1
|
Fürniss HE, Wülfers EM, Iaconianni P, Ravens U, Kroll J, Stiller B, Kohl P, Rog-Zielinska EA, Peyronnet R. Disease severity, arrhythmogenesis, and fibrosis are related to longer action potentials in tetralogy of Fallot. Clin Res Cardiol 2024; 113:716-727. [PMID: 37725108 PMCID: PMC11026253 DOI: 10.1007/s00392-023-02288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Arrhythmias may originate from surgically unaffected right ventricular (RV) regions in patients with tetralogy of Fallot (TOF). We aimed to investigate action potential (AP) remodelling and arrhythmia susceptibility in RV myocardium of patients with repaired and with unrepaired TOF, identify possible correlations with clinical phenotype and myocardial fibrosis, and compare findings with data from patients with atrial septal defect (ASD), a less severe congenital heart disease. METHODS Intracellular AP were recorded ex vivo in RV outflow tract samples from 22 TOF and three ASD patients. Arrhythmias were provoked by superfusion with solutions containing reduced potassium and barium chloride, or isoprenaline. Myocardial fibrosis was quantified histologically and associations between clinical phenotype, AP shape, tissue arrhythmia propensity, and fibrosis were examined. RESULTS Electrophysiological abnormalities (arrhythmias, AP duration [APD] alternans, impaired APD shortening at increased stimulation frequencies) were generally present in TOF tissue, even from infants, but rare or absent in ASD samples. More severely diseased and acyanotic patients, pronounced tissue susceptibility to arrhythmogenesis, and greater fibrosis extent were associated with longer APD. In contrast, APD was shorter in tissue from patients with pre-operative cyanosis. Increased fibrosis and repaired-TOF status were linked to tissue arrhythmia inducibility. CONCLUSIONS Functional and structural tissue remodelling may explain arrhythmic activity in TOF patients, even at a very young age. Surprisingly, clinical acyanosis appears to be associated with more severe arrhythmogenic remodelling. Further research into the clinical drivers of structural and electrical myocardial alterations, and the relation between them, is needed to identify predictive factors for patients at risk.
Collapse
Affiliation(s)
- Hannah E Fürniss
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany.
- Department of Congenital Heart Defects and Pediatric Cardiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Eike M Wülfers
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Pia Iaconianni
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Johannes Kroll
- Department of Cardiovascular Surgery, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Brigitte Stiller
- Department of Congenital Heart Defects and Pediatric Cardiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Jones BA, Torrado B, Myakala K, Wang XX, Perry PE, Rosenberg AZ, Levi M, Ranjit S. Fibrosis quantification using multiphoton excitation imaging of picrosirius red stained cardiac tissue. RESEARCH SQUARE 2023:rs.3.rs-3329402. [PMID: 37790455 PMCID: PMC10543454 DOI: 10.21203/rs.3.rs-3329402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Traditional methodologies for fibrosis quantification involve histological measurements, staining with Masson's trichrome and picrosirius red (PSR), and label-free imaging using second harmonic generation (SHG). The difficulty of label-free cardiac SHG imaging is that both collagen (i.e., collagen 1 fibrils) and myosin are harmonophores that generate SHG signals, and specific identification of either collagen or myosin is difficult to achieve. Here we present an alternate method of quantifying cardiac fibrosis by using PSR staining followed by multiphoton excitation fluorescence imaging. Our data from the deoxycorticosterone model of cardiac fibrosis shows that this imaging method and downstream analyses, including background correction, are robust and easy to perform. These advantages are due to the high signal-to-noise ratio provided by PSR in areas of collagen fibers. Furthermore, the hyperspectral and fluorescence lifetime information of PSR-stained area of fibrosis shows better quantification can eventually be obtained using more complex instrumentation.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Belen Torrado
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Priscilla E. Perry
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
- Microscopy and Imaging Shared Resources, Georgetown University, Washington, DC
| |
Collapse
|
3
|
Yuan J, Su Z, Wang G, Yang K, Zhang B, Ma K, Zhang S, Yang Y, Feng Z, Mao F, He Q, Dou Z, Li S. Biopsy-detected myocardial fibrosis predicts adverse cardiac events after pulmonary valve replacement in patients with repaired tetralogy of Fallot. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2023; 36:7025497. [PMID: 36931282 PMCID: PMC10023241 DOI: 10.1093/icvts/ivad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Risk factors associated with adverse cardiac events (cardiac AEs) after pulmonary valve replacement (PVR) in patients with repaired tetralogy of Fallot are incompletely understood. In this study, we aimed to determine the relationship between histological myocardial fibrosis and cardiac AEs after PVR in patients with rTOF. METHODS We consecutively collected clinical, cardiac magnetic resonance, echocardiography and electrocardiogram data of 51 patients with rTOF who underwent surgical PVR. The right ventricular outflow tract tissue was collected during the PVR and the degree of histological myocardial fibrosis was determined by a tailor-made automated image analysis method of picrosirius red staining. RESULTS The median follow-up time was 4.9 years, and 14 patients had cardiac AEs (a composite of heart failure admission and arrhythmia) during follow-up. The total analysis area of myocardial samples was 5782.18 mm2, and the median percentage of myocardial fibrosis was 20.6% (interquartile range 16.7-27.0%), which were significantly elevated in patients with cardiac AEs compared with patients without cardiac AEs (24.1% vs 19.7%, P = 0.007). Right ventricular ejection fraction and left ventricular end-systolic volume index were significantly associated with myocardial fibrosis in multivariable stepwise linear regression analysis (R2 = 0.238). Cox proportional hazards regression identified degree of myocardial fibrosis [hazard ratio 1.127; 95% confidence interval (CI) 1.047-1.213; P = 0.001] and age at PVR (hazard ratio 1.062; 95% CI 1.010-1.116; P = 0.019) were associated with increased risk of cardiac AEs. The incidence of adverse cardiac events was significantly increased when myocardial fibrosis >20.1% and age at PVR >18.2 years. CONCLUSIONS Histological myocardial fibrosis was associated with biventricular systolic functions in rTOF. Higher myocardial fibrosis and older age at PVR are independent risk factors for the adverse cardiac events after PVR in patients with rTOF.
