1
|
Li Z, Gu M, Zaparte A, Fu X, Mahen K, Mrdjen M, Li XS, Yang Z, Ma J, Thoudam T, Chandler K, Hesler M, Heathers L, Gorse K, Van TT, Wong D, Gibson AM, Wang Z, Taylor CM, Quijada P, Makarewich CA, Hazen SL, Liangpunsakul S, Brown JM, Lefer DJ, Welsh DA, Sharp TE. Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease. Nat Commun 2024; 15:10788. [PMID: 39738016 PMCID: PMC11685538 DOI: 10.1038/s41467-024-55084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- International Flavors and Fragrances Health and Bioscience, Shanghai, China
| | - Aline Zaparte
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Mahen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Marko Mrdjen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Themis Thoudam
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maggie Hesler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Heathers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thanh Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Wong
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher M Taylor
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pearl Quijada
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Heart and Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Thomas E Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Heart Institute, Morsani College of Medicine, USF Health, University South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Thai BS, Chia LY, Nguyen ATN, Qin C, Ritchie RH, Hutchinson DS, Kompa A, White PJ, May LT. Targeting G protein-coupled receptors for heart failure treatment. Br J Pharmacol 2024; 181:2270-2286. [PMID: 37095602 DOI: 10.1111/bph.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as β-adrenoceptor antagonists (β-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality. GPCR targets currently being explored for the development of novel heart failure therapeutics include adenosine receptor, formyl peptide receptor, relaxin/insulin-like family peptide receptor, vasopressin receptor, endothelin receptor and the glucagon-like peptide 1 receptor. Many GPCR drug candidates are limited by insufficient efficacy and/or dose-limiting unwanted effects. Understanding the current challenges hindering successful clinical translation and the potential to overcome existing limitations will facilitate the future development of novel heart failure therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Bui San Thai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chengxue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew Kompa
- Department Medicine and Radiology, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res 2024; 135:174-197. [PMID: 38900852 PMCID: PMC11192237 DOI: 10.1161/circresaha.124.323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
4
|
Taddei S, Tsabedze N, Tan RS. β-blockers are not all the same: pharmacologic similarities and differences, potential combinations and clinical implications. Curr Med Res Opin 2024; 40:15-23. [PMID: 38597065 DOI: 10.1080/03007995.2024.2318058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
β-blockers are a heterogeneous class, with individual agents distinguished by selectivity for β1- vs. β2- and α-adrenoceptors, presence or absence of partial agonist activity at one of more β-receptor subtype, presence or absence of additional vasodilatory properties, and lipophilicity, which determines the ease of entry the drug into the central nervous system. Cardioselectivity (β1-adrenoceptor selectivity) helps to reduce the potential for adverse effects mediated by blockade of β2-adrenoceptors outside the myocardium, such as cold extremities, erectile dysfunction, or exacerbation of asthma or chronic obstructive pulmonary disease. According to recently updated guidelines from the European Society of Hypertension, β-blockers are included within the five major drug classes recommended as the basis of antihypertensive treatment strategies. Adding a β-blocker to another agent with a complementary mechanism may provide a rational antihypertensive combination that minimizes the adverse impact of induced sympathetic overactivity for optimal blood pressure-lowering efficacy and clinical outcomes benefit.
Collapse
Affiliation(s)
- Stefano Taddei
- Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore
- Cardiovascular Sciences, Duke NUS Medical School, Singapore
| |
Collapse
|
5
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
6
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
7
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Chen S, Tian P, Estau D, Li Z. Effects of β-blockers on all-cause mortality in patients with diabetes and coronary heart disease: A systematic review and meta-analysis. Front Cell Dev Biol 2023; 11:1076107. [PMID: 36776555 PMCID: PMC9911879 DOI: 10.3389/fcell.2023.1076107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Beta-blockers have been considered as an effective treatment in secondary prevention of coronary heart disease (CHD). However, there is still disputed whether β-blockers can increase all-cause mortality in patients with coronary heart disease and diabetes mellitus (DM). Here, our systematic review and meta-analysis is aiming to assess the effects of β-blockers on all-cause mortality in patients with coronary heart disease and diabetes mellitus. Four databases (PubMed, Embase, Cochrane Library and Web of Science) and other sources were searched to collect randomized controlled trials (RCTs) and cohort studies related to the treatment of β-blockers for coronary heart disease and diabetes mellitus patients. We further evaluated quality of evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. Finally, a total of 16,188 records were identified, and four randomized controlled trials and six cohort studies (206,490 patients) were included. Random effects analysis revealed that β-blockers combined with routine treatment (RT) significantly decreased all-cause mortality in patients with coronary heart disease and diabetes mellitus compared with RT in control group (RR 0.59, 95% CI 0.47 to 0.75; p < 0.000 01; I2 = 72%). Subgroup analysis of all-cause mortality by the subtype of diabetes mellitus and definite MI patients (RR 0.54, 95% CI 0.45 to 0.65, p < 0.000 01, I2 = 29%) and the subtype of randomized controlled trials (RR 0.49, 95% CI 0.32 to 0.76, p = 0.001, I2 = 0%) indicated a relatively small heterogeneity and stable results. β-blockers application significantly reduced cardiovascular death as well (RR 0.56, 95% CI 0.42 to 0.74; p < 0.000 1; I2 = 0%). Our meta-analysis provided critical evidence of β-blockers treatment for patients with coronary heart disease (especially MI type) and diabetes mellitus, and discussed the advantages and potential metabolic risks for the clinical use of β-blockers. This study suggested that β-blockers application may improve all-cause mortality and cardiovascular death in coronary heart disease (especially MI type) and diabetes mellitus patients. However, given a small number of included studies, the aforementioned conclusion should be confirmed in a multi-center, large-scale, and strictly designed trial.
