A New Strain Isolated from Mead. Int J Mol Sci 2021; 22:ijms22073780. [PMID: 33917427 PMCID: PMC8038741 DOI: 10.3390/ijms22073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10-20%), glucose (2-25%), and fructose (2-24%) were prepared to test the strain's growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.
Collapse
Affiliation(s)
- Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
- Correspondence: (K.G.); (P.K.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: (K.G.); (P.K.)
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Katarzyna Skrzypczak
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| |
Collapse
|
2
|
Jiang Y, Yu H, Li F, Cheng L, Zhu L, Shi Y, Gong Q. Unveiling the structural features that determine the dual methyltransferase activities of Streptococcus pneumoniae RlmCD. PLoS Pathog 2018; 14:e1007379. [PMID: 30388185 PMCID: PMC6235398 DOI: 10.1371/journal.ppat.1007379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/14/2018] [Accepted: 10/03/2018] [Indexed: 12/03/2022] Open
Abstract
Methyltransferase RlmCD was previously shown to be responsible for the introduction of C5 methylation at both U747 and U1939 of the 23S ribosomal RNA in Streptococcus pneumoniae. Intriguingly, its structural homologue, RumA, can only catalyze the methylation of U1939, while RlmC is the dedicated enzyme for m5U747 in Escherichia coli. In this study, we describe the structure of RlmCD in complex with its cofactor and the RNA substrate containing U747 at 2.00 Å or U1939 at 3.10 Å. We demonstrate that multiple structural features collaborate to establish the dual enzymatic activities of RlmCD. Of them, the side-chain rearrangement of F145 was observed to be an unusual mechanism through which RlmCD can discriminate between U747- and U1939-containing RNA substrate by switching the intermolecular aromatic stacking between protein and RNA on/off. An in-vitro methyltransferase assay and electrophoretic mobility shift assay were performed to validate these findings. Overall, our complex structures allow for a better understanding of the dual-functional mechanism of RlmCD, suggesting useful implications for the evolution of the RumA-type enzyme and the potential development of antibiotic drugs against S. pneumoniae.
Collapse
Affiliation(s)
- Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hailong Yu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Cheng
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lingru Zhu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Jiang Y, Li F, Wu J, Shi Y, Gong Q. Structural insights into substrate selectivity of ribosomal RNA methyltransferase RlmCD. PLoS One 2017; 12:e0185226. [PMID: 28949991 PMCID: PMC5614603 DOI: 10.1371/journal.pone.0185226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022] Open
Abstract
RlmCD has recently been identified as the S-adenosyl methionine (SAM)-dependent methyltransferase responsible for the formation of m5U at U747 and U1939 of 23S ribosomal RNA in Streptococcus pneumoniae. In this research, we determine the high-resolution crystal structures of apo-form RlmCD and its complex with SAH. Using an in-vitro methyltransferase assay, we reveal the crucial residues for its catalytic functions. Furthermore, structural comparison between RlmCD and its structural homologue RumA, which only catalyzes the m5U1939 in Escherichia coli, implicates that a unique long linker in the central domain of RlmCD is the key factor in determining its substrate selectivity. Its significance in the enzyme activity of RlmCD is further confirmed by in-vitro methyltransferase assay.
Collapse
Affiliation(s)
- Yiyang Jiang
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Fudong Li
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jihui Wu
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunyu Shi
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingguo Gong
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
4
|
Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Nucleic Acids Res 2015; 43:8964-72. [PMID: 26365244 PMCID: PMC4605293 DOI: 10.1093/nar/gkv609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAIIin vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.
Collapse
Affiliation(s)
- Tatsuma Shoji
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
5
|
Fourmy D, Yoshizawa S. Protein-RNA footprinting: an evolving tool. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:557-66. [PMID: 22566372 DOI: 10.1002/wrna.1119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As more RNA molecules with important cellular functions are discovered, there is a strong need to characterize their structures, functions, and interactions. Chemical and enzymatic footprinting methods are used to map RNA secondary and tertiary structure, to monitor ligand interactions and conformational changes, and in the study of protein-RNA interactions. These methods provide data at single-nucleotide resolution that nicely complements the structural information available from X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), or cryo-electron microscopy. Footprinting methods also complement the dynamic information derived from single-molecule Förster resonance energy transfer. RNA footprinting tools have been used for decades, but we have recently seen spectacular advances, for instance, the use in combination with massive parallel sequencing techniques. Large libraries of RNA molecules (small or large in size) can now be probed in high-throughput manner when RNA footprinting methods are combined with fluorescent probe technologies and automation. In this article, after a brief historical overview, we summarize recent advances in RNA-protein footprinting methodologies that now integrate tools for massive parallel analysis.
