1
|
Caller T, Moore KJ, Lehmann LH, Wu SM, Leor J. Insights Into Heart-Tumor Interactions in Heart Failure. Circ Res 2025; 136:1262-1285. [PMID: 40403117 DOI: 10.1161/circresaha.124.325490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 05/24/2025]
Abstract
Heart failure (HF) often coexists with cancer. Beyond the known cardiotoxicity of some cancer treatments, HF itself has been associated with increased cancer incidence. The 2 conditions share common risk factors, mechanisms, and interactions that can worsen patient outcomes. The bidirectional relationship between HF and cancer presents a complex interplay of factors that are not fully understood. Recent preclinical evidence suggests that HF may promote tumor growth via the release of protumorigenic factors from the injured heart, revealing HF as a potentially protumorigenic condition. Our review discusses the biological crosstalk between HF and cancer, emphasizing the impact of HF on tumor growth, with inflammation, and modulating the immune system as central mechanisms. We further explore the clinical implications of this connection and propose future research directions. Understanding the mechanistic overlap and interactions between HF and cancer could lead to new biomarkers and therapies, addressing the growing prevalence of both conditions and enhancing approaches to diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| | - Kathryn J Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine (K.J.M.)
| | - Lorenz H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Germany (L.H.L.)
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg/Mannheim, Germany (L.H.L.)
- German Cancer Research Center (DKFZ), Heidelberg, Germany (L.H.L.)
| | - Sean M Wu
- Stanford Cardiovascular Institute (S.M.W.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), Stanford University School of Medicine, CA
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| |
Collapse
|
2
|
Standl E, Schnell O. Increased Risk of Cancer-An Integral Component of the Cardio-Renal-Metabolic Disease Cluster and Its Management. Cells 2025; 14:564. [PMID: 40277890 PMCID: PMC12025391 DOI: 10.3390/cells14080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
Cancer risk increases by 25 to 250% not only in dysmetabolic obese or overweight people with overt type 2 diabetes but also in individuals with intermediate hyperglycemia (pre-diabetes), with especially pronounced risk of pancreatic or hepatocellular cancer and obesity-related cancers, e.g., colorectal and kidney cancers, bladder cancer in men, and endometrial and breast cancers in women. Cancer may often be present before or upon the diagnosis of diabetes, as there is a common pathogenetic dysmetabolic-inflammatory background with insulin resistance for developing diabetes, cardiorenal disease, and cancer in parallel. The mechanisms involved relate to hyperinsulinemia as a potential carcinogenic priming event with ectopic visceral, hepatic, pancreatic, or renal fat accumulation that subsequently fuel inflammation and lipo-oncogenic signals, causing mitochondrial oxidative stress and deregulation. Moreover, hyperinsulinemia may foster mitogenic MAP kinase-related signaling, which can also occur via IGF1 receptors due to increased free IGF1 levels in obesity. Weight reduction of 10% or more in obese people with diabetes or pre-diabetes, e.g., through intensive lifestyle intervention or bariatric (=metabolic) surgery or through treatment with GLP-1 receptor agonists or metformin, is associated with significantly lower incidence of "diabesity"-associated cancers. In conclusion, there seems to be huge utility in adopting the new "Cardio-Renal-Metabolic-Cancer Syndrome" approach, also looking for cancer at the time of diabetes diagnosis in addition to proactively screening for undiagnosed dysglycemia.
