1
|
Wu Y, Yang M, Wu SB, Luo PQ, Zhang C, Ruan CS, Cui W, Zhao QR, Chen LX, Meng JJ, Song Q, Zhang WJ, Pei QQ, Li F, Zeng T, Du HX, Xu LX, Zhang W, Zhang XX, Luo XH. Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1. Diabetologia 2024; 67:2346-2366. [PMID: 39037604 DOI: 10.1007/s00125-024-06224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shao-Bo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Pei-Qi Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chang-Shun Ruan
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiu-Rong Zhao
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lin-Xin Chen
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Juan-Juan Meng
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Song
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jin Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qin-Qin Pei
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong-Xin Du
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li-Xin Xu
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Xian-Xiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Xiao-He Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
2
|
Wedler A, Bley N, Glaß M, Müller S, Rausch A, Lederer M, Urbainski J, Schian L, Obika KB, Simon T, Peters L, Misiak C, Fuchs T, Köhn M, Jacob R, Gutschner T, Ihling C, Sinz A, Hüttelmaier S. RAVER1 hinders lethal EMT and modulates miR/RISC activity by the control of alternative splicing. Nucleic Acids Res 2024; 52:3971-3988. [PMID: 38300787 PMCID: PMC11039986 DOI: 10.1093/nar/gkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.
Collapse
Affiliation(s)
- Alice Wedler
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alexander Rausch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Julia Urbainski
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Laura Schian
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kingsley-Benjamin Obika
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Theresa Simon
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lara Meret Peters
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Claudia Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Roland Jacob
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Carico C, Placzek WJ. Reviewing PTBP1 Domain Modularity in the Pre-Genomic Era: A Foundation to Guide the Next Generation of Exploring PTBP1 Structure-Function Relationships. Int J Mol Sci 2023; 24:11218. [PMID: 37446395 DOI: 10.3390/ijms241311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Zimmerman KD, Chan J, Glenn JP, Birnbaum S, Li C, Nathanielsz PW, Olivier M, Cox LA. Moderate maternal nutrient reduction in pregnancy alters fatty acid oxidation and RNA splicing in the nonhuman primate fetal liver. J Dev Orig Health Dis 2023; 14:381-388. [PMID: 36924159 PMCID: PMC10202844 DOI: 10.1017/s204017442300003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity in MNR was reflected in greater abundances of transcript splice variant isoforms in the MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort to adapt to the poor in utero environment and ensure near-normal development and energy metabolism. This study is the first to study developmental programming across four critical gestational stages during primate fetal liver development and reveals a potentially novel cellular response mechanism mediating fetal programming in response to MNR.
Collapse
Affiliation(s)
- Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeremy P. Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Shifra Birnbaum
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Cun Li
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W. Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| |
Collapse
|
5
|
Iannone C, Kainov Y, Zhuravskaya A, Hamid F, Nojima T, Makeyev EV. PTBP1-activated co-transcriptional splicing controls epigenetic status of pluripotent stem cells. Mol Cell 2023; 83:203-218.e9. [PMID: 36626906 DOI: 10.1016/j.molcel.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
Collapse
Affiliation(s)
- Camilla Iannone
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Takayuki Nojima
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
6
|
Dong C, Liu W, Zhang Y, Song Y, Du J, Huang Z, Wang T, Yu Z, Ma X. Identification of Common Hub Genes in Human Dermal Fibroblasts Stimulated by Mechanical Stretch at Both the Early and Late Stages. Front Surg 2022; 9:846161. [PMID: 35510126 PMCID: PMC9058084 DOI: 10.3389/fsurg.2022.846161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mechanical stretch is vital for soft tissue regeneration and development and is utilized by plastic surgeons for tissue expansion. Identifying the common hub genes in human dermal fibroblasts (HDFs) stimulated by mechanical stretch at different stages will help elucidate the mechanisms involved and improve the efficiency of tissue expansion. Methods A gene expression dataset (GSE58389) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HDFs between cyclic mechanical stretching and static samples were identified at 5 and 24 h. Common DEGs overlapped in both the 5 h and 24 h groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the functions of the DEGs. Protein-protein interaction networks were constructed using the STRING database. The top 10 hub genes were selected using the plug-in Cytohubba within Cytoscape. The regulatory network of hub genes was predicted using NetworkAnalyst. Results A total of 669 and 249 DEGs were identified at the early (5 h) and late stages (24 h), respectively. Of these, 152 were present at both stages and were designated as common DEGs. The top enriched GO terms were “regulation of autophagy” at the early stage, and “sterol biosynthetic processes” at the late stage. The top KEGG terms were “pyrimidine metabolism” and “synaptic vesicle cycle” at the early and late stages, respectively. Seven common DEGs [DEAD-box helicase 17 (DDX17), exocyst complex component 7 (EXOC7), CASK interacting protein 1 (CASKIN1), ribonucleoprotein PTB-binding 1 (RAVER1), late cornified envelope 1D (LCE1D), LCE1C, and polycystin 1, transient receptor potential channel interacting (PKD1)] and three common DEGs [5′-3′ exoribonuclease 2 (XRN2), T-complex protein 1 (TCP1), and syntaxin 3 (STX3)] were shown to be upregulated and downregulated hub genes, respectively. The GO terms of the common hub genes were “skin development” and “mRNA processing.” After constructing the regulatory network, hsa-mir-92a-3p, hsa-mir-193b-3p, RNA polymerase II subunit A (POLR2A), SMAD family member 5 (SMAD5), and MYC-associated zinc finger protein (MAZ) were predicted as potential targets in both stages. Conclusion At the early stage, there were clear changes in gene expression related to DNA and chromatin alterations; at late stages, gene expression associated with cholesterol metabolism was suppressed. Common DEGs related to skin development, transcriptional regulation, and cytoskeleton rearrangement identified in both stages were found to be potential targets for promoting HDF growth and alignment under mechanical stretch.