Collapse
Affiliation(s)
- Dominique Fourmy
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
| | | |
Collapse
|
6
|
Martínez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 2011; 40:2247-57. [PMID: 22110039 PMCID: PMC3299997 DOI: 10.1093/nar/gkr1052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zoll J, Hahn MM, Gielen P, Heus HA, Melchers WJG, van Kuppeveld FJM. Unusual loop-sequence flexibility of the proximal RNA replication element in EMCV. PLoS One 2011; 6:e24818. [PMID: 21935472 PMCID: PMC3173479 DOI: 10.1371/journal.pone.0024818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022] Open
Abstract
Picornaviruses contain stable RNA structures at the 5′ and 3′ ends of the RNA genome, OriL and OriR involved in viral RNA replication. The OriL RNA element found at the 5′ end of the enterovirus genome folds into a cloverleaf-like configuration. In vivo SELEX experiments revealed that functioning of the poliovirus cloverleaf depends on a specific structure in this RNA element. Little is known about the OriL of cardioviruses. Here, we investigated structural aspects and requirements of the apical loop of proximal stem-loop SL-A of mengovirus, a strain of EMCV. Using NMR spectroscopy, we showed that the mengovirus SL-A apical loop consists of an octaloop. In vivo SELEX experiments demonstrated that a large number of random sequences are tolerated in the apical octaloop that support virus replication. Mutants in which the SL-A loop size and the length of the upper part of the stem were varied showed that both stem-length and stability of the octaloop are important determinants for viral RNA replication and virus reproduction. Together, these data show that stem-loop A plays an important role in virus replication. The high degree of sequence flexibility and the lack of selective pressure on the octaloop argue against a role in sequence specific RNA-protein or RNA-RNA interactions in which octaloop nucleotides are involved.
Collapse
Affiliation(s)
- Jan Zoll
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. CAPRI targets T29-T42: proving ground for new docking procedures. Proteins 2011; 78:3174-81. [PMID: 20607697 DOI: 10.1002/prot.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The critical assessment of protein interactions (CAPRI) experiment provides a unique opportunity for unbiased assessment of docking procedures. The recent CAPRI targets T29-T42 entailed docking of bound, unbound, and modeled structures, presenting a wide range of prediction difficulty. We submitted accurate predictions for targets T40, T41, and T42, a good prediction for T32 and acceptable predictions for T29 and T34. The accuracy of our docking results generally matched the prediction difficulty; hence, docking of modeled proteins produced less accurate results. However, there were interesting exceptions: an accurate prediction was submitted for the dimer of modeled tetratricopeptide repeat (T42) and only an acceptable prediction for the bound/unbound case T29. The ensembles of docking models produced in the scans included an acceptable or better prediction for every target. We show here that our recently developed postscan reevaluation procedure, which tests propensity and solvation measures of the whole interface and the interface core, successfully distinguished these predictions from false docking models. For enzyme-inhibitor targets, we show that the distance of the interface from the enzyme's centroid ranked high native like docking models. Also, for one case we demonstrate that docking of an ensemble of conformers produced by normal modes analysis can improve the accuracy of the prediction.