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China,Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Panhui Tian
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dannya Estau
- Department of Pharmacy, Peking University Third Hospital, Beijing, China,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China,Department of Pharmacy, Peking University Third Hospital, Beijing, China,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China,*Correspondence: Zijian Li,
| |
Collapse
|
9
|
Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4. Curr Issues Mol Biol 2022; 44:6093-6103. [PMID: 36547076 PMCID: PMC9776453 DOI: 10.3390/cimb44120415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
10
|
Maning J, Desimine VL, Pollard CM, Ghandour J, Lymperopoulos A. Carvedilol Selectively Stimulates βArrestin2-Dependent SERCA2a Activity in Cardiomyocytes to Augment Contractility. Int J Mol Sci 2022; 23:11315. [PMID: 36232617 PMCID: PMC9570329 DOI: 10.3390/ijms231911315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) carries the highest mortality in the western world and β-blockers [β-adrenergic receptor (AR) antagonists] are part of the cornerstone pharmacotherapy for post-myocardial infarction (MI) chronic HF. Cardiac β1AR-activated βarrestin2, a G protein-coupled receptor (GPCR) adapter protein, promotes Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a SUMO (small ubiquitin-like modifier)-ylation and activity, thereby directly increasing cardiac contractility. Given that certain β-blockers, such as carvedilol and metoprolol, can activate βarrestins and/or SERCA2a in the heart, we investigated the effects of these two agents on cardiac βarrestin2-dependent SERCA2a SUMOylation and activity. We found that carvedilol, but not metoprolol, acutely induces βarrestin2 interaction with SERCA2a in H9c2 cardiomyocytes and in neonatal rat ventricular myocytes (NRVMs), resulting in enhanced SERCA2a SUMOylation. However, this translates into enhanced SERCA2a activity only in the presence of the β2AR-selective inverse agonist ICI 118,551 (ICI), indicating an opposing effect of carvedilol-occupied β2AR subtype on carvedilol-occupied β1AR-stimulated, βarrestin2-dependent SERCA2a activation. In addition, the amplitude of fractional shortening of NRVMs, transfected to overexpress βarrestin2, is acutely enhanced by carvedilol, again in the presence of ICI only. In contrast, metoprolol was without effect on NRVMs' shortening amplitude irrespective of ICI co-treatment. Importantly, the pro-contractile effect of carvedilol was also observed in human induced pluripotent stem cell (hIPSC)-derived cardiac myocytes (CMs) overexpressing βarrestin2, and, in fact, it was present even without concomitant ICI treatment of human CMs. Metoprolol with or without concomitant ICI did not affect contractility of human CMs, either. In conclusion, carvedilol, but not metoprolol, stimulates βarrestin2-mediated SERCA2a SUMOylation and activity through the β1AR in cardiac myocytes, translating into direct positive inotropy. However, this unique βarrestin2-dependent pro-contractile effect of carvedilol may be opposed or masked by carvedilol-bound β2AR subtype signaling.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
11
|
Borges JI, Ferraino KE, Cora N, Nagliya D, Suster MS, Carbone AM, Lymperopoulos A. Adrenal G Protein-Coupled Receptors and the Failing Heart: A Long-distance, Yet Intimate Affair. J Cardiovasc Pharmacol 2022; 80:386-392. [PMID: 34983911 PMCID: PMC9294064 DOI: 10.1097/fjc.0000000000001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 01/31/2023]
Abstract
Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as β-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the β-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.
Collapse
Affiliation(s)
- Jordana I. Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S. Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M. Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
12
|
Impact of R-Carvedilol on β2-Adrenergic Receptor-Mediated Spontaneous Calcium Release in Human Atrial Myocytes. Biomedicines 2022; 10:biomedicines10071759. [PMID: 35885069 PMCID: PMC9313410 DOI: 10.3390/biomedicines10071759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/14/2023] Open
Abstract
A hallmark of atrial fibrillation is an excess of spontaneous calcium release events, which can be mimicked by β1- or β2-adrenergic stimulation. Because β1-adrenergic receptor blockers (β1-blockers) are primarily used in clinical practice, we here examined the impact of β2-adrenergic stimulation on spontaneous calcium release and assessed whether the R- and S-enantiomers of the non-selective β- blocker carvedilol could reverse these effects. For this purpose, human atrial myocytes were isolated from patients undergoing cardiovascular surgery and subjected to confocal calcium imaging or immunofluorescent labeling of the ryanodine receptor (RyR2). Interestingly, the β2-adrenergic agonist fenoterol increased the incidence of calcium sparks and waves to levels observed with the non-specific β-adrenergic agonist isoproterenol. Moreover, fenoterol increased both the amplitude and duration of the sparks, facilitating their fusion into calcium waves. Subsequent application of the non β-blocking R-Carvedilol enantiomer reversed these effects of fenoterol in a dose-dependent manner. R-Carvedilol also reversed the fenoterol-induced phosphorylation of the RyR2 at Ser-2808 dose-dependently, and 1 µM of either R- or S-Carvedilol fully reversed the effect of fenoterol. Together, these findings demonstrate that β2-adrenergic stimulation alone stimulates RyR2 phosphorylation at Ser-2808 and spontaneous calcium release maximally, and points to carvedilol as a tool to attenuate the pathological activation of β2-receptors.
Collapse
|
13
|
Effects of Carvedilol and Thyroid Hormones Co-administration on Apoptotic and Survival Proteins in the Heart After Acute Myocardial Infarction. J Cardiovasc Pharmacol 2021; 76:698-707. [PMID: 33105324 DOI: 10.1097/fjc.0000000000000923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular death and survival signaling plays a key role in the progress of adverse cardiac remodeling after acute myocardial infarction (AMI). Therapeutic strategies, such as co-treatment with beta-blocker carvedilol and thyroid hormones (THs), give rise to new approaches that can sustain the cellular homeostasis after AMI. Therefore, we sought to investigate the effects of carvedilol and TH co-administration on apoptosis and survival proteins and on cardiac remodeling after AMI. Male Wistar rats were distributed in 5 groups as follows: sham-operated group (SHAM), infarcted group (MI), infarcted plus carvedilol group (MI+C), infarcted plus TH group (MI+TH), and infarcted plus carvedilol and TH co-treatment group (MI+C+TH). Echocardiographic analysis was performed, and hearts were collected for western blot evaluation. The MI group presented systolic posterior wall thickness loss, an increase in the wall tension index, and an increase in atrial natriuretic peptide tissue levels than the SHAM group. However, in the MI+C+TH group, these parameters were equally to the SHAM group. Moreover, whereas the MI group showed Bax protein expression elevated in relation to the SHAM group, the MI+C+TH group presented Bax reduction and also Akt activation compared with the MI group. In addition, the MI+TH group revealed beta-1 adrenergic receptor (β1AR) upregulation compared with the MI and MI+C groups, whereas the MI+C+TH group presented lower levels of β1AR in relation to the SHAM and MI+TH groups. In conclusion, we suggest that carvedilol and TH co-administration may mediate its cardioprotective effects against adverse cardiac remodeling post-AMI through the Bax reduction, Akt activation, and β1AR decrease.
Collapse
|
14
|
Guitart-Mampel M, Urquiza P, Borges JI, Lymperopoulos A, Solesio ME. Impact of Aldosterone on the Failing Myocardium: Insights from Mitochondria and Adrenergic Receptors Signaling and Function. Cells 2021; 10:1552. [PMID: 34205363 PMCID: PMC8235589 DOI: 10.3390/cells10061552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)-particularly βARs-play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.
