1
|
Roca-Ayats N, Maceda I, Bruque CD, Martínez-Gil N, Garcia-Giralt N, Cozar M, Mellibovsky L, Van Hul W, Lao O, Grinberg D, Balcells S. Evolutionary and functional analyses of LRP5 in archaic and extant modern humans. Hum Genomics 2024; 18:53. [PMID: 38802968 PMCID: PMC11131306 DOI: 10.1186/s40246-024-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first β-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Iago Maceda
- CNAG, Centre Nacional d'Analisi Genòmic, C/ Baldiri I Reixach 4, 08028, Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad El Calafate - S.A.M.I.C., Santa Cruz, Argentina
| | - Núria Martínez-Gil
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Departament de Genètica, Microbiologia i Estadística, UB, Barcelona, Spain
| | - Mónica Cozar
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, 2650, Antwerp, Belgium
| | - Oscar Lao
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Daniel Grinberg
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Susanna Balcells
- Departament de Genètica, Microbiologia i Estadística and IBUB, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| |
Collapse
|
2
|
Lee KMN, Rogers-LaVanne MP, Galbarczyk A, Jasienska G, Clancy KBH. Bone density and frame size in adult women: Effects of body size, habitual use, and life history. Am J Hum Biol 2020; 33:e23502. [PMID: 32935454 DOI: 10.1002/ajhb.23502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Bone mineral density (BMD) and frame size are important predictors of future bone health, with smaller frame size and lower BMD associated with higher risk of later fragility fractures. We test the effects of body size, habitual use, and life history on frame size and cortical BMD of the radius and tibia in sample of healthy adult premenopausal women. METHODS We used anthropometry and life history data from 123 women (age 18-46) from rural Poland. Standard techniques were used to measure height, weight, and body fat. Life history factors were recorded using surveys. Grip strength was measured as a proxy for habitual activity, wrist breadth for skeletal frame size. Cortical BMD was measured at the one-third distal point of the radius and mid-point of the tibia using quantitative ultrasound (reported as speed of sound, SoS). RESULTS Radial SoS was high (mean t-score 3.2 ± 1.6), but tibia SoS was average (mean t-score 0.35 ± 1.17). SoS was not associated with age, although wrist breadth was positively associated with age after adjusting for height. Radius SoS was not associated with measures of body size, habitual use, or life history factors. Wrist breadth was associated with body size (p < .05 for all), lean mass, and grip strength. Tibia SoS was associated with height. Life history factors were not associated with frame size or cortical SoS. CONCLUSIONS Habitual use and overall body size are more strongly associated with frame size and cortical SoS than life history factors in this sample of healthy adult women.
Collapse
Affiliation(s)
- Katharine M N Lee
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mary P Rogers-LaVanne
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrzej Galbarczyk
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute of Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Wells JCK, Stock JT. Life History Transitions at the Origins of Agriculture: A Model for Understanding How Niche Construction Impacts Human Growth, Demography and Health. Front Endocrinol (Lausanne) 2020; 11:325. [PMID: 32508752 PMCID: PMC7253633 DOI: 10.3389/fendo.2020.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Over recent millennia, human populations have regularly reconstructed their subsistence niches, changing both how they obtain food and the conditions in which they live. For example, over the last 12,000 years the vast majority of human populations shifted from foraging to practicing different forms of agriculture. The shift to farming is widely understood to have impacted several aspects of human demography and biology, including mortality risk, population growth, adult body size, and physical markers of health. However, these trends have not been integrated within an over-arching conceptual framework, and there is poor understanding of why populations tended to increase in population size during periods when markers of health deteriorated. Here, we offer a novel conceptual approach based on evolutionary life history theory. This theory assumes that energy availability is finite and must be allocated in competition between the functions of maintenance, growth, reproduction, and defence. In any given environment, and at any given stage during the life-course, natural selection favours energy allocation strategies that maximise fitness. We argue that the origins of agriculture involved profound transformations in human life history strategies, impacting both the availability of energy and the way that it was allocated between life history functions in the body. Although overall energy supply increased, the diet composition changed, while sedentary populations were challenged by new infectious burdens. We propose that this composite new ecological niche favoured increased energy allocation to defence (immune function) and reproduction, thus reducing the allocation to growth and maintenance. We review evidence in support of this hypothesis and highlight how further work could address both heterogeneity and specific aspects of the origins of agriculture in more detail. Our approach can be applied to many other transformations of the human subsistence niche, and can shed new light on the way that health, height, life expectancy, and fertility patterns are changing in association with globalization and nutrition transition.
Collapse
Affiliation(s)
- Jonathan C. K. Wells
- Childhood Nutrition Research Centre, Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- *Correspondence: Jonathan C. K. Wells
| | - Jay T. Stock
- Department of Anthropology, University of Western Ontario, London, ON, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
4
|
Stieglitz J, Trumble BC, Finch CE, Li D, Budoff MJ, Kaplan H, Gurven MD. Computed tomography shows high fracture prevalence among physically active forager-horticulturalists with high fertility. eLife 2019; 8:48607. [PMID: 31418688 PMCID: PMC6726459 DOI: 10.7554/elife.48607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
Modern humans have more fragile skeletons than other hominins, which may result from physical inactivity. Here, we test whether reproductive effort also compromises bone strength, by measuring using computed tomography thoracic vertebral bone mineral density (BMD) and fracture prevalence among physically active Tsimane forager-horticulturalists. Earlier onset of reproduction and shorter interbirth intervals are associated with reduced BMD for women. Tsimane BMD is lower versus Americans, but only for women, contrary to simple predictions relying on inactivity to explain skeletal fragility. Minimal BMD differences exist between Tsimane and American men, suggesting that systemic factors other than fertility (e.g. diet) do not easily explain Tsimane women's lower BMD. Tsimane fracture prevalence is also higher versus Americans. Lower BMD increases Tsimane fracture risk, but only for women, suggesting a role of weak bone in women's fracture etiology. Our results highlight the role of sex-specific mechanisms underlying skeletal fragility that operate long before menopause.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Université Toulouse 1 Capitole, Toulouse, France.,Institute for Advanced Study in Toulouse, Toulouse, France
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States
| | - Dong Li
- School of Medicine, Emory University, Atlanta, United States
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute, Harbor-University of California at Los Angeles Medical Center, Torrance, United States
| | - Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, United States
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|