Collapse
Affiliation(s)
- Jianhui Yuan
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhanhao Su
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guanxi Wang
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Keming Yang
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Benqing Zhang
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Ma
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sen Zhang
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Yang
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zicong Feng
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengqun Mao
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiyu He
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Dou
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shoujun Li
- Department of Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Moss R, Wülfers EM, Lewetag R, Hornyik T, Perez-Feliz S, Strohbach T, Menza M, Krafft A, Odening KE, Seemann G. A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution. PLoS One 2022; 17:e0270559. [PMID: 35771854 PMCID: PMC9246225 DOI: 10.1371/journal.pone.0270559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Eike M. Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphaela Lewetag
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tibor Hornyik
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Stefanie Perez-Feliz
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tim Strohbach
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Axel Krafft
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Katja E. Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Sankarankutty AC, Greiner J, Bragard J, Visker JR, Shankar TS, Kyriakopoulos CP, Drakos SG, Sachse FB. Etiology-Specific Remodeling in Ventricular Tissue of Heart Failure Patients and Its Implications for Computational Modeling of Electrical Conduction. Front Physiol 2021; 12:730933. [PMID: 34675817 PMCID: PMC8523803 DOI: 10.3389/fphys.2021.730933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
With an estimated 64.3 million cases worldwide, heart failure (HF) imposes an enormous burden on healthcare systems. Sudden death from arrhythmia is the major cause of mortality in HF patients. Computational modeling of the failing heart provides insights into mechanisms of arrhythmogenesis, risk stratification of patients, and clinical treatment. However, the lack of a clinically informed approach to model cardiac tissues in HF hinders progress in developing patient-specific strategies. Here, we provide a microscopy-based foundation for modeling conduction in HF tissues. We acquired 2D images of left ventricular tissues from HF patients (n = 16) and donors (n = 5). The composition and heterogeneity of fibrosis were quantified at a sub-micrometer resolution over an area of 1 mm2. From the images, we constructed computational bidomain models of tissue electrophysiology. We computed local upstroke velocities of the membrane voltage and anisotropic conduction velocities (CV). The non-myocyte volume fraction was higher in HF than donors (39.68 ± 14.23 vs. 22.09 ± 2.72%, p < 0.01), and higher in ischemic (IC) than nonischemic (NIC) cardiomyopathy (47.2 ± 16.18 vs. 32.16 ± 6.55%, p < 0.05). The heterogeneity of fibrosis within each subject was highest for IC (27.1 ± 6.03%) and lowest for donors (7.47 ± 1.37%) with NIC (15.69 ± 5.76%) in between. K-means clustering of this heterogeneity discriminated IC and NIC with an accuracy of 81.25%. The heterogeneity in CV increased from donor to NIC to IC tissues. CV decreased with increasing fibrosis for longitudinal (R 2 = 0.28, p < 0.05) and transverse conduction (R 2 = 0.46, p < 0.01). The tilt angle of the CV vectors increased 2.1° for longitudinal and 0.91° for transverse conduction per 1% increase in fibrosis. Our study suggests that conduction fundamentally differs in the two etiologies due to the characteristics of fibrosis. Our study highlights the importance of the etiology-specific modeling of HF tissues and integration of medical history into electrophysiology models for personalized risk stratification and treatment planning.
Collapse
Affiliation(s)
- Aparna C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg⋅Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean Bragard
- Department of Physics and Applied Mathematics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Joseph R Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Christos P Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|