Collapse
Affiliation(s)
- Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| | - Jordana I. Borges
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (M.G.-M.); (P.U.)
| |
Collapse
|
15
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Rasool MF, Läer S. Development and evaluation of a physiologically based pharmacokinetic model to predict carvedilol-paroxetine metabolic drug-drug interaction in healthy adults and its extrapolation to virtual chronic heart failure patients for dose optimization. Expert Opin Drug Metab Toxicol 2021; 17:717-724. [PMID: 33910429 DOI: 10.1080/17425255.2021.1921145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose: The metabolic drug-drug interactions (mDDIs) are one of the most important challenges faced by the pharmaceutical industry during the drug development stage and are frequently associated with labeling restrictions and withdrawal of drugs. The capacity of physiologically based pharmacokinetic (PBPK) models to absorb and upgrade with the newly available information on drug and population-specific parameters, makes them a preferred choice over the conventional pharmacokinetic models for predicting mDDIs.Method: A PBPK model capable of predicting the stereo-selective disposition of carvedilol after administering paroxetine by incorporating mechanism (time) based inhibition of CYP2D6 and CYP3A4 was developed by using the population-based absorption, distribution, metabolism and elimination (ADME) simulator, Simcyp®.Results: The model predictions for both carvedilol enantiomers were in close agreement with the observed PK data, as the ratios for observed/predicted PK parameters were within the 2-fold error range. The developed PBPK model was successful in capturing an increase in exposures of R and S-carvedilol, due to the time-based inhibition of CYP2D6 enzyme caused by paroxetine.Conclusion: The developed model can be used for exploring complex clinical scenarios, where multiple drugs are given concurrently, particularly in diseased populations where no clinical trial data is available.
Collapse
Affiliation(s)
| | - Stephanie Läer
- Department of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
The two branches of the autonomic nervous system (ANS), adrenergic and cholinergic, exert a multitude of effects on the human myocardium thanks to the activation of distinct G protein-coupled receptors (GPCRs) expressed on the plasma membranes of cardiac myocytes, cardiac fibroblasts, and coronary vascular endothelial cells. Norepinephrine (NE)/epinephrine (Epi) and acetylcholine (ACh) are released from cardiac ANS terminals and mediate the biological actions of the ANS on the heart via stimulation of cardiac adrenergic or muscarinic receptors, respectively. In addition, several other neurotransmitters/hormones act as facilitators of ANS neurotransmission in the heart, taking part in the so-called nonadrenergic noncholinergic (NANC) part of the ANS's control of cardiac function. These NANC mediators also use several different cell membrane-residing GPCRs to exert their effects in the myocardium. Cardiac ANS dysfunction and an imbalance between the activities of its two branches underlie a variety of cardiovascular diseases, from heart failure and hypertension to coronary artery disease, myocardial ischemia, and arrhythmias. In this review, we present the main well-established signaling modalities used by cardiac autonomic GPCRs, including receptors for salient NANC mediators, and we also highlight the latest developments pertaining to cardiac cell type-specific signal transduction, resulting in cell type-specific cardiac effects of each of these autonomic receptors.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ava R Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
18
|
Abstract
Cirrhosis is the fifth leading cause of death in adults. Advanced cirrhosis can cause significant portal hypertension (PH), which is responsible for many of the complications observed in patients with cirrhosis, such as varices. If portal pressure exceeds a certain threshold, the patient is at risk of developing life-threatening bleeding from varices. Variceal bleeding has a high incidence among patients with liver cirrhosis and carries a high risk of mortality and morbidity. The management of variceal bleeding is complex, often requiring a multidisciplinary approach involving pharmacological, endoscopic, and radiologic interventions. In terms of management, three stages can be considered: primary prophylaxis, active bleeding, and secondary prophylaxis. The main goal of primary and secondary prophylaxis is to prevent variceal bleeding. However, active variceal bleeding is a medical emergency that requires swift intervention to stop the bleeding and achieve durable hemostasis. We describe the pathophysiology of cirrhosis and PH to contextualize the formation of gastric and esophageal varices. We also discuss the currently available treatments and compare how they fare in each stage of clinical management, with a special focus on drugs that can prevent bleeding or assist in achieving hemostasis.
Collapse
|
19
|
Siddiqi N, Shatat IF. Antihypertensive agents: a long way to safe drug prescribing in children. Pediatr Nephrol 2020; 35:2049-2065. [PMID: 31676933 PMCID: PMC7515858 DOI: 10.1007/s00467-019-04314-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023]
Abstract
Recently updated clinical guidelines have highlighted the gaps in our understanding and management of pediatric hypertension. With increased recognition and diagnosis of pediatric hypertension, the use of antihypertensive agents is also likely to increase. Drug selection to treat hypertension in the pediatric patient population remains challenging. This is primarily due to a lack of large, well-designed pediatric safety and efficacy trials, limited understanding of pharmacokinetics in children, and unknown risk of prolonged exposure to antihypertensive therapies. With newer legislation providing financial incentives for conducting clinical trials in children, along with publication of pediatric-focused guidelines, literature available for antihypertensive agents in pediatrics has increased over the last 20 years. The objective of this article is to review the literature for safety and efficacy of commonly prescribed antihypertensive agents in pediatrics. Thus far, the most data to support use in children was found for angiotensin-converting enzyme inhibitors (ACE-I), angiotensin receptor blockers (ARB), and calcium channel blockers (CCB). Several gaps were noted in the literature, particularly for beta blockers, vasodilators, and the long-term safety profile of antihypertensive agents in children. Further clinical trials are needed to guide safe and effective prescribing in the pediatric population.
Collapse
Affiliation(s)
- Nida Siddiqi
- Department of Pharmacy, Sidra Medicine, Doha, Qatar
| | - Ibrahim F Shatat
- Pediatric Nephrology and Hypertension, Sidra Medicine, HB. 7A. 106A, PO Box 26999, Doha, Qatar.
- Weill Cornell College of Medicine-Qatar, Ar-Rayyan, Qatar.
- Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
20
|
Clinical value of detecting autoantibodies against β 1-, β 2,- and α 1-adrenergic receptors in carvedilol treatment of patients with heart failure. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2020; 17:305-312. [PMID: 32670360 PMCID: PMC7338933 DOI: 10.11909/j.issn.1671-5411.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective To determine the possible association of anti-β1-adrenergic receptors (anti-β1-AR), anti-β2-AR and anti-α1-AR with carvedilol treatment in patients with heart failure (HF). Methods A total of 267 HF patients were prospectively enrolled. Blood samples were measured by an enzyme-linked immunosorbent assay. All of the patients received carvedilol for their HF. Each patient was followed up for six months and their cardiac function was measured. Results The final analysis encompassed 137 patients comprising 65 patients with three autoantibodies (positive group) and 72 patients without all three autoantibodies but with one or two autoantibodies (negative group). The frequency and geometric mean titer of anti-β1-AR, anti-β2-AR, and anti-α1-AR were significantly lower in the group without all three autoantibodies after six months of carvedilol treatment (all P < 0.01; from 100% to 57%, 50%, and 49%, respectively; and from 1: 118, 1: 138, and 1: 130 to 1: 72, 1: 61, and 1: 67, respectively). Furthermore, 28 patients in the positive group demonstrated complete ablation of autoantibodies. In addition, left ventricular remodelling and function was significantly improved by the use of carvedilol combined with the standard treatment regime for six months in the positive group (P < 0.01) when compared to the negative group (P < 0.05). Conclusions Carvedilol treatment significantly decreases frequency and geometric mean titer in patients with all three autoantibodies, even up to complete ablation, and significantly improved cardiac function and remodelling. The effect of carvedilol is probably correlated to the presence of all three autoantibodies.