Collapse
Affiliation(s)
- Eberhard Standl
- Forschergruppe Diabetes e.V. at Helmholtz Center Munich, Ingolstaedter Landstraße 1, Neuherberg, 85764 Munich, Germany
| | | |
Collapse
|
3
|
Yi Z, Li X, He X, Liu J, Zhu J, Li S. Management and Experiences in Diagnosing and Treating Acute Heart Failure in Children with Solid Tumors. Cardiovasc Toxicol 2025; 25:582-591. [PMID: 40021567 DOI: 10.1007/s12012-025-09981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Acute heart failure is a critical and life-threatening complication that occurs during the treatment of solid tumors in children. It has a high mortality rate, poses treatment challenges, and also affects the overall prognosis of tumor treatment. Currently, there are limited clinical diagnostic and treatment data in this area. To understand the characteristics and outcomes of acute heart failure in children with solid tumors during the treatment process, share treatment experiences, and provide management strategies for monitoring, treatment, and prevention. Five representative cases of children with solid tumors were selected to summarize the clinical features, auxiliary examination data, individualized treatment plans, and treatment effects during the occurrence of acute heart failure. The possible triggers and time points for the onset of acute heart failure in children with solid tumors were analyzed, along with treatment responses and influencing factors. All five cases of children with solid tumors exhibited symptoms of acute heart failure after chemotherapy, with heart functions staging from class II to class IV. Most cases occurred during the bone marrow suppression period after chemotherapy, with a noticeable increase in heart rate during the early stages of heart failure. Those using anthracycline drugs did not reach the internationally recommended maximum cumulative dose. Two children with heart function class IV altered their tumor treatment plans to completion, and one child with heart function class IV and concurrent renal dysfunction had chemotherapy interrupted. All children received oral anti-heart failure treatment and nutritional myocardial therapy. Two children with heart function class II returned to normal after oral medication; three children with heart function class IV received intravenous vasoactive agents during the acute phase of heart failure, followed by regular reinforcement in the later stage. The heart function improved in all three cases (heart function class IV), with one case returning to normal, one case with slow recovery in non-compaction cardiomyopathy gradually approaching normalcy, and one case with only mild improvement in heart function despite concurrent renal dysfunction. Children with solid tumors are susceptible to acute heart failure during the bone marrow suppression period and an increased heart rate serves as an early warning signal. Active anti-heart failure treatment is effective. For severe cases, regular intravenous administration of vasoactive agents during the maintenance period can promote the recovery of heart function, with renal dysfunction emerging as a significant factor influencing poor recovery of heart function.
Collapse
Affiliation(s)
- Zizheng Yi
- Department of Pediatric Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Guangzhou, 510080, People's Republic of China
| | - Xuandi Li
- Department of Pediatric Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Guangzhou, 510080, People's Republic of China
| | - Xiufang He
- Department of Pediatric Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Guangzhou, 510080, People's Republic of China
| | - Juncheng Liu
- Department of of Pediatric Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shujuan Li
- Department of Pediatric Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
4
|
Camilli M, Maggio L, Tinti L, Torre I, Viscovo M, Viscovo M, Tamburrini G, Lombardo A, Cardinale DM, Minotti G, Rocca B. Cardio-oncology: Emerging Concepts in Cardiovascular Sequelae of Cancer Therapies, Translational Research and Reverse Cardio-oncology. Eur Cardiol 2025; 20:e05. [PMID: 40170756 PMCID: PMC11959581 DOI: 10.15420/ecr.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 04/03/2025] Open
Abstract
Cardio-oncology was established with the aim of defining primary and secondary prevention approaches through surveillance and the use of tools to stratify and diminish the cardiovascular risk to cancer patients. This branch of medicine also contributes to establishing a new field in translational medicine for cardiovascular disease by focusing on the interplay between cancer and heart disease. In this first article in the new cardio-oncology section of the journal, we explore the main concepts of emerging anti-cancer therapies and their plausible cardiotoxic effects and we will describe advances and gaps in knowledge, highlighting how cardio-oncology is contributing to translational cardiology. We will speculate on the complex interplay between cancer and heart failure and discuss an emerging concept known as reverse cardio-oncology. We also present the perspective that cardio-oncology represents a promising platform area of research, allowing the discovery of novel pathways involved in cardiovascular disease through the identification of toxicities induced by targeted cancer therapies.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | - Luca Maggio
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Ilaria Torre