Collapse
Affiliation(s)
- Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
9
|
Auxilien S, Rasmussen A, Rose S, Brochier-Armanet C, Husson C, Fourmy D, Grosjean H, Douthwaite S. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases. RNA (NEW YORK, N.Y.) 2011; 17:45-53. [PMID: 21051506 PMCID: PMC3004065 DOI: 10.1261/rna.2323411] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/29/2010] [Indexed: 05/27/2023]
Abstract
Methyltransferase enzymes that use S-adenosylmethionine as a cofactor to catalyze 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, but are restricted to the Thermococcales and Nanoarchaeota groups amongst the Archaea. The RNA m(5)U methyltransferases appear to have arisen in Bacteria and were then dispersed by horizontal transfer of an rlmD-type gene to the Archaea and Eukaryota. The bacterium Escherichia coli has three gene paralogs and these encode the methyltransferases TrmA that targets m(5)U54 in tRNAs, RlmC (formerly RumB) that modifies m(5)U747 in 23S rRNA, and RlmD (formerly RumA) the archetypical enzyme that is specific for m(5)U1939 in 23S rRNA. The thermococcale archaeon Pyrococcus abyssi possesses two m(5)U methyltransferase paralogs, PAB0719 and PAB0760, with sequences most closely related to the bacterial RlmD. Surprisingly, however, neither of the two P. abyssi enzymes displays RlmD-like activity in vitro. PAB0719 acts in a TrmA-like manner to catalyze m(5)U54 methylation in P. abyssi tRNAs, and here we show that PAB0760 possesses RlmC-like activity and specifically methylates the nucleotide equivalent to U747 in P. abyssi 23S rRNA. The findings indicate that PAB0719 and PAB0760 originated as RlmD-type m(5)U methyltransferases and underwent changes in target specificity after their acquisition by a Thermococcales ancestor from a bacterial source.
Collapse
MESH Headings
- Archaea/enzymology
- Archaea/genetics
- Archaea/metabolism
- Methylation
- Methyltransferases/metabolism
- Pyrococcus abyssi/enzymology
- Pyrococcus abyssi/genetics
- Pyrococcus abyssi/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- S-Adenosylmethionine/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Uridine/metabolism
Collapse
Affiliation(s)
- Sylvie Auxilien
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Llano-Sotelo B, Klepacki D, Mankin AS. Selection of small peptides, inhibitors of translation. J Mol Biol 2009; 391:813-9. [PMID: 19576904 DOI: 10.1016/j.jmb.2009.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022]
Abstract
Identification of small molecular weight compounds targeting specific sites in the ribosome can accelerate development of new antibiotics and provide new tools for ribosomal research. We demonstrate here that antibiotic-size short peptides capable of inhibiting protein synthesis can be selected by using specific elements of ribosomal RNA as a target. The 'h18' pseudoknot encompassing residues 500-545 of the small ribosomal subunit RNA was used as a target in screening a heptapeptide phage-display library. Two of the selected peptides could efficiently interfere with both bacterial and eukaryotic translation. One of these inhibitory peptides exhibited a high-affinity binding to the isolated small ribosomal subunit (K(d) of 1.1 microM). Identification of inhibitory peptides that likely target a specific rRNA structure may pave new ways for validating new antibiotic sites in the ribosome. The selected peptides can be used as a tool in search of novel site-specific inhibitors of translation.
Collapse
Affiliation(s)
- Beatriz Llano-Sotelo
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, 60607, USA
| | | | | |
Collapse
|
11
|
Douthwaite S, Jakobsen L, Yoshizawa S, Fourmy D. Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. J Mol Biol 2008; 378:969-75. [PMID: 18406425 DOI: 10.1016/j.jmb.2008.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 11/25/2022]
Abstract
RlmA(II) methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmA(II) was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmA(II) makes multiple footprint contacts with nucleotides in stem-loops 33, 34 and 35, and does not interact elsewhere in the rRNA. Binding of RlmA(II) to the rRNA is dependent on the cofactor S-adenosylmethionine (or S-adenosylhomocysteine). RlmA(II) interacts with the same rRNA region as the orthologous enzyme RlmA(I) that methylates at nucleotide G745. Differences in nucleotide contacts within hairpin 35 indicate how the two methyltransferases recognize their distinct targets.
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
12
|
Leppik M, Peil L, Kipper K, Liiv A, Remme J. Substrate specificity of the pseudouridine synthase RluD in Escherichia coli. FEBS J 2007; 274:5759-66. [PMID: 17937767 DOI: 10.1111/j.1742-4658.2007.06101.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD(-)). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
13
|
Lebars I, Husson C, Yoshizawa S, Douthwaite S, Fourmy D. Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II). J Mol Biol 2007; 372:525-34. [PMID: 17673230 DOI: 10.1016/j.jmb.2007.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/22/2007] [Accepted: 06/24/2007] [Indexed: 10/23/2022]
Abstract
The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide antibiotics. We have previously solved the solution structure of hairpin 35 in the conformation that is recognized by the RlmA(II) methyltransferase from Streptococcus pneumoniae. It was shown that while essential recognition elements are located in hairpin 35, the interactions between RlmA(II) and hairpin 35 are insufficient on their own to support the methylation reaction. Here we use biochemical techniques in conjunction with heteronuclear/homonuclear nuclear magnetic resonance spectroscopy to define the RNA structures that are required for efficient methylation by RlmA(II). Progressive truncation of the rRNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar to that of the orthologous Gram-negative methyltransferase, RlmA(I) (formerly RrmA), which also interacts with hairpin 35, but methylates at the adjacent nucleotide G745.