Collapse
|
21
|
Gorky J, Schwaber J. Conceptualization of a Parasympathetic Endocrine System. Front Neurosci 2019; 13:1008. [PMID: 31607849 PMCID: PMC6767939 DOI: 10.3389/fnins.2019.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
We here propose a parasympathetic endocrine system (PES) comprised of circulating peptides released from secretory cells in the gut, significantly modulated by vagal projections from the dorsal motor nucleus of the vagus (DMV). While most of these gut peptides mediate well-described satiety and digestive effects that increase parasympathetic control of digestion (Lee et al., 1994; Gutzwiller et al., 1999; Klok et al., 2007), they also have actions that are far-reaching and increase parasympathetic signaling broadly throughout the body. The actions beyond satiety that peptides like somatostatin, cholecystokinin, glucagon-like peptide 1, and vasoactive intestinal peptide have been well-examined, but not in a systematic way. Consideration has been given to the idea that these and other gut-derived peptides are part of an endocrine system has been partially considered (Rehfeld, 2012; Drucker, 2016), but that it is coordinated through parasympathetic control and may act to increase the actions of parasympathetic projections has not been formalized before. Here only gut-derived hormones are included although there are potentially other parasympathetically mediated factors released from other sites like lung and liver (Drucker, 2016). The case for the existence of the PES with the DMV as its integrative controller will be made through examination of an anatomical substrate and evidence of physiological control mechanisms as well as direct examples of PES antagonism of sympathetic signaling in mammals, including humans. The implications for this conceptual understanding of a PES reframe diseases like metabolic syndrome and may help underscore the role of the autonomic nervous system in the associated symptoms.
Collapse
Affiliation(s)
- Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Marti CN, Fonarow GC, Anker S, Yancy C, Vaduganathan M, Greene SJ, Ahmed A, Januzzi JL, Gheorghiade M, Filippatos G, Butler J. Medication dosing for heart failure with reduced ejection fraction - opportunities and challenges. Eur J Heart Fail 2019; 21:286-296. [PMID: 30537163 PMCID: PMC6528811 DOI: 10.1002/ejhf.1351] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/18/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple drug classes have shown incremental benefits in heart failure with reduced ejection fraction. Most of these trials were designed to achieve specific doses of the investigational agent. Clinical practice guidelines recommend using the same target dosing of therapies, as tolerated. However, with the increasing number of available therapies, clinicians face the challenge of simultaneously using several drugs, achieving target doses, and managing side effects that are often overlapping. Blood pressure, renal function, hyperkalaemia, and other factors may impede achieving target doses of all medications, leaving clinicians with dilemmas as to how to sequence and dose these various classes of drugs. The guideline-directed eligibility for certain drugs and devices requires stability on maximally tolerated doses of background therapies. However, significant variability exists in dosing achieved in clinical practice. We discuss the existing background data regarding the doses of heart failure medications in clinical trials and in practice, and provide recommendations on how to navigate this complex therapeutic decision-making.
Collapse
Affiliation(s)
- Catherine N. Marti
- Piedmont Heart Institute, Atlanta, GA and University of Georgia, Athens, GA
| | - Gregg C. Fonarow
- Ahmanson-UCLA Cardiomyopathy Center, University of California Los Angeles, Los Angeles, CA
| | - Stefan Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia & Sarcopenia; Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
| | - Clyde Yancy
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL (* Posthumous)
| | - Muthiah Vaduganathan
- Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, Massachusetts
| | - Stephen J. Greene
- Duke Clinical Research Institute and Division of Cardiology, Duke University School of Medicine, Durham, NC
| | - Ali Ahmed
- Veterans Affairs Medical Center and George Washington University, Washington DC
| | - James L. Januzzi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, and the Baim Institute for Clinical Research, Boston, MA
| | - Mihai Gheorghiade
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL (* Posthumous)
| | | | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
23
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
24
|
Yu SMW, Jean-Charles PY, Abraham DM, Kaur S, Gareri C, Mao L, Rockman HA, Shenoy SK. The deubiquitinase ubiquitin-specific protease 20 is a positive modulator of myocardial β 1-adrenergic receptor expression and signaling. J Biol Chem 2018; 294:2500-2518. [PMID: 30538132 DOI: 10.1074/jbc.ra118.004926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/23/2018] [Indexed: 12/27/2022] Open
Abstract
Reversible ubiquitination of G protein-coupled receptors regulates their trafficking and signaling; whether deubiquitinases regulate myocardial β1-adrenergic receptors (β1ARs) is unknown. We report that ubiquitin-specific protease 20 (USP20) deubiquitinates and attenuates lysosomal trafficking of the β1AR. β1AR-induced phosphorylation of USP20 Ser-333 by protein kinase A-α (PKAα) was required for optimal USP20-mediated regulation of β1AR lysosomal trafficking. Both phosphomimetic (S333D) and phosphorylation-impaired (S333A) USP20 possess intrinsic deubiquitinase activity equivalent to WT activity. However, unlike USP20 WT and S333D, the S333A mutant associated poorly with the β1AR and failed to deubiquitinate the β1AR. USP20-KO mice showed normal baseline systolic function but impaired β1AR-induced contractility and relaxation. Dobutamine stimulation did not increase cAMP in USP20-KO left ventricles (LVs), whereas NKH477-induced adenylyl cyclase activity was equivalent to WT. The USP20 homolog USP33, which shares redundant roles with USP20, had no effect on β1AR ubiquitination, but USP33 was up-regulated in USP20-KO hearts suggesting compensatory regulation. Myocardial β1AR expression in USP20-KO was drastically reduced, whereas β2AR expression was maintained as determined by radioligand binding in LV sarcolemmal membranes. Phospho-USP20 was significantly increased in LVs of wildtype (WT) mice after a 1-week catecholamine infusion and a 2-week chronic pressure overload induced by transverse aortic constriction (TAC). Phospho-USP20 was undetectable in β1AR KO mice subjected to TAC, suggesting a role for USP20 phosphorylation in cardiac response to pressure overload. We conclude that USP20 regulates β1AR signaling in vitro and in vivo Additionally, β1AR-induced USP20 phosphorylation may serve as a feed-forward mechanism to stabilize β1AR expression and signaling during pathological insults to the myocardium.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Pierre-Yves Jean-Charles