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Marcello Viscovo
- Department of Laboratory and Hematology Sciences, Fondazione Policlinico Universitario A Gemelli IRCCSRome, Italy
- Department of Radiology and Hematology Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Marcello Viscovo
- Department of Laboratory and Hematology Sciences, Fondazione Policlinico Universitario A Gemelli IRCCSRome, Italy
- Department of Radiology and Hematology Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Giulia Tamburrini
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | | | - Giorgio Minotti
- Unit of Drug Sciences, Fondazione Policlinico Universitario Campus Bio-MedicoRome, Italy
| | - Bianca Rocca
- Department of Medicine and Surgery, Libera Università MediterraneaBari, Italy
- Department of Safety and Bioethics, Università Cattolica del Sacro CuoreRome, Italy
| |
Collapse
|
5
|
Bhalraam U, Veerni RB, Paddock S, Meng J, Piepoli M, López-Fernández T, Tsampasian V, Vassiliou VS. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure outcomes in cancer patients and survivors: a systematic review and meta-analysis. Eur J Prev Cardiol 2025:zwaf026. [PMID: 40044419 DOI: 10.1093/eurjpc/zwaf026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
AIMS Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are recognized for their cardiovascular benefits. This systematic review and meta-analysis evaluated the impact of SGLT2i on heart failure (HF) outcomes in cancer patients and survivors, focusing on HF hospitalization and new HF diagnoses. METHODS AND RESULTS A comprehensive search of PubMed, MEDLINE, and Embase via Ovid, and the Cochrane Library was conducted up to 5 June 2024, focusing on studies involving cancer patients and survivors treated with SGLT2i. The search criterion used was [(SGLT2) OR (Sodium glucose cotransporter 2 inhibitors) OR (canagliflozin) OR (dapagliflozin) OR (empagliflozin) OR (ertugliflozin) AND (cancer)]. The primary outcomes assessed were HF hospitalization and new HF diagnoses. The search yielded 1880 studies, from which 13 studies encompassing 88 273 patients were included. SGLT2i use reduced HF hospitalizations by 51% (RR 0.49, 95% CI 0.36-0.66, I² = 28%, P < 0.01) and new HF diagnoses by 71% (RR 0.29, 95% CI 0.10-0.87, I² = 71%). Multi-variate meta-regression analysis suggested that among breast cancer populations, studies with ≥50% of patients on anthracyclines exhibited a 99% reduction in HF hospitalization risk compared with similar studies that included <50% of patients on anthracyclines (RR 0.0085, 95% CI: 0.0001-0.2645, P = 0.0081). CONCLUSION SGLT2i significantly lower the risk of HF hospitalization and new HF diagnoses among cancer patients and survivors, with particularly pronounced benefits in breast cancer patients receiving anthracycline-based chemotherapy. These findings support the need for prospective trials to further investigate the integration of SGLT2i into cancer patient management to enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- U Bhalraam
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Rathna B Veerni
- Department of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Sophie Paddock
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - James Meng
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Massimo Piepoli
- University Cardiology Department, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Teresa López-Fernández
- Cardiology Department, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
- Cardiology Department, Quiron Pozuelo University Hospital, Madrid, Spain
| | - Vasiliki Tsampasian
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Vassilios S Vassiliou
- Department of Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
6
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
7
|
Takechi F, Kawasoe Y, Tateno S, Ebata R, Hamada H, Niwa K. Risk of malignancy in adult patients with congenital heart disease: a clinical practice review. Cardiovasc Diagn Ther 2025; 15:195-206. [PMID: 40115083 PMCID: PMC11921439 DOI: 10.21037/cdt-24-388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 03/23/2025]
Abstract
This paper presents case studies of adult patients with congenital heart disease (CHD) who developed cancer and also discusses relevant epidemiological studies, risk factors, and reports on early detection. Herein, we describe three cases: a 63-year-old man with an atrial septal defect and multiple myeloma; a 48-year-old man with tetralogy of Fallot and colorectal cancer; and a 25-year-old man with Fontan circulation and hepatocellular carcinoma (HCC). Previous studies have found that the incidence of cancer in adult patients with CHD is higher than that in the general population. The management of adult patients with CHD complicated by cancer requires careful attention because cancer treatment alone can affect the survival prognosis and quality of life, as well as the pathophysiology and treatment of underlying heart disease. Apart from known risk factors in the non-CHD population, specific risk factors have been reported, such as genetic abnormalities, low-dose ionizing radiation exposure, early thymectomy, Fontan-associated liver disease, and hypoxia. Encouraging patients to participate in cancer screening and avoid known risk factors is essential in daily practice for the early diagnosis and prevention of cancer. It is also important to be vigilant for initial signs that are indicative of cancer as well as avoidable risk factors.
