Avizohar E, Shehory O. Predicting metabolic syndrome using machine learning - Analysis of commonly used indices.
Health Informatics J 2023;
29:14604582231212521. [PMID:
37947787 DOI:
10.1177/14604582231212521]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Determining the factors that contribute to making a reliable prediction of the metabolic syndrome will provide a deeper understanding of the medical indices involved in the prediction and assist in early diagnosis and treatment of patients. The study examined the optimal number of National cholesterol education program adult treatment panel (NCEP ATP) III indices needed to make a reliable prediction of the syndrome, whether each of the five NCEP ATP III indices for predicting the syndrome is equally important and whether a reliable prediction can be made using calculated blood pressure indices - estimated mean arterial pressure and pulse pressure - instead of NCEP ATP III blood pressure indices. The results show that NCEP ATP III indices for determination of the syndrome are not equally important. Moreover, the indices importance and their prediction quality vary according to gender. Optimal results are obtained by using all five NCEP ATP III indices for prediction.
Collapse