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis M Abraham
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Suneet Kaur
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Clarice Gareri
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Lan Mao
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Howard A Rockman
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sudha K Shenoy
- From the Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
25
|
Parker BM, Rogers SL, Lymperopoulos A. Clinical pharmacogenomics of carvedilol: the stereo-selective metabolism angle. Pharmacogenomics 2018; 19:1089-1093. [PMID: 30086658 DOI: 10.2217/pgs-2018-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328, USA
| | - Sara L Rogers
- American Society of Pharmacovigilance, Houston, TX 77225, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
26
|
Boivin-Jahns V, Uhland K, Holthoff HP, Beyersdorf N, Kocoski V, Kerkau T, Münch G, Lohse MJ, Ungerer M, Jahns R. Cyclopeptide COR-1 to treat beta1-adrenergic receptor antibody-induced heart failure. PLoS One 2018; 13:e0201160. [PMID: 30125285 PMCID: PMC6101361 DOI: 10.1371/journal.pone.0201160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Despite advances in pharmacotherapy, heart failure still incurs significant morbidity and mortality. Stimulating antibodies directed against the secondextracellular loop of the human ß1-adrenergic receptor (anti-ß1EC2) cause myocyte damage and heart failure in rats. This receptor domain is 100% homologous between rats and humans. OBJECTIVE ß1EC2-mimicking cyclopeptides (25-meric) markedly improved the development and/or course of anti-ß1EC2-mediated cardiomyopathy. Further developments should be investigated. METHODS AND RESULTS The shortened 18-meric cyclic peptide COR-1, in which one of the two disulphide bonds was removed to enable reproducible GMP production, can also be used to treat cardiomyopathic rats. Echocardiography, catheterization and histopathology of the rat hearts revealed that monthly intravenous administrations of COR-1 almost fully reversed the cardiomyopathic phenotype within 6 months at doses of 1 to 4 mg/kg body weight. Administration of COR-1 resulted in markedly reduced anti-ß1EC2-expressing memory B lymphocytes in the spleen despite continued antigenic boosts, but did not significantly decrease overall peripheral anti-ß1EC2 titers. COR-1 did not induce any anti-ß1EC2 or other immune response in naïve rats (corresponding to findings in healthy human volunteers). It did not cause any toxic side effects in GLP studies in dogs, rats or mice, and the "no observed adverse effect level" (NOAEL) exceeded the therapeutic doses by 100-fold. CONCLUSION The second generation immunomodulating epitope-mimicking cyclopeptide COR-1 (also termed JNJ-5442840) offers promise to treat immune-mediated cardiac diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibody Specificity
- Disease Models, Animal
- Female
- Guinea Pigs
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/physiopathology
- Humans
- Male
- Molecular Mimicry/immunology
- Myocardium/metabolism
- Peptide Fragments/chemistry
- Peptide Fragments/therapeutic use
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/therapeutic use
- Peptides, Cyclic/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Rats, Wistar
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/immunology
Collapse
Affiliation(s)
- Valérie Boivin-Jahns
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
| | | | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Vladimir Kocoski
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Martin J. Lohse
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
| | | | - Roland Jahns
- Department of Pharmacology and Toxicology, University of Würzburg, Comprehensive Heart Failure Centre (CHFC), University Hospital Würzburg, Würzburg, Germany
- Interdisciplinary Bank of Biomaterials and Data Würzburg, Comprehensive Heart Failure Centre (CHFC), Würzburg, Germany
| |
Collapse
|
27
|
Ajam T, Ajam S, Devaraj S, Mohammed K, Sawada S, Kamalesh M. Effect of carvedilol vs metoprolol succinate on mortality in heart failure with reduced ejection fraction. Am Heart J 2018; 199:1-6. [PMID: 29754646 DOI: 10.1016/j.ahj.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Beta blocker therapy is indicated in all patients with heart failure with reduced ejection fraction (HFrEF) as per current guidelines. The relative benefit of carvedilol to metoprolol succinate remains unknown. This study aimed to compare survival benefit of carvedilol to metoprolol succinate. METHODS The VA's databases were queried to identify 114,745 patients diagnosed with HFrEF from 2007 to 2015 who were prescribed carvedilol and metoprolol succinate. The study estimated the survival probability and hazard ratio by comparing the carvedilol and metoprolol patients using propensity score matching with replacement techniques on observed covariates. Sub-group analyses were performed separately for men, women, elderly, duration of therapy of more than 3 months, and diabetic patients. RESULTS A total of 43,941 metoprolol patients were matched with as many carvedilol patients. The adjusted hazard ratio of mortality for metoprolol succinate compared to carvedilol was 1.069 (95% CI: 1.046-1.092, P value: < .001). At six years, the survival probability was higher in the carvedilol group compared to the metoprolol succinate group (55.6% vs 49.2%, P value < .001). The sub-group analyses show that the results hold true separately for male, over or under 65 years old, therapy duration more than three months and non-diabetic patients. CONCLUSION Patients with HFrEF taking carvedilol had improved survival as compared to metoprolol succinate. The data supports the need for furthering testing to determine optimal choice of beta blockers in patients with heart failure with reduced ejection fraction.