Collapse
Affiliation(s)
- Fumie Takechi
- Department of Pediatrics, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Section of Adult Congenital Heart Disease, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Yasutaka Kawasoe
- Section of Adult Congenital Heart Disease, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Shigeru Tateno
- Section of Adult Congenital Heart Disease, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Ryota Ebata
- Department of Pediatrics, Chiba Kaihin Municipal Hospital, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Koichiro Niwa
- Department of Cardiology, Cardiovascular Center, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Sayour NV, Kucsera D, Alhaddad AR, Tóth VÉ, Gergely TG, Kovács T, Hegedűs ZI, Jakab ME, Ferdinandy P, Varga ZV. Effects of sex and obesity on immune checkpoint inhibition-related cardiac systolic dysfunction in aged mice. Basic Res Cardiol 2025; 120:207-223. [PMID: 39516409 PMCID: PMC11790738 DOI: 10.1007/s00395-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Despite accumulating data on underlying mechanisms, the influence of sex and prevalent cardio-metabolic co-morbidities on the manifestation and severity of immune checkpoint inhibitor (ICI)-induced cardiotoxicity has not been well defined. To elucidate whether sex and prevalent cardio-metabolic co-morbidities affect ICI-induced cardiotoxicity, we randomized 17-month-old male and female mice to receive control diet (CON) or high-fat diet (HFD) + L-NAME-a well-established mouse model of cardio-metabolic co-morbidities-for 17 weeks (n = 5-7), and evaluated markers of T-cell function in the spleen. As expected, HFD + L-NAME significantly increased body- and heart weight, and serum cholesterol levels, and caused no systolic dysfunction, however, led to diastolic dysfunction, cardiomyocyte hypertrophy, and increased fibrosis only in males compared to corresponding CON. Western blot analyses of splenic immune checkpoint protein levels showed differential expression depending on sex and prevalent cardio-metabolic co-morbidities, suggesting T-cell exhaustion in both sexes on HFD + L-NAME, but more pronounced in males. In a sub-study with a similar setup, we tested cardiotoxic manifestations of ICI by treating mice with anti-PD-1 monoclonal antibody (ICI) for the last 2 weeks of diet administration (n = 5-7). After 2 weeks of ICI treatment, cardiac systolic functions significantly decreased in CON, but not in HFD + L-NAME groups of both sexes compared to baseline (before ICI administration). In conclusion, in this exploratory study using aged mice, we describe for the first time that ICI-related systolic dysfunction is diminished in both sexes when obesity and hypercholesterolemia are present, possibly due to obesity-related T-cell exhaustion.
Collapse
Affiliation(s)
- Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Ayham R Alhaddad
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Viktória É Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsombor I Hegedűs
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Márk E Jakab
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
- HCEMM-SE Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Gergely TG, Drobni ZD, Sayour NV, Ferdinandy P, Varga ZV. Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. Basic Res Cardiol 2025; 120:187-205. [PMID: 39023770 PMCID: PMC11790702 DOI: 10.1007/s00395-024-01068-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.
