1
|
Maffia P, Guzik TJ. When, where, and how to target vascular inflammation in the post-CANTOS era? Eur Heart J 2020; 40:2492-2494. [PMID: 30929007 DOI: 10.1093/eurheartj/ehz133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| |
Collapse
|
2
|
Abstract
The potential of CD31 as a therapeutic target in atherosclerosis has been considered ever since its cloning in the 1990s, but the exact role played by this molecule in the biologic events underlying atherosclerosis has remained controversial, resulting in the stalling of any therapeutic perspective. Due to the supposed cell adhesive properties of CD31, specific monoclonal antibodies and recombinant proteins were regarded as blocking agents because their use prevented the arrival of leukocytes at sites of acute inflammation. However, the observed effect of those compounds likely resulted from the engagement of the immunomodulatory function of CD31 signaling. This was acknowledged only later though, upon the discovery of CD31's 2 intracytoplasmic tyrosine residues called immunoreceptor tyrosine inhibitory motifs. A growing body of evidence currently points at a therapeutic potential for CD31 agonists in atherothrombosis. Clinical observations show that CD31 expression is altered at the surface of leukocytes infiltrating unhealed atherothrombotic lesions and that the physiological immunomodulatory functions of CD31 are lost at the surface of blood leukocytes in patients with acute coronary syndromes. On the contrary, translational studies using candidate therapeutic molecules in laboratory animals have provided encouraging results: synthetic peptides administered to atherosclerotic mice as systemic drugs in the acute phases of atherosclerotic complications favor the healing of wounded arteries, whereas the immobilization of CD31 agonist peptides onto coronary stents implanted in farm pigs favors their peaceful integration within the coronary arterial wall.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- From the Laboratory for Vascular Translational Science, Inserm U1148, Université de Paris, France; and Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Nord Val-de-Seine, Site Bichat, France
| |
Collapse
|
3
|
Olson NC, Sitlani CM, Doyle MF, Huber SA, Landay AL, Tracy RP, Psaty BM, Delaney JA. Innate and adaptive immune cell subsets as risk factors for coronary heart disease in two population-based cohorts. Atherosclerosis 2020; 300:47-53. [PMID: 32209232 DOI: 10.1016/j.atherosclerosis.2020.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Cell-mediated immunity is implicated in atherosclerosis. We evaluated whether innate and adaptive immune cell subsets in peripheral blood are risk factors for coronary heart disease. METHODS A nested case-cohort study (n = 2155) was performed within the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Cases of incident myocardial infarction (MI) and incident angina (n = 880 total cases) were compared with a cohort random sample (n = 1275). Immune cell phenotypes (n = 34, including CD14+ monocytes, natural killer cells, γδ T cells, CD4+, CD8+ and CD19+ lymphocyte subsets) were measured from cryopreserved cells by flow cytometry. Cox proportional hazards models with adjustment for cardiovascular disease risk factors were used to evaluate associations of cell phenotypes with incident MI and a composite phenotype of incident MI or incident angina (MI-angina) over a median 9.3 years of follow-up. Th1, Th2, Th17, T regulatory (CD4+CD25+CD127-), naive (CD4+CD45RA+), memory (CD4+CD45RO+), and CD4+CD28- cells were specified as primary hypotheses. In secondary analyses, 27 additional cell phenotypes were investigated. RESULTS After correction for multiple testing, there were no statistically significant associations of CD4+ naive, memory, CD28-, or T helper cell subsets with MI or MI-angina in MESA, CHS, or combined-cohort meta analyses. Null associations were also observed for monocyte subsets, natural killer cells, γδ T cells, CD19+ B cell and differentiated CD4+ and CD8+ cell subsets. CONCLUSIONS The proportions of peripheral blood monocyte and lymphocyte subsets are not strongly related to the future occurrence of MI or angina in adults free of autoimmune disease.
Collapse
Affiliation(s)
- Nels C Olson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA.
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, WA, USA; Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA; Department of Biochemistry, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
| | - Joseph A Delaney
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA; College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Lüscher TF. Acute coronary syndromes: the tipping point of coronary artery disease. Eur Heart J 2018. [DOI: 10.1093/eurheartj/ehy175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Editorial Office, Zurich Heart House, 8032 Zurich, Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Switzerland and Royal Brompton and Harefield Hospital Trust and Imperial College, London, SW3 6NP, UK
| |
Collapse
|