Collapse
Affiliation(s)
- Isabelle Lebars
- Laboratoire de Chimie et Biologie Structurales, ICSN-CNRS 1 ave de la terrasse, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
14
|
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA (NEW YORK, N.Y.) 2007; 13:763-80. [PMID: 17353353 PMCID: PMC1852815 DOI: 10.1261/rna.261807] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
The 5' untranslated region (UTR) of the mouse hepatitis virus (MHV) genome contains cis-acting sequences necessary for transcription and replication. A consensus secondary structural model of the 5' 140 nucleotides of the 5' UTRs of nine coronaviruses (CoVs) derived from all three major CoV groups is presented and characterized by three major stem-loops, SL1, SL2, and SL4. NMR spectroscopy provides structural support for SL1 and SL2 in three group 2 CoVs, including MHV, BCoV, and HCoV-OC43. SL2 is conserved in all CoVs, typically containing a pentaloop (C47-U48-U49-G50-U51 in MHV) stacked on a 5 base-pair stem, with some sequences containing an additional U 3' to U51; SL2 therefore possesses sequence features consistent with a U-turn-like conformation. The imino protons of U48 in the wild-type RNA, and G48 in the U48G SL2 mutant RNA, are significantly protected from exchange with solvent, consistent with a hydrogen bonding interaction critical to the hairpin loop architecture. SL2 is required for MHV replication; MHV genomes containing point substitutions predicted to perturb the SL2 structure (U48C, U48A) were not viable, while those that maintain the structure (U48G and U49A) were viable. The U48C MHV mutant supports both positive- and negative-sense genome-sized RNA synthesis, but fails to direct the synthesis of positive- or negative-sense subgenomic RNAs. These data support the existence of the SL2 in our models, and further suggest a critical role in coronavirus replication.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
15
|
Campbell DO, Bouchard P, Desjardins G, Legault P. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites. Biochemistry 2006; 45:10591-605. [PMID: 16939211 DOI: 10.1021/bi0607150] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the Neurospora VS ribozyme, magnesium ions facilitate formation of a loop-loop interaction between stem-loops I and V, which is important for recognition and activation of the stem-loop I substrate. Here, we present the high-resolution NMR structure of stem-loop V (SL5) in the presence of Mg(2+) (SL5(Mg)) and demonstrate that Mg(2+) induces a conformational change in which the SL5 loop adopts a compact structure with most characteristics of canonical U-turn structures. Divalent cation-binding sites were probed with Mn(2+)-induced paramagnetic line broadening and intermolecular NOEs to Co(NH(3))(6)(3+). Structural modeling of Mn(H(2)O)(6)(2+) in SL5(Mg) revealed four divalent cation-binding sites in the loop. Sites 1, 3, and 4 are located in the major groove near multiple phosphate groups, whereas site 2 is adjacent to N7 of G697 and N7 of A698 in the minor groove. Cation-binding sites equivalent to sites 1-3 in SL5 are present in other U-turn motifs, and these metal-binding sites may represent a common feature of the U-turn fold. Although magnesium ions affect the loop conformation, they do not significantly change the conformation of residues 697-699 involved in the proposed Watson-Crick base pairs with stem-loop I. In both the presence and the absence of Mg(2+), G697, A698, and C699 adopt an A-form structure that exposes their Watson-Crick faces, and this is compatible with their proposed interaction with stem-loop I. In SL5(Mg), however, U700 becomes exposed on the minor groove face of the loop in the proximity of the bases of G697, A698, and C699, suggesting that the Mg(2+)-bound conformation of stem-loop V allows additional contacts with stem-loop I. These studies improve our understanding of the role of Mg(2+) in U-turn structures and in substrate recognition by the VS ribozyme.