Collapse
|
7
|
Dai S, Wang C, Zhang C, Feng L, Zhang W, Zhou X, He Y, Xia X, Chen B, Song W. PTB: Not just a polypyrimidine tract-binding protein. J Cell Physiol 2022; 237:2357-2373. [PMID: 35288937 DOI: 10.1002/jcp.30716] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Polypyrimidine tract-binding protein (PTB), as a member of the heterogeneous nuclear ribonucleoprotein family, functions by rapidly shuttling between the nucleus and the cytoplasm. PTB is involved in the alternative splicing of pre-messenger RNA (mRNA) and almost all steps of mRNA metabolism. PTB regulation is organ-specific; brain- or muscle-specific microRNAs and long noncoding RNAs partially contribute to regulating PTB, thereby modulating many physiological and pathological processes, such as embryonic development, cell development, spermatogenesis, and neuron growth and differentiation. Previous studies have shown that PTB knockout can inhibit tumorigenesis and development. The knockout of PTB in glial cells can be reprogrammed into functional neurons, which shows great promise in the field of nerve regeneration but is controversial.
Collapse
Affiliation(s)
- Shirui Dai
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xuezhi Zhou
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| |
Collapse
|
8
|
Shen L, Lei S, Zhang B, Li S, Huang L, Czachor A, Breitzig M, Gao Y, Huang M, Mo X, Zheng Q, Sun H, Wang F. Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Am J Cancer Res 2020; 10:5719-5735. [PMID: 32483414 PMCID: PMC7255001 DOI: 10.7150/thno.42010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
The Axl gene is known to encode for a receptor tyrosine kinase involved in the metastasis process of cancer. In this study, we investigated the underlying molecular mechanism of Axl alternative splicing. Methods: The expression levels of PTBP1 in hepatocellular carcinoma (HCC) tissues were obtained from TCGA samples and cell lines. The effect of Axl-L, Axl-S, and PTBP1 on cell growth, migration, invasion tumor formation, and metastasis of liver cancer cells were measured by cell proliferation, wound-healing, invasion, xenograft tumor formation, and metastasis. Interaction between PTBP1 and Axl was explored using cross-link immunoprecipitation, RNA pull-down assays and RNA immunoprecipitation assays. Results: Knockdown of the PTBP1 and exon 10 skipping isoform of Axl (Axl-S), led to impaired invasion and metastasis in hepatoma cells. Immunoprecipitation results indicated that Axl-S protein binds more robustly with Gas6 ligand than Axl-L (exon 10 including) and is more capable of promoting phosphorylation of ERK and AKT proteins. Furthermore, cross-link immunoprecipitation and RNA-pulldown assays revealed that PTBP1 binds to the polypyrimidine sequence(TCCTCTCTGTCCTTTCTTC) on Axl-Intron 9. MS2-GFP-IP experiments demonstrated that PTBP1 competes with U2AF2 for binding to the aforementioned polypyrimidine sequence, thereby inhibiting alternative splicing and ultimately promoting Axl-S production. Conclusion: Our results highlight the biological significance of Axl-S and PTBP1 in tumor metastasis, and show that PTBP1 affects the invasion and metastasis of hepatoma cells by modulating the alternative splicing of Axl exon 10.
Collapse
|
9
|
Fochi S, Lorenzi P, Galasso M, Stefani C, Trabetti E, Zipeto D, Romanelli MG. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes (Basel) 2020; 11:genes11040402. [PMID: 32276354 PMCID: PMC7230170 DOI: 10.3390/genes11040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.
Collapse
|
10
|
Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol 2019; 138:813-826. [PMID: 31332509 DOI: 10.1007/s00401-019-02042-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 02/08/2023]
Abstract
Nuclear depletion of TDP-43, an essential RNA binding protein, may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). As several functions have been ascribed to this protein, the critical role(s) of TDP-43 in motor neurons that may be compromised in ALS remains unknown. We show here that TDP-43 mediated splicing repression, which serves to protect the transcriptome by preventing aberrant splicing, is central to the physiology of motor neurons. Expression in Drosophila TDP-43 knockout models of a chimeric repressor, comprised of the RNA recognition domain of TDP-43 fused to an unrelated splicing repressor, RAVER1, attenuated motor deficits and extended lifespan. Likewise, AAV9-mediated delivery of this chimeric rescue repressor to mice lacking TDP-43 in motor neurons delayed the onset, slowed the progression of motor symptoms, and markedly extended their lifespan. In treated mice lacking TDP-43 in motor neurons, aberrant splicing was significantly decreased and accompanied by amelioration of axon degeneration and motor neuron loss. This AAV9 strategy allowed long-term expression of the chimeric repressor without any adverse effects. Our findings establish that splicing repression is a major function of TDP-43 in motor neurons and strongly support the idea that loss of TDP-43-mediated splicing fidelity represents a key pathogenic mechanism underlying motor neuron loss in ALS.
Collapse
|
11
|
Mathur M, Kim CM, Munro SA, Rudina SS, Sawyer EM, Smolke CD. Programmable mutually exclusive alternative splicing for generating RNA and protein diversity. Nat Commun 2019; 10:2673. [PMID: 31209208 PMCID: PMC6572816 DOI: 10.1038/s41467-019-10403-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing performs a central role in expanding genomic coding capacity and proteomic diversity. However, programming of splicing patterns in engineered biological systems remains underused. Synthetic approaches thus far have predominantly focused on controlling expression of a single protein through alternative splicing. Here, we describe a modular and extensible platform for regulating four programmable exons that undergo a mutually exclusive alternative splicing event to generate multiple functionally-distinct proteins. We present an intron framework that enforces the mutual exclusivity of two internal exons and demonstrate a graded series of consensus sequence elements of varying strengths that set the ratio of two mutually exclusive isoforms. We apply this framework to program the DNA-binding domains of modular transcription factors to differentially control downstream gene activation. This splicing platform advances an approach for generating diverse isoforms and can ultimately be applied to program modular proteins and increase coding capacity of synthetic biological systems.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Cameron M Kim
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Munro
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Joint Initiative for Metrology in Biology, Stanford, CA, 94305, USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA, 94305, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shireen S Rudina
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric M Sawyer
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Pina JM, Reynaga JM, Truong AAM, Keppetipola NM. Post-Translational Modifications in Polypyrimidine Tract Binding Proteins PTBP1 and PTBP2. Biochemistry 2018; 57:3873-3882. [PMID: 29851470 PMCID: PMC6211845 DOI: 10.1021/acs.biochem.8b00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA binding proteins play an important role in regulating alternative pre-mRNA splicing and in turn cellular gene expression. Many of these RNA binding proteins occur as gene families with members sharing a high degree of primary structure identity and domain organization yet have tissue-specific expression patterns and regulate different sets of target exons. How highly similar members in a gene family can exert different splicing outcomes is not well understood. We conducted mass spectrometry analysis of post-translational phosphorylation and acetylation modifications for two paralogs of the polypyrimidine tract binding protein family, PTBP1 and PTBP2, to discover modifications that occur in splicing reaction mixtures and to identify discrete modifications that may direct their different splicing activities. We find that PTBP1 and PTBP2 have many distinct phosphate modifications located in the unstructured N-terminal, linker 1, and linker 2 regions. We find that the two proteins have many overlapping acetate modifications in the RNA recognition motifs (RRMs) with a few distinct sites in PTBP1 RRM2 and RRM3. Our data also reveal that lysine residues in the nuclear localization sequence of PTBP2 are acetylated. Collectively, our results highlight important differences in post-translational modifications between the paralogs and suggest a role for them in the differential splicing activity of PTBP1 and PTBP2.