Collapse
Affiliation(s)
- Tamás G Gergely
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
10
|
Sayour NV, Gergely TG, Váradi B, Tóth VÉ, Ágg B, Kovács T, Kucsera D, Kovácsházi C, Brenner GB, Giricz Z, Ferdinandy P, Varga ZV. Comparison of mouse models of heart failure with reduced ejection fraction. ESC Heart Fail 2025; 12:87-100. [PMID: 39243187 PMCID: PMC11769617 DOI: 10.1002/ehf2.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) is a leading cause of death worldwide; thus, therapeutic improvements are needed. In vivo preclinical models are essential to identify molecular drug targets for future therapies. Transverse aortic constriction (TAC) is a well-established model of HFrEF; however, highly experienced personnel are needed for the surgery, and several weeks of follow-up are necessary to develop HFrEF. To this end, we aimed (i) to develop an easy-to-perform mouse model of HFrEF by treating Balb/c mice with angiotensin-II (Ang-II) for 2 weeks by minipump and (ii) to compare its cardiac phenotype and transcriptome to the well-established TAC model of HFrEF in C57BL/6J mice. METHODS Mortality and gross pathological data, cardiac structural and functional characteristics assessed by echocardiography and immunohistochemistry and differential gene expression obtained by RNA-sequencing and gene-ontology analyses were used to characterize and compare the two models. To achieve statistical comparability between the two models, changes in treatment groups related to the corresponding control were compared (ΔTAC vs. ΔAng-II). RESULTS Compared with the well-established TAC model, chronic Ang-II treatment of Balb/c mice shares similarities in cardiac systolic functional decline (left ventricular ejection fraction: -57.25 ± 7.17% vs. -43.68 ± 5.31% in ΔTAC vs. ΔAng-II; P = 0.1794) but shows a lesser degree of left ventricular dilation (left ventricular end-systolic volume: 190.81 ± 44.13 vs. 57.37 ± 10.18 mL in ΔTAC vs. ΔAng-II; P = 0.0252) and hypertrophy (cell surface area: 58.44 ± 6.1 vs. 10.24 ± 2.87 μm2 in ΔTAC vs. ΔAng-II; P < 0.001); nevertheless, transcriptomic changes in the two HFrEF models show strong correlation (Spearman's r = 0.727; P < 0.001). In return, Ang-II treatment in Balb/c mice needs significantly less procedural time [38 min, interquartile range (IQR): 31-46 min in TAC vs. 6 min, IQR: 6-7 min in Ang-II; P < 0.001] and surgical expertise, is less of an object for peri-procedural mortality (15.8% in TAC vs. 0% in Ang-II; P = 0.105) and needs significantly shorter follow-up for developing HFrEF. CONCLUSIONS Here, we demonstrate for the first time that chronic Ang-II treatment of Balb/c mice is also a relevant, reliable but significantly easier-to-perform preclinical model to identify novel pathomechanisms and targets in future HFrEF research.
Collapse
Affiliation(s)
- Nabil V. Sayour
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| | - Tamás G. Gergely
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| | - Barnabás Váradi
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
| | - Viktória É. Tóth
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| | - Bence Ágg
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
- HUN‐REN–SU System Pharmacology Research Group, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Tamás Kovács
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| | - Dániel Kucsera
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| | - Csenger Kovácsházi
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Gábor B. Brenner
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Zoltán Giricz
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Péter Ferdinandy
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
- HUN‐REN–SU System Pharmacology Research Group, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Zoltán V. Varga
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- HCEMM‐SU Cardiometabolic Immunology Research GroupBudapestHungary
- MTA‐SE Momentum Cardio‐Oncology and Cardioimmunology Research GroupBudapestHungary
| |
Collapse
|
11
|
Ran Q, Chen L. Eniluracil blocks AREG signalling-induced pro-inflammatory fibroblasts of melanoma in heart failure. ESC Heart Fail 2025; 12:525-541. [PMID: 39364781 PMCID: PMC11769635 DOI: 10.1002/ehf2.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
AIMS Heart failure (HF) is characterized by a heightened risk of melanoma, which often metastasizes to the heart. The overlap pathology between HF and melanoma includes chronic low-grade inflammation and dysregulation of inflammatory cancer-associated fibroblasts (iCAFs). The impact of HF on iCAF-driven tumour inflammation remains obscure. METHODS AND RESULTS To identify critical genes for HF development, transcriptomic data (GSE57338) containing 313 clinical HF samples [136 healthy controls, 95 ischaemia (ISCH) and 82 dilated cardiomyopathy (DCM)] were analysed to screen differentially expressed genes (DEGs) and perform enrichment analysis. Fifty-one DEGs in ISCH and 62 DEGs in DCM were identified with log2|fold change (FC)| ≥ 1 and P value ≤0.05. All these genes are involved in extracellular matrix organization, immune/inflammatory responses and Wnt signalling pathways. Then, the overall survival curves and prognostic models of DEGs in melanoma were evaluated. The correlation of gene expression with lymphocyte infiltration levels was assessed. Only aldehyde oxidase 1 (AOX1) and amphiregulin (AREG) maintained the same trend in melanoma as in HF, negatively affecting prognosis by regulating lymphocyte infiltration (log-rank P value = 0.0017 and 0.0019). The potential drug molecules were screened, and the binding energies were calculated via molecular docking. Eniluracil, a known AOX1 targeting drug, was found to stably bind with AREG (hydrogen bond binding energies: -65.633, -63.592 and -62.813 kcal/mol). CONCLUSIONS The increased prevalence of melanoma in HF patients and its propensity for cardiac metastasis may be due to AREG-mediated systemic low-grade inflammation. Eniluracil holds promise as a therapeutic agent that may block AREG signalling, inhibiting the activation of iCAF mediated by regulatory T cell (Treg) and neutrophil.