Collapse
Affiliation(s)
- Dean O Campbell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
16
|
Vester B, Hansen LH, Bo Lundberg L, Babu BR, Sørensen MD, Wengel J, Douthwaite S. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets. BMC Mol Biol 2006; 7:19. [PMID: 16753066 PMCID: PMC1501032 DOI: 10.1186/1471-2199-7-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 06/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNAzymes cleave at predetermined sequences within RNA. A prerequisite for cleavage is that the DNAzyme can gain access to its target, and thus the DNAzyme must be capable of unfolding higher-order structures that are present in the RNA substrate. However, in many cases the RNA target sequence is hidden in a region that is too tightly structured to be accessed under physiological conditions by DNAzymes. RESULTS We investigated how incorporation of LNA (locked nucleic acid) monomers into DNAzymes improves their ability to gain access and cleave at highly-structured RNA targets. The binding arms of DNAzymes were varied in length and were substituted with up to three LNA and alpha-L-LNA monomers (forming LNAzymes). For one DNAzyme, the overall cleavage reaction proceeded fifty times faster after incorporation of two alpha-L-LNA monomers per binding arm (kobs increased from 0.014 min-1 to 0.78 min-1). CONCLUSION The data demonstrate how hydrolytic performance can be enhanced by design of LNAzymes, and indicate that there are optimal lengths for the binding arms and for the number of modified LNA monomers.
Collapse
Affiliation(s)
- Birte Vester
- The Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lykke H Hansen
- The Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lars Bo Lundberg
- The Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - B Ravindra Babu
- The Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Mads D Sørensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Wengel
- The Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stephen Douthwaite
- The Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
17
|
Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 2005; 19:333-43. [PMID: 16061180 DOI: 10.1016/j.molcel.2005.06.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/31/2005] [Accepted: 06/20/2005] [Indexed: 11/17/2022]
Abstract
Certain nascent peptide sequences, when within the ribosomal exit tunnel, can inhibit translation termination and/or peptide elongation. The 24 residue leader peptidyl-tRNA of the tna operon of E. coli, TnaC-tRNA(Pro), in the presence of excess tryptophan, resists cleavage at the tnaC stop codon. TnaC residue Trp12 is crucial for this inhibition. The approximate location of Trp12 in the exit tunnel was determined by crosslinking Lys11 of TnaC-tRNA(Pro) to nucleotide A750 of 23S rRNA. Methylation of nucleotide A788 of 23S rRNA was reduced by the presence of Trp12 in TnaC-tRNA(Pro), implying A788 displacement. Inserting an adenylate at position 751, or introducing the change U2609C in 23S rRNA or the change K90H or K90W in ribosomal protein L22, virtually eliminated tryptophan induction. These modified and mutated regions are mostly located near the putative site occupied by Trp12 of TnaC-tRNA(Pro). These findings identify features of the ribosomal exit tunnel essential for tna operon induction.
Collapse
MESH Headings
- Biotinylation
- Cross-Linking Reagents/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/analysis
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genotype
- Lac Operon/genetics
- Macromolecular Substances/chemistry
- Macromolecular Substances/isolation & purification
- Macromolecular Substances/metabolism
- Models, Molecular
- Mutation/genetics
- Operon/genetics
- Peptide Termination Factors/analysis
- Peptide Termination Factors/metabolism
- Photoaffinity Labels/chemistry
- Plasmids/genetics
- Protein Biosynthesis/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Pro/genetics
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Tryptophan/genetics
- Tryptophan/metabolism
- Tryptophanase/genetics
- Uridine/metabolism
Collapse
|
18
|
Campbell DO, Legault P. Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping. Biochemistry 2005; 44:4157-70. [PMID: 15766243 DOI: 10.1021/bi047963l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important step in the substrate recognition of the Neurospora Varkud Satellite (VS) ribozyme is the formation of a magnesium-dependent loop/loop interaction between the terminal loops of stem-loops I and V. We have studied the structure of stem-loop V by nuclear magnetic resonance spectroscopy and shown that it adopts a U-turn conformation, a common motif found in RNA. Structural comparisons indicate that the U-turn of stem-loop V fulfills some but not all of the structural characteristics found in canonical U-turn structures. This U-turn conformation exposes the Watson-Crick faces of the bases within stem-loop V (G697, A698, and C699) and makes them accessible for interaction with stem-loop I. Using chemical-shift mapping, we show that magnesium ions interact with the loop of the isolated stem-loop V and induce a conformational change that may be important for interaction with stem-loop I. This study expands our understanding of the role of U-turn motifs in RNA structure and function and provides insights into the mechanism of substrate recognition in the VS ribozyme.