Collapse
Affiliation(s)
- Jeffrey M. Pina
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Janice M. Reynaga
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Anthony A. M. Truong
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| | - Niroshika M. Keppetipola
- Department of Chemistry and Biochemistry, California State University, Fullerton, 800 North State College Boulevard, Fullerton, California 92831, United States
| |
Collapse
|
13
|
Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. Biochem Soc Trans 2017; 44:1058-65. [PMID: 27528752 DOI: 10.1042/bst20160080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.
Collapse
|
14
|
Jia P, Liu W, Chen L, Jin Y, Zhang J, Jia K, Yi M. Identification of sea perch (Lateolabrax japonicus) ribonucleoprotein PTB-Binding 1 involved in antiviral immune response against RGNNV. FISH & SHELLFISH IMMUNOLOGY 2017; 60:119-128. [PMID: 27876623 DOI: 10.1016/j.fsi.2016.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 05/07/2023]
Abstract
RIG-I-like receptors (RLRs) can recognize viral RNA and initiate innate antiviral response. In earlier studies, we demonstrated that RLRs were implicated in the antiviral immunity against RGNNV in the seawater fish sea perch (Lateolabrax japonicus). However, potential regulators of RLRs-mediated signaling pathways involved in RGNNV infection remain unclear. In this study, a novel ribonucleoprotein PTB-binding 1 (Raver1) of sea perch (LjRAVER1) was identified for the first time. The cDNA of LjRAVER1 was 4066 bp in length and encoded a deduced polypeptide of 733 amino acids. Phylogenetic analysis revealed a closer affinity of LjRAVER1 with Larimichthys Crocea Raver1. LjRAVER1 mRNA was constitutively expressed in all 10 sampled tissues, and rapidly and significantly increased in vivo upon RGNNV infection. Time course analysis showed that LjRAVER1 transcripts were significantly increased both in vivo and in vitro after RGNNV infection. Viral infection and poly I:C treatment caused translocation of LjRAVER1 from the nucleus to the cytoplasm. Ectopic expression of LjRAVER1 increased the transcription level of several RLR signaling pathway related genes inducible by poly I:C treatment in vitro. Moreover, the viral gene transcription and virus production of RGNNV were significantly decreased in LjRAVER1 overexpressing cells. Luciferase reporter assays demonstrated that overexpression of LjRAVER1 significantly increased the promoter activity of zebrafish IFN1. Taken together, these findings indicated that LjRAVER1 might be an important component of RLR signaling pathway and involved in RLR pathway-mediated IFN response in sea perch.
Collapse
Affiliation(s)
- Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
15
|
Wongpalee SP, Vashisht A, Sharma S, Chui D, Wohlschlegel JA, Black DL. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016; 5. [PMID: 27882870 PMCID: PMC5122456 DOI: 10.7554/elife.19743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI:http://dx.doi.org/10.7554/eLife.19743.001
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, Phoenix, United States
| | - Darryl Chui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
16
|
Keppetipola NM, Yeom KH, Hernandez AL, Bui T, Sharma S, Black DL. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2. RNA (NEW YORK, N.Y.) 2016; 22:1172-1180. [PMID: 27288314 PMCID: PMC4931110 DOI: 10.1261/rna.057505.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Most human genes generate multiple protein isoforms through alternative pre-mRNA splicing, but the mechanisms controlling alternative splicing choices by RNA binding proteins are not well understood. These proteins can have multiple paralogs expressed in different cell types and exhibiting different splicing activities on target exons. We examined the paralogous polypyrimidine tract binding proteins PTBP1 and PTBP2 to understand how PTBP1 can exhibit greater splicing repression activity on certain exons. Using both an in vivo coexpression assay and an in vitro splicing assay, we show that PTBP1 is more repressive than PTBP2 per unit protein on a target exon. Constructing chimeras of PTBP1 and 2 to determine amino acid features that contribute to their differential activity, we find that multiple segments of PTBP1 increase the repressive activity of PTBP2. Notably, when either RRM1 of PTBP2 or the linker peptide separating RRM2 and RRM3 are replaced with the equivalent PTBP1 sequences, the resulting chimeras are highly active for splicing repression. These segments are distinct from the known region of interaction for the PTBP1 cofactors Raver1 and Matrin3 in RRM2. We find that RRM2 of PTBP1 also increases the repression activity of an otherwise PTBP2 sequence, and that this is potentially explained by stronger binding by Raver1. These results indicate that multiple features over the length of the two proteins affect their ability to repress an exon.
Collapse
Affiliation(s)
- Niroshika M Keppetipola
- California State University Fullerton, Department of Chemistry and Biochemistry, Fullerton, California 92831, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Adrian L Hernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Tessa Bui
- California State University Fullerton, Department of Chemistry and Biochemistry, Fullerton, California 92831, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Even Y, Escande ML, Fayet C, Genevière AM. CDK13, a Kinase Involved in Pre-mRNA Splicing, Is a Component of the Perinucleolar Compartment. PLoS One 2016; 11:e0149184. [PMID: 26886422 PMCID: PMC4757566 DOI: 10.1371/journal.pone.0149184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
The perinucleolar compartment (PNC) is a subnuclear stucture forming predominantly in cancer cells; its prevalence positively correlates with metastatic capacity. Although several RNA-binding proteins have been characterized in PNC, the molecular function of this compartment remains unclear. Here we demonstrate that the cyclin-dependent kinase 13 (CDK13) is a newly identified constituent of PNC. CDK13 is a kinase involved in the regulation of gene expression and whose overexpression was found to alter pre-mRNA processing. In this study we show that CDK13 is enriched in PNC and co-localizes all along the cell cycle with the PNC component PTB. In contrast, neither the cyclins K and L, known to associate with CDK13, nor the potential kinase substrates accumulate in PNC. We further show that CDK13 overexpression increases PNC prevalence suggesting that CDK13 may be determinant for PNC formation. This result linked to the finding that CDK13 gene is amplified in different types of cancer indicate that this kinase can contribute to cancer development in human.