Collapse
Affiliation(s)
- Qin Ran
- Chengdu Seventh People's HospitalChengduSichuanChina
| | - Long Chen
- Department of Immunology, School of Basic Medical SciencesChengdu Medical CollegeChengduSichuanChina
- Non‐Coding RNA and Drug Discovery Key Laboratory of Sichuan ProvinceChengdu Medical CollegeChengduSichuanChina
| |
Collapse
|
12
|
Efentakis P, Choustoulaki A, Kwiatkowski G, Varela A, Kostopoulos IV, Tsekenis G, Ntanasis-Stathopoulos I, Georgoulis A, Vorgias CE, Gakiopoulou H, Briasoulis A, Davos CH, Kostomitsopoulos N, Tsitsilonis O, Dimopoulos MA, Terpos E, Chłopicki S, Gavriatopoulou M, Andreadou I. Early microvascular coronary endothelial dysfunction precedes pembrolizumab-induced cardiotoxicity. Preventive role of high dose of atorvastatin. Basic Res Cardiol 2025; 120:263-286. [PMID: 38520533 PMCID: PMC11790778 DOI: 10.1007/s00395-024-01046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.
Collapse
MESH Headings
- Animals
- Atorvastatin/administration & dosage
- Atorvastatin/pharmacology
- Mice, Inbred C57BL
- Humans
- Male
- Cardiotoxicity/prevention & control
- Antibodies, Monoclonal, Humanized/toxicity
- Mice
- Immune Checkpoint Inhibitors/toxicity
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/physiopathology
- Coronary Vessels/metabolism
- Disease Models, Animal
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Antineoplastic Agents, Immunological/toxicity
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Angeliki Choustoulaki
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aimilia Varela
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis V Kostopoulos
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsekenis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ourania Tsitsilonis
- Flow Cytometry Unit, Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
- Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
13
|
Miao X, Zhang J, Huang W, Wang Y, Jin A, Cao J, Zhao Z. Research Progress of SGLT2 Inhibitors in Cancer Treatment. Drug Des Devel Ther 2025; 19:505-514. [PMID: 39872633 PMCID: PMC11771169 DOI: 10.2147/dddt.s485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine. Recent studies have identified SGLT2 expression in various cancer types, suggesting that SGLT2 inhibition can potentially suppress tumor growth. This article provides a comprehensive review of the role of SGLT2 in tumorigenesis and tumor progression, and explores the underlying mechanisms and potential therapeutic applications of SGLT2 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianing Zhang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Weiyan Huang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Aixia Jin
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhenzhen Zhao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Fender J, Klöcker J, Boivin-Jahns V, Ravens U, Jahns R, Lorenz K. "Cardiac glycosides"-quo vaditis?-past, present, and future? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9521-9531. [PMID: 39007928 PMCID: PMC11582269 DOI: 10.1007/s00210-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Up to date, digitalis glycosides, also known as "cardiac glycosides", are inhibitors of the Na+/K+-ATPase. They have a long-standing history as drugs used in patients suffering from heart failure and atrial fibrillation despite their well-known narrow therapeutic range and the intensive discussions on their raison d'être for these indications. This article will review the history and key findings in basic and clinical research as well as potentially overseen pros and cons of these drugs.
Collapse
Affiliation(s)
- Julia Fender
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Johanna Klöcker
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Valérie Boivin-Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, Elsässer Straße 2Q, 79110, Freiburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biological Materials and Data Würzburg (ibdw), University Hospital Würzburg, Straubmühlweg 2a, 97078, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany.
