1
|
Briasoulis A, Ruiz Duque E, Mouselimis D, Tsarouchas A, Bakogiannis C, Alvarez P. The role of renin-angiotensin system in patients with left ventricular assist devices. J Renin Angiotensin Aldosterone Syst 2021; 21:1470320320966445. [PMID: 33084480 PMCID: PMC7871286 DOI: 10.1177/1470320320966445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
End-stage heart failure is a condition in which the up-regulation of the systemic and local renin-angiotensin-aldosterone system (RAAS) leads to end-organ damage and is largely irreversible despite optimal medication. Left ventricular assist devices (LVADs) can downregulate RAAS activation by unloading the left ventricle and increasing the cardiac output translating into a better end-organ perfusion improving survival. However, the absence of pulsatility brought about by continuous-flow devices may variably trigger RAAS activation depending on left ventricular (LV) intrinsic contractility, the design and speed of the pump device. Moreover, the concept of myocardial recovery is being tested in clinical trials and in this setting LVAD support combined with intense RAAS inhibition can promote recovery and ensure maintenance of LV function after explantation. Blood pressure control on LVAD recipients is key to avoiding complications as gastrointestinal bleeding, pump thrombosis and stroke. Furthermore, emerging data highlight the role of RAAS antagonists as prevention of arteriovenous malformations that lead to gastrointestinal bleeds. Future studies should focus on the role of angiotensin receptor inhibitors in preventing myocardial fibrosis in patients with LVADs and examine in greater details the target blood pressure for these patients.
Collapse
Affiliation(s)
- Alexandros Briasoulis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ernesto Ruiz Duque
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Dimitrios Mouselimis
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Tsarouchas
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantinos Bakogiannis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Paulino Alvarez
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Wang G, Cruz AS, Youker K, Marcos-Abdala HG, Thandavarayan RA, Cooke JP, Torre-Amione G, Chen K, Bhimaraj A. Role of Endothelial and Mesenchymal Cell Transitions in Heart Failure and Recovery Thereafter. Front Genet 2021; 11:609262. [PMID: 33584806 PMCID: PMC7874124 DOI: 10.3389/fgene.2020.609262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Mechanisms of myocardial recovery are not well elucidated. Methods: 3-month-old C57/BL6 mice were treated with Angiotensin-II infusion and N (w)-nitro-L-arginine methyl ester in drinking water to induce HF at 5 weeks. These agents were discontinued, and animals studied with echocardiographic, histological and genetic assessment every 2 weeks until week 19. mRNA was extracted from these samples and human pre-post LVAD samples. Results: Histologic and echo characteristics showed progressive worsening of cardiac function by week 5 and normalization by week 19 accompanied by normalization of the transcriptional profile. Expression of 1,350 genes were upregulated and 3,050 genes down regulated in HF compared to controls; during recovery, this altered gene expression was largely reversed. We focused on genes whose expression was altered during HF but reverted to control levels by Week 19. A gene ontology (GO) analysis of this cohort of genes implicated pathways involved in EndoMT and MEndoT. The cohort of genes that were differentially regulated in heart failure recovery in the murine model, were similarly regulated in human myocardial samples obtained pre- and post-placement of a left ventricular assist device (LVAD). Human end stage HF myocardial samples showed cells with dual expressed VE-Cadherin and FSP-1 consistent with cell fate transition. Furthermore, we observed a reduction in fibrosis, and an increase in endothelial cell density, in myocardial samples pre- and post-LVAD. Conclusions: Cell fate transitions between endothelial and mesenchymal types contribute to the pathophysiology of heart failure followed by recovery.
Collapse
Affiliation(s)
- Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, United States.,Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Ana Sofia Cruz
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Keith Youker
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Hernan G Marcos-Abdala
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Guillermo Torre-Amione
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, Mexico
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, United States.,Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States
| | - Arvind Bhimaraj
- Department of Cardiovascular Sciences, Weill Cornell Medicine, Cornell University, Houston, TX, United States.,Houston Methodist DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
3
|
Asner L, Hadjicharalambous M, Chabiniok R, Peresutti D, Sammut E, Wong J, Carr-White G, Chowienczyk P, Lee J, King A, Smith N, Razavi R, Nordsletten D. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol 2016; 15:1121-39. [PMID: 26611908 PMCID: PMC5021775 DOI: 10.1007/s10237-015-0748-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022]
Abstract
Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and-through patient-specific modelling-derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.
Collapse
Affiliation(s)
- Liya Asner
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Myrianthi Hadjicharalambous
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radomir Chabiniok
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
- Inria Saclay Ile-de-France, MΞDISIM Team, Palaiseau, France
| | - Devis Peresutti
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Eva Sammut
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - James Wong
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Gerald Carr-White
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Philip Chowienczyk
- Department of Clinical Pharmacology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Andrew King
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Nicolas Smith
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - David Nordsletten
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| |
Collapse
|
4
|
Asner L, Hadjicharalambous M, Chabiniok R, Peresutti D, Sammut E, Wong J, Carr-White G, Chowienczyk P, Lee J, King A, Smith N, Razavi R, Nordsletten D. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol 2015. [PMID: 26611908 DOI: 10.1007/s10237‐015‐0748‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and-through patient-specific modelling-derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.
Collapse
Affiliation(s)
- Liya Asner
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Myrianthi Hadjicharalambous
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radomir Chabiniok
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.,Inria Saclay Ile-de-France, MΞDISIM Team, Palaiseau, France
| | - Devis Peresutti
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Eva Sammut
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - James Wong
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Gerald Carr-White
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.,Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Philip Chowienczyk
- Department of Clinical Pharmacology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Andrew King
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Nicolas Smith
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.,Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Reza Razavi
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| | - David Nordsletten
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London, SE1 7EH, UK
| |
Collapse
|
5
|
Kirklin JK. Mock loop revelations and the calculus for recovery. J Thorac Cardiovasc Surg 2015. [PMID: 26204866 DOI: 10.1016/j.jtcvs.2015.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- James K Kirklin
- Department of Surgery, University of Alabama in Birmingham, Birmingham, Ala.
| |
Collapse
|
6
|
Abstract
The discovery of substantial myocardial improvement following the mechanical unloading afforded by left ventricular assist device (LVAD) therapy challenged the dogma of heart failure being irreversible. Since then, a significant experience with the use of LVAD therapy as a bridge to recovery has accumulated. The discovery of substantial structural and functional changes (reverse remodeling) in the myocardium has resulted in an intensive effort to define the biologic determinants of the reversibility of these changes. Herein the scientific foundations, clinical practice, and future of the use of LVADs as a bridge to recovery are reviewed.
Collapse
Affiliation(s)
- Michael Ibrahim
- Department of Cardiothoracic Surgery, Heart Science Centre, Harefield Hospital, National Heart and Lung Institute, Hill End Road, London UB9 6JH, UK
| | | |
Collapse
|
7
|
Abstract
The use of left ventricular assist devices to induce substantial myocardial recovery with explantation of the device, bridge to recovery (BTR), is an exciting but currently grossly underused application. Recently acquired knowledge relating to BTR and its mechanisms offers unprecedented opportunities to streamline its use and unravel some of the secrets of heart failure with much wider implications. This article reviews the status, challenges, and future of cardiac recovery.
Collapse
Affiliation(s)
- Michael Ibrahim
- Heart Science Centre, Magdi Yacoub Institute, Harefield Hospital, London, UK
| | | | | |
Collapse
|