Collapse
Affiliation(s)
- Yasmine Even
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Marie-Line Escande
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Claire Fayet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Anne-Marie Genevière
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| |
Collapse
|
18
|
Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 2015; 349:650-5. [PMID: 26250685 DOI: 10.1126/science.aab0983] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
19
|
Bartoletti-Stella A, Gasparini L, Giacomini C, Corrado P, Terlizzi R, Giorgio E, Magini P, Seri M, Baruzzi A, Parchi P, Brusco A, Cortelli P, Capellari S. Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum Mol Genet 2015; 24:2746-56. [PMID: 25637521 PMCID: PMC4406291 DOI: 10.1093/hmg/ddv034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by autonomic dysfunction, followed by cerebellar and pyramidal features. ADLD is caused by duplication of the lamin B1 gene (LMNB1), which leads to its increased expression. The molecular pathways involved in the disease are still poorly understood. Hence, we analyzed global gene expression in fibroblasts and whole blood of LMNB1 duplication carriers and used Gene Set Enrichment Analysis to explore their gene signatures. We found that LMNB1 duplication is associated with dysregulation of genes involved in the immune system, neuronal and skeletal development. Genes with an altered transcriptional profile clustered in specific genomic regions. Among the dysregulated genes, we further studied the role of RAVER2, which we found to be overexpressed at mRNA and protein level. RAVER2 encodes a putative trans regulator of the splicing repressor polypyrimidine tract binding protein (PTB) and is likely implicated in alternative splicing regulation. Functional studies demonstrated an abnormal splicing pattern of several PTB-target genes and of the myelin protein gene PLP1, previously demonstrated to be involved in ADLD. Mutant mice with different lamin B1 expression levels confirmed that Raver2 expression is dependent on lamin B1 in neural tissue and determines an altered splicing pattern of PTB-target genes and Plp1. Overall our results demonstrate that deregulation of lamin B1 expression induces modified splicing of several genes, likely driven by raver-2 overexpression, and suggest that an alteration of mRNA processing could be a pathogenic mechanism in ADLD.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Caterina Giacomini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Patrizia Corrado
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Rossana Terlizzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Pamela Magini
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Agostino Baruzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy, Città della Salute e della Scienza, University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy,
| |
Collapse
|
20
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Coelho MB, Attig J, Bellora N, König J, Hallegger M, Kayikci M, Eyras E, Ule J, Smith CWJ. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J 2015; 34:653-68. [PMID: 25599992 PMCID: PMC4365034 DOI: 10.15252/embj.201489852] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3.
Collapse
Affiliation(s)
- Miguel B Coelho
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Nicolás Bellora
- Computational Genomics, Universitat Pompeu Fabra, Barcelona, Spain Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain INIBIOMA CONICET-UNComahue, Bariloche, Argentina
| | - Julian König
- MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Martina Hallegger
- Department of Biochemistry, University of Cambridge, Cambridge, UK Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Eduardo Eyras
- Computational Genomics, Universitat Pompeu Fabra, Barcelona, Spain Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
22
|
Yang Y, Sun F, Wang X, Yue Y, Wang W, Zhang W, Zhan L, Tian N, shi F, Jin Y. Conservation and regulation of alternative splicing by dynamic inter- and intra-intron base pairings in Lepidoptera 14-3-3z pre-mRNAs. RNA Biol 2014; 9:691-700. [DOI: 10.4161/rna.20205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Edge C, Gooding C, Smith CWJ. Dissecting domains necessary for activation and repression of splicing by Muscleblind-like protein 1. BMC Mol Biol 2013; 14:29. [PMID: 24373687 PMCID: PMC3880588 DOI: 10.1186/1471-2199-14-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023] Open
Abstract
Background Alternative splicing contributes to the diversity of the proteome, and provides the cell with an important additional layer of regulation of gene expression. Among the many RNA binding proteins that regulate alternative splicing pathways are the Muscleblind-like (MBNL) proteins. MBNL proteins bind YGCY motifs in RNA via four CCCH zinc fingers arranged in two tandem arrays, and play a crucial role in the transition from embryonic to adult muscle splicing patterns, deregulation of which leads to Myotonic Dystrophy. Like many other RNA binding proteins, MBNL proteins can act as both activators or repressors of different splicing events. Results We used targeted point mutations to interfere with the RNA binding of MBNL1 zinc fingers individually and in combination. The effects of the mutations were tested in assays for splicing repression and activation, including overexpression, complementation of siRNA-mediated knockdown, and artificial tethering using MS2 coat protein. Mutations were tested in the context of both full length MBNL1 as well as a series of truncation mutants. Individual mutations within full length MBNL1 had little effect, but mutations in ZF1 and 2 combined were more detrimental than those in ZF 3 and 4, upon splicing activation, repression and RNA binding. Activation and repression both required linker sequences between ZF2 and 3, but activation was more sensitive to loss of linker sequences. Conclusions Our results highlight the importance of RNA binding by MBNL ZF domains 1 and 2 for splicing regulatory activity, even when the protein is artificially recruited to its regulatory location on target RNAs. However, RNA binding is not sufficient for activity; additional regions between ZF 2 and 3 are also essential. Activation and repression show differential sensitivity to truncation of this linker region, suggesting interactions with different sets of cofactors for the two types of activity.