Collapse
|
28
|
Hu Y, Zhu W, Guan Y, Wu S, Zhang X, Li G, Si L, Huang J. Accurate determination of a novel vasodilatory β-blocker TJ0711 using LC-MS/MS: Resolution of an isobaric metabolite interference in dog plasma. Biomed Chromatogr 2018; 32:e4196. [PMID: 29357403 DOI: 10.1002/bmc.4196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/14/2023]
Abstract
A rapid, robust and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for bioanalysis of TJ0711, a novel vasodilatory β-blocker in dog plasma. This assay is able to chromatographically separate TJ0711 from its isobaric metabolite as well as glucuronide conjugates. Chromatographic separation was achieved on a Welch Ultimate-XB C18 column (2.1 × 100 mm, 3 μm). The analyte and internal standard (propranolol) were extracted from plasma by liquid-liquid extraction using ethyl acetate. The mass spectrometric detection was carried out in positive ion multiple reaction monitoring mode. Good linearity was obtained over the concentration range of 0.5-500 ng/mL (r > 0.99) for TJ0711. Moreover, the method had good accuracy (RE ranging from -2.70 to -0.32%) and precision (RSD < 7.55%). TJ0711 was stable in dog plasma for at least 6 h at ambient temperature, for at least 30 days at -20°C and after three freeze-thaw cycles. This method was successfully applied to a preclinical pharmacokinetic study and the results demonstrated linear pharmacokinetics of TJ0711 over a dose range from 0.03 to 0.3 mg/kg. No significant gender differences were observed in TJ0711 plasma pharmacokinetic parameters.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yeli Guan
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaoyin Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Nochioka K, Sakata Y, Shimokawa H. Combination Therapy of Renin Angiotensin System Inhibitors and β-Blockers in Patients with Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/5584_2018_179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Sube R, Ertel EA. Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells: An In-Vitro Model to Predict Cardiac Effects of Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbise.2017.1011040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Kim YH, Choi HY, Noh YH, Lee SH, Lim HS, Kim C, Bae KS. Dose proportionality and pharmacokinetics of carvedilol sustained-release formulation: a single dose-ascending 10-sequence incomplete block study. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2911-8. [PMID: 26089641 PMCID: PMC4468955 DOI: 10.2147/dddt.s86168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Carvedilol is a third-generation β-blocker indicated for congestive heart failure and high blood pressure. The aim of this study was to investigate the dose proportionality of the carvedilol sustained-release (SR) formulation in healthy male subjects. Methods An open-label, single dose-ascending, 10-sequence, 3-period balanced incomplete block study was performed using healthy male subjects. In varying sequences, each subject received three of five carvedilol SR formulations (8, 16, 32, 64, or 128 mg once). The treatment periods were separated by a washout period of 7 days. Serial blood samples were collected up to 48 h after dosing. The plasma concentrations of carvedilol were determined by using validated liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters including the area under the plasma concentration–time curve (AUC) from time 0 to the last measurable time (AUClast), AUC extrapolated to infinity (AUCinf), and the measured peak plasma concentration (Cmax) were obtained by noncompartmental analysis. Dose proportionality was evaluated if the ln–ln plots of AUClast, AUCinf, and Cmax versus dose were linear and the 90% confidence intervals (CIs) of the slopes were within 0.9195 and 1.0805. Tolerability was assessed by vital signs, electrocardiogram, clinical laboratory tests, and monitoring of adverse events (AEs) throughout the study. Results A total of 31 subjects were enrolled, and 30 completed the study. The assessment of dose proportionality meets the statistical criteria; the point estimates of slope were 1.0104 (90% CI: 0.9849–1.0359) for AUClast, 1.0003 (90% CI: 0.9748–1.0258) for AUCinf, and 0.9901 (90% CI: 0.9524–1.0277) for Cmax, respectively. All AEs were mild, and none of the subjects dropped out due to AEs. Conclusion In this study, exposure to carvedilol was proportional over the therapeutic dose range of 8–128 mg. The carvedilol SR formulation was well tolerated.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Hee Youn Choi
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Yook-Hwan Noh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Shi Hyang Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| | - Chin Kim
- Chong Kun Dang Clinical Research and Clinical Epidemiology and Medical Information, CKD Pharmaceuticals, Seoul, Republic of Korea
| | - Kyun-Seop Bae
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
33
|
Nagatomo Y, Yoshikawa T, Okamoto H, Kitabatake A, Hori M. Presence of Autoantibody Directed Against β1-Adrenergic Receptors Is Associated With Amelioration of Cardiac Function in Response to Carvedilol: Japanese Chronic Heart Failure (J-CHF) Study. J Card Fail 2015; 21:198-207. [DOI: 10.1016/j.cardfail.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/08/2014] [Accepted: 12/10/2014] [Indexed: 11/27/2022]
|
34
|
Abdel Kawy HS. Low-dose carvedilol protects against acute septic renal injury in rats during the early and late phases. Can J Physiol Pharmacol 2015; 93:443-50. [PMID: 25928585 DOI: 10.1139/cjpp-2014-0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent findings from septic acute renal injury studies have implicated the mitochondrion as an important factor in kidney injury, and that increased sympathetic nerve activity may contribute to the induction of organ failure. This study investigated the impact of a nondepressor dose of carvedilol, which is a beta-adrenoreceptor antagonist with antioxidant activity, on septic renal injury induced in rats with cecal ligation and puncture (CLP). Three groups of rats were studied. The first group was the sham-operated control. The other 2 groups of rats underwent CLP, and were administered either the vehicle or carvedilol (2.0 mg/kg body mass, by intraperitoneal (i.p.) injection, daily for 2 days as well as 30 min prior to CLP). Kidney function, inflammatory parameters, mitochondrial function, and renal perfusion pressure (RPP) were investigated at 6 and 18 h after CLP. Carvedilol did not significantly induce hypotension, and it significantly improved RPP and renal dysfunction induced with CLP, together with significant reductions in serum levels of interleukin 6 and tumor necrosis factor-alpha. Septic kidney injury mediated increased levels of malondialdehyde and protein carbonyls. Carvedilol also attenuated the decrease in kidney mitochondrial glutathione and nicotinamide adenine dinucleotide phosphate dehydrogenase. Further, intracellular renal edema and inflammation induced with CLP were reduced with carvedilol. These findings suggest renoprotective effects of carvedilol in sepsis.
Collapse
Affiliation(s)
- Hala Salah Abdel Kawy
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Ramsis Street, Abbassia, Cairo, Egypt
| |
Collapse
|
35
|
|
36
|
Huang M, Zhang X, Chen S, Sun Y, Xiao Y, Sun J, Huang M, Chen S, Liu F. The effect of carvedilol treatment on chronic heart failure in pediatric patients with dilated cardiomyopathy: a prospective, randomized-controlled study. Pediatr Cardiol 2013; 34:680-5. [PMID: 23108482 DOI: 10.1007/s00246-012-0527-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/12/2012] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the clinical efficacy and safety of carvedilol for pediatric patients with chronic heart failure caused by dilated cardiomyopathy. Seven pediatric medical centers participated in this prospective study. Pediatric patients (n = 89) were randomly divided into an experimental group (carvedilol treatment) and a control group (conventional treatment). The analysis excluded 12 patients lost during the follow-up period. Carvedilol was added to the therapy of the experimental group after at least 1 month of basic treatment with digoxin, an angiotensin-converting-enzyme inhibitor, and diuretics. The control patients received the same basic treatment but did not receive carvedilol. The initial dose of carvedilol was 0.1 (mg/kg day), and the dose was doubled every 2 weeks until the maximum tolerated dose or 0.8 (mg/kg day) was achieved. The tolerated dose was maintained for 6 months. The Ross scales and echocardiographic parameters including left ventricular diastolic diameter, left ventricular systolic diameter, left ventricular ejection fraction, left ventricular fractional shortening, and serous brain natriuretic peptide (BNP) concentration, as well as clinical progress were compared between the two groups. The Ross scales decreased by 11.94% in the experimental group, which was more than in the control group (2.81%). In addition, changes to other echocardiographic parameters in the experimental group also were superior to those in the control group. The serous BNP concentration in the experimental group decreased by 30.1%, which also was more than the decrease (22.2%) observed in the control group. Clinical improvement was demonstrated by 40%, no change by 35%, and clinical deterioration by 25% of the patients in the experimental group, and by respectively 37.8, 27, and 35.2% of the patients in the control group. These differences were not statistically significant. Only one patient demonstrated a severe adverse event, severe pulmonary infection, and complete atrioventricular block. None of the other carvedilol-treated patients experienced drug-related side effects. Carvedilol can be safely used for treatment of chronic heart dysfunction in pediatric patients with dilated cardiomyopathy. The results in this study showed an apparent improvement in the cardiac function of these patients. Additional clinical studies are required to determine the most favorable dosing levels and regimens of carvedilol before its safety and efficacy for the pediatric population can be determined conclusively.