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany.
| |
Collapse
|
15
|
Seuthe K, Picard FSR, Winkels H, Pfister R. Cancer Development and Progression in Patients with Heart Failure. Curr Heart Fail Rep 2024; 21:515-529. [PMID: 39340596 PMCID: PMC11511767 DOI: 10.1007/s11897-024-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW The co-occurrence of heart failure (HF) and cancer represents a complex and multifaceted medical challenge. Patients with prevalent cardiovascular disease (CVD), particularly HF, exhibit an increased risk of cancer development, raising questions about the intricate interplay between these two prevalent conditions. This review aims to explore the evolving landscape of cancer development in patients with HF, shedding light on potential mechanisms, risk factors, and clinical implications. RECENT FINDINGS Epidemiological data suggests higher cancer incidences and higher cancer mortality in HF patients, which are potentially more common in patients with HF with preserved ejection fraction due to related comorbidities. Moreover, recent preclinical data identified novel pathways and mediators including the protein SerpinA3 as potential drivers of cancer progression in HF patients, suggesting HF as an individual risk factor for cancer development. The review emphasizes preliminary evidence supporting cancer development in patients with HF, which offers several important clinical interventions such as cancer screening in HF patients, prevention addressing both HF and cancer, and molecular targets to treat cancer. However, there is need for more detailed understanding of molecular and cellular cross-talk between cancer and HF which can be derived from prospective assessments of cancer-related outcomes in CV trials and preclinical research of molecular mechanisms.
Collapse
Affiliation(s)
- Katharina Seuthe
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Felix Simon Ruben Picard
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
16
|
Ren Y, Anderson AT, Meyer G, Lauber KM, Gallucci JC, Douglas Kinghorn A. Digoxin and its Na +/K +-ATPase-targeted actions on cardiovascular diseases and cancer. Bioorg Med Chem 2024; 114:117939. [PMID: 39396465 PMCID: PMC11527570 DOI: 10.1016/j.bmc.2024.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Na+/K+-ATPase (NKA) is a plasma membrane ion-transporting protein involved in the generation and maintenance of Na+ and K+ gradients across the cell membrane, which can produce a driving force for the secondary transport of metabolic substrates. NKA also regulates intracellular calcium that is responsible for modulating numerous cellular processes, while it interacts with many other proteins and functions as a signal transducer, with several signaling pathways being involved. Thus, NKA has become an important target for the treatment of human diseases. Cardiac glycosides are well-known NKA inhibitors, of which (+)-digoxin or digoxin has been long used for the treatment of congestive heart failure. Also, digoxin has exhibited potential antitumor activity, by targeting directly HIF-1α, NKA, and NF-κB. Thus, the function of NKA in human cardiovascular diseases and cancer and the therapeutic effects of digoxin on these diseases are summarized in the present review, with the correlations among digoxin, NKA, cardiovascular diseases, and cancer being discussed. Presented herein are also the antitumor potential of monosaccharide cardiac glycoside analogues of digoxin, including (-)-cryptanoside A, (-)-oleandrin, (-)-ouabain, and (+)-strebloside. It is hoped that this contribution will provide some helpful information for the design and discovery of new cardiac glycoside-type therapeutic agents for the treatment of cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Andrew T Anderson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Kaitlyn M Lauber
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
17
|
Dobrev D, Rocca B, Kaski JC. The ESC Working Group on cardiovascular pharmacotherapy: continuity through transformation. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:571. [PMID: 39349995 DOI: 10.1093/ehjcvp/pvae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen 45122, Germany
| | - Bianca Rocca
- Department of Medicine and Surgery, LUM University, Casamassima, Bari 70010, Italy
| | | |
Collapse
|
18
|