Collapse
Affiliation(s)
| | | | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
24
|
New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 2013; 14:22906-32. [PMID: 24264039 PMCID: PMC3856098 DOI: 10.3390/ijms141122906] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Polypyrimidine Tract Binding Protein (PTB) is an intensely studied RNA binding protein involved in several post-transcriptional regulatory events of gene expression. Initially described as a pre-mRNA splicing regulator, PTB is now widely accepted as a multifunctional protein shuttling between nucleus and cytoplasm. Accordingly, PTB can interact with selected RNA targets, structural elements and proteins. There is increasing evidence that PTB and its paralog PTBP2 play a major role as repressors of alternatively spliced exons, whose transcription is tissue-regulated. In addition to alternative splicing, PTB is involved in almost all steps of mRNA metabolism, including polyadenylation, mRNA stability and initiation of protein translation. Furthermore, it is well established that PTB recruitment in internal ribosome entry site (IRES) activates the translation of picornaviral and cellular proteins. Detailed studies of the structural properties of PTB have contributed to our understanding of the mechanism of RNA binding by RNA Recognition Motif (RRM) domains. In the present review, we will describe the structural properties of PTB, its paralogs and co-factors, the role in post-transcriptional regulation and actions in cell differentiation and pathogenesis. Defining the multifunctional roles of PTB will contribute to the understanding of key regulatory events in gene expression.
Collapse
|
25
|
Schmid R, Grellscheid SN, Ehrmann I, Dalgliesh C, Danilenko M, Paronetto MP, Pedrotti S, Grellscheid D, Dixon RJ, Sette C, Eperon IC, Elliott DJ. The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Res 2013; 41:10170-84. [PMID: 24038356 PMCID: PMC3905889 DOI: 10.1093/nar/gkt811] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons. The expression of many key splicing regulators changed in the course of meiosis, including downregulation of polypyrimidine tract binding protein (PTBP1) and heterogeneous nuclear RNP A1, and upregulation of nPTB, Tra2β, muscleblind, CELF proteins, Sam68 and T-STAR. The sequences near the regulated exons were significantly enriched in target sites for PTB, Tra2β and STAR proteins. Reporter minigene experiments investigating representative exons in transfected cells showed that PTB binding sites were critical for splicing of a cassette exon in the Ralgps2 mRNA and a shift in alternative 5′ splice site usage in the Bptf mRNA. We speculate that nPTB might functionally replace PTBP1 during meiosis for some target exons, with changes in the expression of other splicing factors helping to establish meiotic splicing patterns. Our data suggest that there are substantial changes in the determinants and patterns of alternative splicing in the mitotic-to-meiotic transition of the germ cell cycle.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK, School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK, Department of Health Sciences, University of 00135 Rome 'Foro Italico', Rome, Italy, Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy, Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy, Institute of Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, UK and Life Technologies Ltd., Paisley PA4 9RF, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ng SK, Weissbach R, Ronson GE, Scadden ADJ. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res 2013; 41:9786-99. [PMID: 23982513 PMCID: PMC3834823 DOI: 10.1093/nar/gkt750] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells.
Collapse
Affiliation(s)
- Siew Kit Ng
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
27
|
Shah S, Butler NM, Hannapel DJ, Rao AG. Mapping and characterization of the interaction interface between two polypyrimidine-tract binding proteins and a nova-type protein of Solanum tuberosum. PLoS One 2013; 8:e64783. [PMID: 23717658 PMCID: PMC3663837 DOI: 10.1371/journal.pone.0064783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/18/2013] [Indexed: 11/21/2022] Open
Abstract
Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that generally contain four RNA recognition motifs (RRMs). In potato, six cDNAs encoding full-length PTB proteins have been identified. In the present study Nova1-like protein, designated StNova1, was identified as a potential interacting partner of the StPTB proteins via yeast two-hybrid screening. Nova protein is a RNA-binding protein that contains three K-homology (KH) domains. In humans, these proteins are involved in regulation of neuronal RNA metabolism but the role of Nova-like proteins in plants is poorly understood. We have validated this interaction and mapped the protein binding region on StNova1 and StPTB1 and −6 using a novel domain interaction phage display (DIPP) technique. The interaction between the two RNA-binding proteins StPTB1/6 and StNova1 is mediated through linker regions that are distinctly separated from the RRMs. Furthermore, using a random 21-mer phage-peptide library, we have identified a number of peptides with the consensus sequence motif [S/G][V/I][L/V]G that recognize the StPTB proteins. One over-represented peptide that recognizes StPTB6 contains the GVLGPWP sequence that is similar to the GIGGRYP sequence in the glycine-rich linker region between the KH2 and KH3 domains of StNova1. We show, through site-specific mutations, the importance of glycine and proline residues in StNova1-StPTB interactions.
Collapse
Affiliation(s)
- Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Nathaniel M. Butler
- Plant Biology Major, Iowa State University, Ames, Iowa, United States of America
| | - David J. Hannapel
- Plant Biology Major, Iowa State University, Ames, Iowa, United States of America
| | - A. Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
The perinucleolar compartment (PNC) is a unique nuclear substructure, forming predominantly in cancer cells both in vitro and in vivo. PNC prevalence (percentage of cells containing at least one PNC) has been found to positively correlate with disease progression in several cancers (breast, ovarian, and colon). While there is a clear association between PNCs and cancer, the molecular function of the PNC remains unclear. Here we summarize the current understanding of the association of PNCs with cancer and its possible functions in cancer cells.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, IL 60611, USA ; College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | - Chen Wang
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, IL 60611, USA
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, IL 60611, USA
| |
Collapse
|
29
|
Gooding C, Edge C, Lorenz M, Coelho MB, Winters M, Kaminski CF, Cherny D, Eperon IC, Smith CWJ. MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3. Nucleic Acids Res 2013; 41:4765-82. [PMID: 23511971 PMCID: PMC3643581 DOI: 10.1093/nar/gkt168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exon 3 of the rat α-tropomyosin (Tpm1) gene is repressed in smooth muscle cells, allowing inclusion of the mutually exclusive partner exon 2. Two key types of elements affect repression of exon 3 splicing: binding sites for polypyrimidine tract-binding protein (PTB) and additional negative regulatory elements consisting of clusters of UGC or CUG motifs. Here, we show that the UGC clusters are bound by muscleblind-like proteins (MBNL), which act as repressors of Tpm1 exon 3. We show that the N-terminal region of MBNL1, containing its four CCCH zinc-finger domains, is sufficient to mediate repression. The same region of MBNL1 can make a direct protein-to-protein interaction with PTB, and RNA binding by MBNL promotes this interaction, apparently by inducing a conformational change in MBNL. Moreover, single molecule analysis showed that MBNL-binding sites increase the binding of PTB to its own sites. Our data suggest that the smooth muscle splicing of Tpm1 is mediated by allosteric assembly of an RNA–protein complex minimally comprising PTB, MBNL and their cognate RNA-binding sites.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PTB (polypyrimidine tract-binding protein) is an abundant and widely expressed RNA-binding protein with four RRM (RNA recognition motif) domains. PTB is involved in numerous post-transcriptional steps in gene expression in both the nucleus and cytoplasm, but has been best characterized as a regulatory repressor of some ASEs (alternative splicing events), and as an activator of translation driven by IRESs (internal ribosome entry segments). We have used a variety of approaches to characterize the activities of PTB and its molecular interactions with RNA substrates and protein partners. Using splice-sensitive microarrays we found that PTB acts not only as a splicing repressor but also as an activator, and that these two activities are determined by the location at which PTB binds relative to target exons. We have identified minimal splicing repressor and activator domains, and have determined high resolution structures of the second RRM domain of PTB binding to peptide motifs from the co-repressor protein Raver1. Using single-molecule techniques we have determined the stoichiometry of PTB binding to a regulated splicing substrate in whole nuclear extracts. Finally, we have used tethered hydroxyl radical probing to determine the locations on viral IRESs at which each of the four RRM domains bind. We are now combining tethered probing with single molecule analyses to gain a detailed understanding of how PTB interacts with pre-mRNA substrates to effect either repression or activation of splicing.