Collapse
Affiliation(s)
- Meirong Huang
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, 1678, Dongfang Road, Shanghai, 200127, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Carvedilol or Sustained-Release Metoprolol for Congestive Heart Failure: A Comparative Effectiveness Analysis. J Card Fail 2012. [DOI: 10.1016/j.cardfail.2012.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Kirkpatrick JN, St. John Sutton M. Assessment of Ventricular Remodeling in Heart Failure Clinical Trials. Curr Heart Fail Rep 2012; 9:328-36. [DOI: 10.1007/s11897-012-0116-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Bristow MR. Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 2011; 109:1176-94. [PMID: 22034480 DOI: 10.1161/circresaha.111.245092] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the absence of a systematic development plan, β-blockers have reached the top tier of medical therapies for chronic heart failure. The successful outcome was due to the many dedicated investigators who produced, over a 30-year period, increasing evidence that β-blocking agents should or actually did improve the natural history of dilated cardiomyopathies and heart failure. It took 20 years for supportive evidence to become undeniable, at which time in 1993 the formidable drug development resources of large pharmaceutical companies were deployed into Phase 3 trials. Success then came relatively quickly, and within 8 years multiple agents were on the market in the United States and Europe. Importantly, there is ample room to improve antiadrenergic therapy, through novel approaches exploiting the nuances of receptor biology and/or intracellular signaling, as well as through pharmacogenetic targeting.
Collapse
Affiliation(s)
- Michael R Bristow
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Dimopoulos S, Diakos N, Tseliou E, Tasoulis A, Mpouchla A, Manetos C, Katsaros L, Drakos S, Terrovitis J, Nanas S. Chronotropic incompetence and abnormal heart rate recovery early after left ventricular assist device implantation. Pacing Clin Electrophysiol 2011; 34:1607-1614. [PMID: 21950763 DOI: 10.1111/j.1540-8159.2011.03215.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronotropic response to exercise and heart rate recovery immediately after exercise (HRR(1) ) are valid prognostic markers in patients with chronic heart failure (CHF). The aim of this study was to evaluate heart rate profile during and after exercise in CHF patients early after left ventricular assist device (LVAD) implantation. METHODS We enrolled seven stable consecutive CHF patients (five males, mean age: 45 ± 16 years) after 1 month of LVAD (HeartMate II; Thoratec Corp, Pleasanton, CA, USA) implantation, seven healthy subjects, and 14 patients with advanced HF (HF control group) who performed an incremental symptom-limited cardiopulmonary exercise testing (CPET). CHF patients performed CPET at 1 and 3 months after LVAD. HRR(1) was defined as the HR difference from peak to 1 minute after exercise and chronotropic response to exercise as the chronotropic reserve ([CR, %]=[peak HR-resting HR/220-age-resting HR]× 100). RESULTS LVAD patients 3 months after implantation had a significantly different HR profile during exercise compared to healthy controls, with significantly lower CR (57 ± 31 vs 90 ± 14, %, P < 0.001) and HRR(1) (14 ± 6 vs 28 ± 8, bpm, P < 0.01). HR profile during exercise did not significantly change 1 and 3 months after LVAD implantation. There was no statistical difference compared to HF control group and LVAD group regarding cardiopulmonary parameters. CONCLUSIONS LVAD patients present an impaired CR and an abnormal HRR(1) after implantation, indicating significant cardiac autonomic abnormalities. These alterations seem to remain unaltered 3 months after LVAD implantation.
Collapse
Affiliation(s)
- Stavros Dimopoulos
- 1st Critical Care Medicine Department, Cardiopulmonary Exercise Testing and Rehabilitation Laboratory, National and Kapodestrian University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A) inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB(1/2) receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma-a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug-receptor interaction and has immense untapped therapeutic potential.
Collapse
|
42
|
Abstract
Increasing numbers of compounds, previously classified as antagonists, were shown to inhibit this spontaneous or constitutive receptor activity, instead of leave it unaffected as expected for a formal antagonist. In addition, some other antagonists did not have any effect by themselves, but prevented the inhibition of constitutive activity induced by thought-to-be antagonists. These thought-to-be antagonists with negative efficacy are now known as "inverse agonists." Inverse agonism at βAR has been evidenced for both subtypes in wild-type GPCRs systems and in engineered systems with high constitutive activity. It is important to mention that native systems are of particular importance for analyzing the in vivo relevance of constitutive activity because these systems have physiological expression levels of target receptors. Studies of inverse agonism of β blockers in physiological setting have also evidenced that pathophysiological conditions can affect pharmacodynamic properties of these ligands. To date, hundreds of clinically well-known drugs have been tested and classified for this property. Prominent examples include the beta-blockers propranolol, alprenolol, pindolol, and timolol used for treating hypertension, angina pectoris, and arrhythmia that act on the β₂ARs, metoprolol, and bisoprolol used for treating hypertension, coronary heart disease, and arrhythmias by acting on β₁ARs. Inverse agonists seem to be useful in the treatment of chronic disease characterized by harmful effects resulting from β₁AR and β₂AR overactivation, such as heart failure and asthma, respectively.