Collapse
Affiliation(s)
- Dean O Campbell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
19
|
Reeves CD, Ward SL, Revill WP, Suzuki H, Marcus M, Petrakovsky OV, Marquez S, Fu H, Dong SD, Katz L. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts. ACTA ACUST UNITED AC 2005; 11:1465-72. [PMID: 15489173 DOI: 10.1016/j.chembiol.2004.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/06/2004] [Accepted: 08/10/2004] [Indexed: 11/28/2022]
Abstract
Combinations of the five polyketide synthase (PKS) genes for biosynthesis of tylosin in Streptomyces fradiae (tylG), spiramycin in Streptomyces ambofaciens (srmG), or chalcomycin in Streptomyces bikiniensis (chmG) were expressed in engineered hosts derived from a tylosin-producing strain of S. fradiae. Surprisingly efficient synthesis of compounds predicted from the expressed hybrid PKS was obtained. The post-PKS tailoring enzymes of tylosin biosynthesis acted efficiently on the hybrid intermediates with the exception of TylH-catalyzed hydroxylation of the methyl group at C14, which was efficient if C4 bore a methyl group, but inefficient if a methoxyl was present. Moreover, for some compounds, oxidation of the C6 ethyl side chain to an unprecedented carboxylic acid was observed. By also expressing chmH, a homolog of tylH from the chalcomycin gene cluster, efficient hydroxylation of the 14-methyl group was restored.
Collapse
|
20
|
Abstract
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
21
|
Liu M, Novotny GW, Douthwaite S. Methylation of 23S rRNA nucleotide G745 is a secondary function of the RlmAI methyltransferase. RNA (NEW YORK, N.Y.) 2004; 10:1713-20. [PMID: 15388872 PMCID: PMC1370659 DOI: 10.1261/rna.7820104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/23/2004] [Indexed: 05/18/2023]
Abstract
Several groups of Gram-negative bacteria possess an RlmA(I) methyltransferase that methylates 23S rRNA nucleotide G745 at the N1 position. Inactivation of rlmA(I) in Acinetobacter calcoaceticus and Escherichia coli reduces growth rates by at least 30%, supposedly due to ribosome malfunction. Wild-type phenotypes are restored by introduction of plasmid-encoded rlmA(I), but not by the orthologous Gram-positive gene rlmA(II) that methylates the neighboring nucleotide G748. Nucleotide G745 interacts with A752 in a manner that does not involve the guanine N1 position. When a cytosine is substituted at A752, a Watson-Crick G745-C752 pair is formed occluding the guanine N1 and greatly reducing RlmA(I) methylation. Methylation is completely abolished by substitution of the G745 base. Intriguingly, the absence of methylation in E. coli rRNA mutant strains causes no reduction in growth rate. Furthermore, the slow-growing rlmA(I) knockout strains of Acinetobacter and E. coli revert to the wild-type growth phenotype after serial passages on agar plates. All the cells tested were pseudorevertants, and none of them had recovered G745 methylation. Analyses of the pseudorevertants failed to reveal second-site mutations in the ribosomal components close to nucleotide G745. The results indicate that cell growth is not dependent on G745 methylation, and that the RlmA(I) methyltransferase therefore has another (as yet unidentified) primary function.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
22
|
Armengaud J, Urbonavicius J, Fernandez B, Chaussinand G, Bujnicki JM, Grosjean H. N2-Methylation of Guanosine at Position 10 in tRNA Is Catalyzed by a THUMP Domain-containing, S-Adenosylmethionine-dependent Methyltransferase, Conserved in Archaea and Eukaryota. J Biol Chem 2004; 279:37142-52. [PMID: 15210688 DOI: 10.1074/jbc.m403845200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In sequenced genomes, genes belonging to the cluster of orthologous group COG1041 are exclusively, and almost ubiquitously, found in Eukaryota and Archaea but never in Bacteria. The corresponding gene products exhibit a characteristic Rossmann fold, S-adenosylmethionine-dependent methyltransferase domain in the C terminus and a predicted RNA-binding THUMP (thiouridine synthases, RNA methyltransferases, and pseudouridine synthases) domain in the N terminus. Recombinant PAB1283 protein from the archaeon Pyrococcus abyssi GE5, a member of