Collapse
|
31
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
32
|
Association of the RAVER2 gene with increased susceptibility for ulcerative colitis. Hum Immunol 2012; 73:732-5. [PMID: 22561236 DOI: 10.1016/j.humimm.2012.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 11/21/2022]
Abstract
Crohn's disease (CD), ulcerative colitis (UC), systemic lupus erythematosus (SLE) and autoimmune polyglandular syndromes (APS) are autoimmune diseases (ADs) that may share common susceptibility pathways. We examined ribonucleo-protein, polypyrimidine tract-binding protein (PTB)-binding 2 (RAVER2) loci for these diseases in a cohort of 39 CD cases, 67 UC cases, 93 SLE cases, 60 APS cases and 162 healthy control subjects of Tunisian origin. We genotyped 3 SNPs of RAVER2 (rs2780814, rs1333739 and rs2780889) and evaluated it genetic association with each ADs, using X2-test. For each association, odds ratio (OR) and 95% CI were calculated. We show that rs2780814 is significantly associated with UC (P = 0.00016, P(corr) = 0.00048, OR = 3.66 (1.82; 7.34)). We also observed a trend of possible association to SLE (P = 0.023, P(corr) = 0.69, OR = 2.19 (1.1; 4.36)). None of these RAVER2 SNPs were associated with CD and APS susceptibility. These findings establish RAVER2 as a new UC genetic susceptibility factor and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between ADs suggesting different immunopathological roles of RAVER2 in these diseases.
Collapse
|
33
|
Joshi A, Coelho MB, Kotik-Kogan O, Simpson PJ, Matthews SJ, Smith CWJ, Curry S. Crystallographic analysis of polypyrimidine tract-binding protein-Raver1 interactions involved in regulation of alternative splicing. Structure 2012; 19:1816-25. [PMID: 22153504 PMCID: PMC3420021 DOI: 10.1016/j.str.2011.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/28/2022]
Abstract
The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which—along with structure-based mutagenesis—reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.
Collapse
Affiliation(s)
- Amar Joshi
- Division of Cell and Molecular Biology, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptional regulation of the human Raver2 ribonucleoprotein gene. Gene 2011; 493:243-52. [PMID: 22146317 DOI: 10.1016/j.gene.2011.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 01/11/2023]
Abstract
Raver2 is a putative modulator of the activity of the polypyrimidine-tract binding protein (PTB), one of the most intensively studied splicing repressors. Little is known about Raver2 expression, and all current data is from mice where it shows tissue specificity. In the present study, by comparing Raver2 transcript expression in human and mouse tissues, we found that human Raver2 is ubiquitously expressed in adult tissues. In order to investigate human Raver2 transcription regulation, we identified and characterized a putative promoter region in a 1000bp region upstream of the transcription starting site of the gene. Dual luciferase reporter assays demonstrated that this region had promoter activity conferred by the first 160bp. By mutagenic analyses of putative cis-acting regulatory sequences, we identified an individual site that decreased the promoter activity by up to 40% when mutated. Together, our results suggest that regulation of human Raver2 expression involves TATA-less transcriptional activity.
Collapse
|
35
|
Rangarajan ES, Lee JH, Izard T. Apo raver1 structure reveals distinct RRM domain orientations. Protein Sci 2011; 20:1464-70. [PMID: 21633983 DOI: 10.1002/pro.664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/06/2011] [Indexed: 11/08/2022]
Abstract
Raver1 is a multifunctional protein that modulates both alternative splicing and focal adhesion assembly by binding to the nucleoplasmic splicing repressor polypyrimidine tract protein (PTB) or to the cytoskeletal proteins vinculin and α-actinin. The amino-terminal region of raver1 has three RNA recognition motif (RRM1, RRM2, and RRM3) domains, and RRM1 interacts with the vinculin tail (Vt) domain and vinculin mRNA. We previously determined the crystal structure of the raver1 RRM1-3 domains in complex with Vt at 2.75 Å resolution. Here, we report crystal structure of the unbound raver1 RRM1-3 domains at 2 Å resolution. The apo structure reveals that a bound sulfate ion disrupts an electrostatic interaction between the RRM1 and RRM2 domains, triggering a large relative domain movement of over 30°. Superposition with other RNA-bound RRM structures places the sulfate ion near the superposed RNA phosphate group suggesting that this is the raver1 RNA binding site. While several single and some tandem RRM domain structures have been described, to the best of our knowledge, this is the second report of a three-tandem RRM domain structure.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | |
Collapse
|
36
|
Calarco JA, Zhen M, Blencowe BJ. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA (NEW YORK, N.Y.) 2011; 17:775-91. [PMID: 21415141 PMCID: PMC3078728 DOI: 10.1261/rna.2603911] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent genome-wide analyses have indicated that almost all primary transcripts from multi-exon human genes undergo alternative pre-mRNA splicing (AS). Given the prevalence of AS and its importance in expanding proteomic complexity, a major challenge that lies ahead is to determine the functional specificity of isoforms in a cellular context. A significant fraction of alternatively spliced transcripts are regulated in a tissue- or cell-type-specific manner, suggesting that these mRNA variants likely function in the generation of cellular diversity. Complementary to these observations, several tissue-specific splicing factors have been identified, and a number of methodological advances have enabled the identification of large repertoires of target transcripts regulated by these proteins. An emerging theme is that tissue-specific splicing factors regulate coherent sets of splice variants in genes known to function in related biological pathways. This review focuses on the recent progress in our understanding of neural-specific splicing factors and their regulatory networks and outlines existing and emerging strategies for uncovering important biological roles for the isoforms that comprise these networks.