Collapse
Affiliation(s)
- Carlos A Taira
- Cátedra de Farmacología, Instituto de Fisiopatología y Bioquímica Clínica, Universidad de Buenos Aires, CONICET, Junín 956, Buenos Aires, Argentina
| | | | | |
Collapse
|
43
|
|
44
|
Subramanian U, Kamalesh M, Temkit M, Eckert GJ, Sawada S. Do Cardioselective β-Adrenoceptor Antagonists Reduce Mortality in Diabetic Patients with Congestive Heart Failure? Am J Cardiovasc Drugs 2009; 9:231-40. [DOI: 10.2165/1006180-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Abstract
Although β-blockers have been previously shown to effectively reduce blood pressure (BP) and have been used for hypertension treatment for over 40 years, their effect on cardiovascular morbidity and mortality in hypertensive patients remains controversial and its use in uncomplicated hypertension is currently under debate. However, data on the above field derive mainly from studies which were conducted with older agents, such as atenolol and metoprolol, while considerable pharamacokinetic and pharmacodynamic heterogeneity is present within the class of β-blockers. Carvedilol, a vasodilating non-cardioselective β-blocker, is a compound that seems to give the opportunity to the clinician to use a cardioprotective agent without the concerning hemodynamic and metabolic actions of traditional β-blocker therapy. In contrast with conventional β-blockers, carvedilol maintains cardiac output, has a less extended effect on heart rate and reduces BP by decreasing vascular resistance. Further, several studies has shown that carvedilol has a beneficial or at least neutral effect on metabolic parameters, such as glycemic control, insulin sensitivity, and lipid metabolism, suggesting that they could be used in subjects with the metabolic syndrome or diabetes without negative consequences. This article summarizes the distinct pharmacologic, hemodynamic, and metabolic properties of carvedilol in relation to conventional β-blockers, attempting to examine the potential use of this agent for hypertension treatment.
Collapse
Affiliation(s)
- Panagiotis C Stafylas
- 1st Department of Medicine, AHEPA University Hospital, Aristotle University, Thessaloniki, Greece
| | | |
Collapse
|
46
|
Carvedilol increases blood pressure response to phenylephrine infusion in heart failure subjects with systolic dysfunction: evidence of improved vascular alpha1-adrenoreceptor signal transduction. Am Heart J 2008; 156:315-21. [PMID: 18657662 DOI: 10.1016/j.ahj.2008.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/01/2008] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Alpha(1)-adrenergic receptor (alpha(1)-AR) stimulation produces smooth muscle contraction, vasoconstriction, and myocyte hypertrophy, suggesting a potential therapeutic role for alpha(1)-AR antagonists to reduce cardiac workload and myocardial hypertrophy. Preliminary reports suggest that vascular alpha(1)-ARs are desensitized in heart failure (HF) in a manner similar to myocardial beta(1)-ARs. We examined alpha(1)-AR signal transduction by repeat phenylephrine (PE) infusions in patients with HF receiving chronic carvedilol therapy. METHODS Twelve subjects with HF not currently receiving beta-blockers were up-titrated to maximum tolerable doses of carvedilol. Subjects underwent alpha(1)-AR stimulation testing at study baseline, 2 weeks after each dose titration, and 6 months after maintenance of maximum carvedilol dose. Phenylephrine infusions began at 0.5 microg kg(-1) min(-1), with dose titrations every 10 minutes, to a maximum of 5 microg kg(-1) min(-1). Phenylephrine dose response was evaluated by the PE rate required to elicit a 20 mm Hg increase in systolic blood pressure (BP), designated PS(20). RESULTS All doses of carvedilol significantly reduced preinfusion measures of heart rate, systolic BP, diastolic BP, and mean arterial pressure. However, carvedilol also produced a paradoxical trend toward PS(20) reduction (indicating increased PE response) that reached significance at the completion of carvedilol dose titration (PS(20) ratio vs baseline = 0.78; P < .001). All effects were maintained over a 6-month treatment period with no evidence of tolerance. CONCLUSIONS Increasing BP response to PE infusion suggests improvement in vascular alpha(1)-AR signal transduction with chronic carvedilol therapy. This effect is evident despite no detectable tolerance to preinfusion BP reductions. The varying affinities of alpha(1)-AR subtypes for carvedilol and PE may have contributed to this finding.
Collapse
|
47
|
Do beta-blockers combined with RAS inhibitors make sense after all to protect against renal injury? Curr Hypertens Rep 2008; 9:409-14. [PMID: 18177589 DOI: 10.1007/s11906-007-0075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In chronic kidney disease (CKD) sympathetic overactivity is stimulated by signals from the diseased kidney activating hypothalamic centers. In addition, breakdown of circulating catecholamines is decreased. Indications for beta-blockers are cardio- and renoprotection. Cardioprotection is important because cardiovascular (CV) death is two- to 20-fold more likely in CKD than end-stage kidney disease; consequently, beta-blockers, with their adverse effect on CV risk profile, should be avoided. Controlled prospective evidence for renoprotection by beta-blockers in nondiabetic CKD with hard end points is lacking, but renoprotection by antihypertensive agents was first documented by administering beta-blockers in patients with diabetic nephropathy. Renoprotection by beta-blockers was seen experimentally. Furthermore, controlled studies documented a beneficial effect on albuminuria as a surrogate marker for renoprotection in diabetic and nondiabetic patients. Renin-angiotensin system blockade is the undoubted first-line treatment in CKD. Several points argue for ancillary treatment with beta-blockers: in CKD often four or more different antihypertensive drugs are required and cardiac indications are frequent.
Collapse
|
48
|
Maack C, Elter T, Böhm M. Beta-Blocker Treatment of Chronic Heart Failure: Comparison of Carvedilol and Metoprolol. ACTA ACUST UNITED AC 2007; 9:263-70. [PMID: 14564145 DOI: 10.1111/j.1527-5299.2003.01446.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Beta blockers have been shown to prolong survival in chronic heart failure. It is currently a matter of debate whether any beta blocker is superior to the other in terms of improving symptoms, left ventricular function, or prognosis. A number of comparative studies have been performed with metoprolol, a beta1-selective second-generation beta blocker, and carvedilol, a nonselective and vasodilatative third-generation beta blocker. This review will focus on the different pharmacological profiles of carvedilol and metoprolol as well as on the clinical consequences derived from these differences. The results indicate that in some studies carvedilol is superior to metoprolol in improving left ventricular ejection fraction. However, because there is no conclusive evidence that carvedilol is superior to metoprolol in terms of prognosis, it is not justified to substitute metoprolol with carvedilol. Comparative data on mortality reduction are not available before termination of the Carvedilol or Metoprolol European Trial. Nevertheless, the different effects of both beta blockers on the beta-adrenergic system have an impact on tolerability and beta-adrenergic responsiveness and thus exercise tolerance in heart-failure patients.
Collapse
Affiliation(s)
- Christoph Maack
- Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Mary Ann Lukas
- Cardiovascular Medicine Development Centre, GlaxoSmithKline, Philadelphia, PA 19102, USA.
| |
Collapse
|
50
|
Sica DA. ?-Blockers in Hypertension: A Reassessment of the Benefit of Combined ?-/?-Blockade. J Clin Hypertens (Greenwich) 2007. [DOI: 10.1111/j.1524-6175.2007.06623.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|