Han H, Cai X, Liu X. Using multi-omics to explore the genetic causal relationship between colorectal cancer and heart failure in gastrointestinal tumors. Front Immunol 2024; 15:1454021. [PMID: 39346905 PMCID: PMC11427256 DOI: 10.3389/fimmu.2024.1454021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Heart failure (HF) and colorectal cancer are significant public health concerns with substantial morbidity and mortality. Previous studies have indicated a close association between HF and various tumors, including colorectal cancer. Further understanding the potential causal relationship between them could provide insights into their shared pathophysiological mechanisms and inform strategies for prevention and treatment. Methods This study employed a bidirectional Mendelian randomization (MR) approach using genetic variants from large genome-wide association studies (GWAS) as instrumental variables (IVs). The inverse-variance weighted (IVW) method was employed for the MR analysis. Meta-analyses of IVW results from discovery and validation cohorts were performed to enhance the power of detecting causal effects. Sensitivity analyses, including heterogeneity analysis and tests for horizontal pleiotropy, were conducted to test the robustness of the conclusions. Results Results from the discovery cohort suggest HF is associated with an approximately 30% increased risk of colorectal cancer (OR 1.32, 95% CI 1.03-1.69, P=0.025), although this finding did not reach statistical significance in the validation cohort (OR 1.19, 95% CI 0.97-1.46, P=0.090). However, meta-analysis supports HF as a potential risk factor for colorectal cancer (Pooled OR 1.24, 95% CI 1.06-1.25, P=0.007). Reverse MR analysis found no evidence of colorectal cancer increasing HF risk (Pooled OR 1.03, 95% CI 0.99-1.07, P=0.121). Sensitivity analyses (all P>0.05) indicate robustness against heterogeneity and horizontal pleiotropy. Conclusion This comprehensive bidirectional MR study provides genetic evidence supporting a causal link between HF and colorectal cancer. The insights gained enhance understanding of their interconnectedness and may guide future research and clinical practices aimed at mitigating their risks through targeted interventions.
Collapse
Affiliation(s)
- Hongjing Han
- Section 2 of General Surgery Department, The Second People’s Hospital of
Jingdezhen, Jingdezhen, China
| | - Xuefang Cai
- Hemodialysis Department, The Second People’s Hospital of
Jingdezhen, Jingdezhen, China
| | - Xiangling Liu
- Section 2 of General Surgery Department, The Second People’s Hospital of
Jingdezhen, Jingdezhen, China
| |
Collapse
|
19
|
Hao X, Zhang Z, Kong J, Ma R, Mao C, Peng X, Ru K, Liu L, Zhao C, Mo X, Cai M, Yu X, Lin Q. Hypothesis paper: GDF15 demonstrated promising potential in Cancer diagnosis and correlated with cardiac biomarkers. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:56. [PMID: 39232830 PMCID: PMC11373216 DOI: 10.1186/s40959-024-00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Cardiovascular toxicity represents a significant adverse consequence of cancer therapies, yet there remains a paucity of effective biomarkers for its timely monitoring and diagnosis. To give a first evidence able to elucidate the role of Growth Differentiation Factor 15 (GDF15) in the context of cancer diagnosis and its specific association with cardiac indicators in cancer patients, thereby testing its potential in predicting the risk of CTRCD (cancer therapy related cardiac dysfunction). METHODS Analysis of differentially expressed genes (DEGs), including GDF15, was performed by utilizing data from the public repositories of the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Cardiomyopathy is the most common heart disease and its main clinical manifestations, such as heart failure and arrhythmia, are similar to those of CTRCD. Examination of GDF15 expression was conducted in various normal and cancerous tissues or sera, using available database and serum samples. The study further explored the correlation between GDF15 expression and the combined detection of cardiac troponin-T (c-TnT) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP), assessing the combined diagnostic utility of these markers in predicting risk of CTRCD through longitudinal electrocardiograms (ECG). RESULTS GDF15 emerged as a significant DEG in both cancer and cardiomyopathy disease models, demonstrating good diagnostic efficacy across multiple cancer types compared to healthy controls. GDF15 levels in cancer patients correlated with the established cardiac biomarkers c-TnT and NT-proBNP. Moreover, higher GDF15 levels correlated with an increased risk of ECG changes in the cancer cohort. CONCLUSION GDF15 demonstrated promising diagnostic potential in cancer identification; higher GDF15, combined with elevated cardiac markers, may play a role in the monitoring and prediction of CTRCD risk.
Collapse
Affiliation(s)
- Xiaohe Hao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Zhenyu Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Jing Kong
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Rufei Ma
- Electrocardiogram Room, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cuiping Mao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Xun Peng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Kun Ru
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Chuanxi Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Xinkai Mo
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China
| | - Meijuan Cai
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiangguo Yu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China.
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Ji-Yan Road, Jinan, Shandong Province, 250117, PR China.
| |
Collapse
|