Collapse
Affiliation(s)
- John A Calarco
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
37
|
RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 2011; 31:1812-21. [PMID: 21343338 DOI: 10.1128/mcb.01149-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.
Collapse
|
38
|
McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 2010; 11:565. [PMID: 20946641 PMCID: PMC3091714 DOI: 10.1186/1471-2164-11-565] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Collapse
Affiliation(s)
- Nicholas J McGlincy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
40
|
Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 2010; 90:157-63. [PMID: 20655620 PMCID: PMC3526775 DOI: 10.1016/j.ejcb.2010.06.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 01/09/2023] Open
Abstract
Vinculin, discovered in 1979 (Geiger, 1979), is an adapter protein with binding sites for more than 15 proteins. Biochemical and structural analyses have contributed to detailed knowledge about potential binding partners and the understanding of how their binding may be regulated. Despite all this information the molecular basis of how vinculin acts in cells and controls a wide variety of signals remains elusive. This review aims to highlight recent discoveries with an emphasis on how vinculin is involved in the coordination of a network of signals.
Collapse
Affiliation(s)
- Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
41
|
Cherny D, Gooding C, Eperon GE, Coelho MB, Bagshaw CR, Smith CWJ, Eperon IC. Stoichiometry of a regulatory splicing complex revealed by single-molecule analyses. EMBO J 2010; 29:2161-72. [PMID: 20502437 PMCID: PMC2905242 DOI: 10.1038/emboj.2010.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 05/05/2010] [Indexed: 12/17/2022] Open
Abstract
Splicing is regulated by complex interactions of numerous RNA-binding proteins. The molecular mechanisms involved remain elusive, in large part because of ignorance regarding the numbers of proteins in regulatory complexes. Polypyrimidine tract-binding protein (PTB), which regulates tissue-specific splicing, represses exon 3 of alpha-tropomyosin through distant pyrimidine-rich tracts in the flanking introns. Current models for repression involve either PTB-mediated looping or the propagation of complexes between tracts. To test these models, we used single-molecule approaches to count the number of bound PTB molecules both by counting the number of bleaching steps of GFP molecules linked to PTB within complexes and by analysing their total emissions. Both approaches showed that five or six PTB molecules assemble. Given the domain structures, this suggests that the molecules occupy primarily multiple overlapping potential sites in the polypyrimidine tracts, excluding propagation models. As an alternative to direct looping, we propose that repression involves a multistep process in which PTB binding forms small local loops, creating a platform for recruitment of other proteins that bring these loops into close proximity.
Collapse
Affiliation(s)
- Dmitry Cherny
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Drosophila polypyrimidine tract-binding protein is necessary for spermatid individualization. Proc Natl Acad Sci U S A 2010; 107:12570-5. [PMID: 20616016 DOI: 10.1073/pnas.1007935107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although mammalian polypyrimidine tract-binding (PTB) protein functions in most or all cell types to regulate a wide spectrum of transcripts, Drosophila PTB encodes an abundant male germline-specific mRNA isoform (dmPTB) whose expression correlates with male fertility. The biological function of this isoform is unknown. Using selection-amplification, we show that mammalian and Drosophila PTB have similar RNA sequence preference, suggesting that cell-specific expression rather than unique RNA-binding properties account for the sex-specific function of dmPTB. We also show that the dmPTB protein isoform expressed in the male germline is by far the most abundant isoform, and reduction of its levels correlates with male sterility. Finally, we show that dmPTB expression is necessary for proper spermatid individualization, the terminal step necessary for production of motile sperm. Loss of dmPTB results in severe disruption of the actin cones of the spermatid individualization complex. This represents a cytological defect resulting from PTB loss. We discuss the basis for functional differences between mammalian and Drosophila PTB orthologs.
Collapse
|
43
|
A conserved peptide motif in Raver2 mediates its interaction with the polypyrimidine tract-binding protein. Exp Cell Res 2010; 316:966-79. [DOI: 10.1016/j.yexcr.2009.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/23/2009] [Accepted: 11/29/2009] [Indexed: 12/29/2022]
|
44
|
Xue Y, Zhou Y, Wu T, Zhu T, Ji X, Kwon YS, Zhang C, Yeo G, Black DL, Sun H, Fu XD, Zhang Y. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell 2010; 36:996-1006. [PMID: 20064465 DOI: 10.1016/j.molcel.2009.12.003] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/28/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Recent transcriptome analysis indicates that > 90% of human genes undergo alternative splicing, underscoring the contribution of differential RNA processing to diverse proteomes in higher eukaryotic cells. The polypyrimidine tract-binding protein PTB is a well-characterized splicing repressor, but PTB knockdown causes both exon inclusion and skipping. Genome-wide mapping of PTB-RNA interactions and construction of a functional RNA map now reveal that dominant PTB binding near a competing constitutive splice site generally induces exon inclusion, whereas prevalent binding close to an alternative site often causes exon skipping. This positional effect was further demonstrated by disrupting or creating a PTB-binding site on minigene constructs and testing their responses to PTB knockdown or overexpression. These findings suggest a mechanism for PTB to modulate splice site competition to produce opposite functional consequences, which may be generally applicable to RNA-binding splicing factors to positively or negatively regulate alternative splicing in mammalian cells.