COG1041, was purified and shown to behave as a monomeric 39-kDa entity. This protein (EC 2.1.1.32), now renamed (Pab)Trm-G10, which is extremely thermostable, forms a 1:1 complex with tRNA and catalyzes the adenosylmethionine-dependent methylation of the exocyclic amino group (N(2)) of guanosine located at position 10. Depending on the experimental conditions used, as well as the tRNA substrate tested, the enzymatic reaction leads to the formation of either N(2)-monomethyl (m(2)G) or N(2)-dimethylguanosine (m(2)(2)G). Interestingly, (Pab)Trm-G10 exhibits different domain organization and different catalytic site architecture from another, earlier characterized, tRNA-dimethyltransferase from Pyrococcus furiosus ((Pfu)Trm-G26, also known as (Pfu)Trm1, a member of COG1867) that catalyzes an identical two-step dimethylation of guanosine but at position 26 in tRNAs and is also conserved among all sequenced Eukaryota and Archaea. The co-occurrence of these two guanosine dimethyltransferases in both Archaea and Eukaryota but not in Bacteria is a hallmark of distinct tRNAs maturation strategies between these domains of life.
Collapse
Affiliation(s)
- Jean Armengaud
- Commissariat à l'Energie Atomique VALRHO, DSV-DIEP-SBTN, Service de Biochimie Post-génomique & Toxicologie Nucléaire, F-30207 Bagnols-sur-Cèze, France.
| | | | | | | | | | | |
Collapse
|
23
|
Das K, Acton T, Chiang Y, Shih L, Arnold E, Montelione GT. Crystal structure of RlmAI: implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site. Proc Natl Acad Sci U S A 2004; 101:4041-6. [PMID: 14999102 PMCID: PMC384692 DOI: 10.1073/pnas.0400189101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RlmA class of enzymes (RlmA(I) and RlmA(II)) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmA(I) at 2.8-A resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmA(I) molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmA(I) dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmA(I) dimer.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 2004; 12:237-48. [PMID: 14962384 DOI: 10.1016/j.str.2004.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/24/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Institut für Molekulare Biotechnologie eV, Bentenbergstr 100813, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Heidrich N, Brantl S. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA. J Mol Biol 2003; 333:917-29. [PMID: 14583190 DOI: 10.1016/j.jmb.2003.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antisense-RNA mediated gene regulation has been found and studied in detail mainly in prokaryotic accessory DNA elements. In spite of different regulatory mechanisms, in all cases a rapid interaction between antisense and target RNA has been shown to be crucial for efficient regulation. Recently, a sequence comparison revealed in 45 antisense RNA control systems a 5' YUNR motif indicative for the formation of a U-turn structure in either an antisense or a target RNA loop and confirmed in the case of the hok/sok system of plasmid R1 its importance for regulation.Here, we demonstrate the importance of the 5' YUNR motif in the target RNA (RNAII) loop L1 of the replication control system of plasmid pIP501. The effect of four individual mutations in L1 was studied in vivo and in vitro. Mutations that maintained the putative U-turn or swapped it from sense to antisense RNA were silent, whereas mutations that eliminated the 5'-YUNR motif showed two- to threefold elevated copy numbers in vivo in correlation with three- to fourfold reduced inhibition rate constants of the complementary RNAIII species in vitro, whereas the half-lives of all RNAIII species were not affected. ENU probing experiments confirmed the U-turn structure for the silent mutation (N-C) and disruption of this structure upon alteration of the invariant U or inversion of the YUNR motif-containing loop. RNA secondary structure probing excluded loop size alterations as a reason for altered inhibition rates. Implications for the pathway and efficiency of RNAII/RNAIII interaction, and hence, pIP501 copy-number control, are discussed.
Collapse
Affiliation(s)
- Nadja Heidrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | |
Collapse
|