Collapse
|
45
|
Clerte C, Hall KB. The domains of polypyrimidine tract binding protein have distinct RNA structural preferences. Biochemistry 2009; 48:2063-74. [PMID: 19226116 DOI: 10.1021/bi8016872] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PTB (polypyrimidine tract binding protein) participates in cellular regulatory functions in the nucleus and the cytoplasm. It binds to internal ribosome entry sites to facilitate their use in cap-independent translation. It binds to polypyrimidine tracts in pre-mRNA introns to repress inclusion of exons. It binds to the 3' untranslated regions of mRNAs to stabilize the message. These RNAs have various structures, yet PTB binds to all of them. Here, RNAs with structured or unstructured polypyrimidine tracts are bound to the full-length PTB1 protein and two protein subdomains, each containing two RNA recognition motifs. Hairpin loops from c-src and GABAA gamma2 pre-mRNAs and from the 3' terminus of hepatitis C virus (HCV) were compared to a single-stranded polypyrimidine tract from GABAA gamma2 pre-mRNA. We conclude that PTB1 RNA binding function is modular: the N-terminal RRMs preferentially bind to short (U/C) tracts displayed in loops, while the RRM3-RRM4 complex preferentially binds to longer flexible RNA sequences. Since it can bind to short and long polypyrimidine tracts, structured or single-stranded, PTB takes on the role of a versatile adaptor protein that facilitates formation of RNA-protein regulatory complexes.
Collapse
Affiliation(s)
- Caroline Clerte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
46
|
Reid DC, Chang BL, Gunderson SI, Alpert L, Thompson WA, Fairbrother WG. Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence. RNA (NEW YORK, N.Y.) 2009; 15:2385-2397. [PMID: 19861426 PMCID: PMC2779669 DOI: 10.1261/rna.1821809] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Many splicing factors interact with both mRNA and pre-mRNA. The identification of these interactions has been greatly improved by the development of in vivo cross-linking immunoprecipitation. However, the output carries a strong sampling bias in favor of RNPs that form on more abundant RNA species like mRNA. We have developed a novel in vitro approach for surveying binding on pre-mRNA, without cross-linking or sampling bias. Briefly, this approach entails specifically designed oligonucleotide pools that tile through a pre-mRNA sequence. The pool is then partitioned into bound and unbound fractions, which are quantified by a two-color microarray. We applied this approach to locating splicing factor binding sites in and around approximately 4000 exons. We also quantified the effect of secondary structure on binding. The method is validated by the finding that U1snRNP binds at the 5' splice site (5'ss) with a specificity that is nearly identical to the splice donor motif. In agreement with prior reports, we also show that U1snRNP appears to have some affinity for intronic G triplets that are proximal to the 5'ss. Both U1snRNP and the polypyrimidine tract binding protein (PTB) avoid exonic binding, and the PTB binding map shows increased enrichment at the polypyrimidine tract. For PTB, we confirm polypyrimidine specificity and are also able to identify structural determinants of PTB binding. We detect multiple binding motifs enriched in the PTB bound fraction of oligonucleotides. These motif combinations augment binding in vitro and are also enriched in the vicinity of exons that have been determined to be in vivo targets of PTB.
Collapse
Affiliation(s)
- Daniel C Reid
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lee JH, Rangarajan ES, Yogesha SD, Izard T. Raver1 interactions with vinculin and RNA suggest a feed-forward pathway in directing mRNA to focal adhesions. Structure 2009; 17:833-42. [PMID: 19523901 DOI: 10.1016/j.str.2009.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
The translational machinery of the cell relocalizes to focal adhesions following the activation of integrin receptors. This response allows for rapid, local production of components needed for adhesion complex assembly and signaling. Vinculin links focal adhesions to the actin cytoskeleton following its activation by integrin signaling, which severs intramolecular interactions of vinculin's head and tail (Vt) domains. Our vinculin:raver1 crystal structures and binding studies show that activated Vt selectively interacts with one of the three RNA recognition motifs of raver1, that the vinculin:raver1 complex binds to F-actin, and that raver1 binds selectively to RNA, including a sequence found in vinculin mRNA. Further, mutation of residues that mediate interaction of raver1 with vinculin abolish their colocalization in cells. These findings suggest a feed-forward model where vinculin activation at focal adhesions provides a scaffold for recruitment of raver1 and its mRNA cargo to facilitate the production of components of adhesion complexes.
Collapse
Affiliation(s)
- Jun Hyuck Lee
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The localization of mRNAs in subcellular compartments is an efficient way to spatially restrict gene expression. Crystal structures of raver1-vinculin reported by Izard and coworkers now suggest a possible mechanism for mRNA localization during the assembly of focal adhesions.
Collapse
|
49
|
Zhang C, Jia P, Huang X, Sferrazza GF, Athauda G, Achary MP, Wang J, Lemanski SL, Dube DK, Lemanski LF. Myofibril-inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts. J Biomed Sci 2009; 16:81. [PMID: 19728883 PMCID: PMC2752452 DOI: 10.1186/1423-0127-16-81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022] Open
Abstract
The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c) embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR), is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c) axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM) expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR) are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
A role for polypyrimidine tract binding protein in the establishment of focal adhesions. Mol Cell Biol 2009; 29:5564-77. [PMID: 19667078 DOI: 10.1128/mcb.00590-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polypyrimidine tract binding protein (PTB) is a widely expressed RNA binding protein. In the nucleus PTB regulates the splicing of alternative exons, while in the cytoplasm it can affect mRNA stability, translation, and localization. Here we demonstrate that PTB transiently localizes to the cytoplasm and to protrusions in the cellular edge of mouse embryo fibroblasts during adhesion to fibronectin and the early stages of cell spreading. This cytoplasmic PTB is associated with transcripts encoding the focal adhesion scaffolding proteins vinculin and alpha-actinin 4. We demonstrate that vinculin mRNA colocalizes with PTB to cytoplasmic protrusions and that PTB depletion reduces vinculin mRNA at the cellular edge and limits the size of focal adhesions. The loss of PTB also alters cell morphology and limits the ability of cells to spread after adhesion. These data indicate that during the initial stages of cell adhesion, PTB shuttles from the nucleus to the cytoplasm and influences focal adhesion formation through coordinated control of scaffolding protein mRNAs.
Collapse
|