1
|
Locati ET, Van Dam PM, Ciconte G, Heilbron F, Boonstra M, Vicedomini G, Micaglio E, Ćalović Ž, Anastasia L, Santinelli V, Pappone C. Electrocardiographic temporo-spatial assessment of depolarization and repolarization changes after epicardial arrhythmogenic substrate ablation in Brugada syndrome. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:473-487. [PMID: 38045442 PMCID: PMC10689926 DOI: 10.1093/ehjdh/ztad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 12/05/2023]
Abstract
Aims In Brugada syndrome (BrS), with spontaneous or ajmaline-induced coved ST elevation, epicardial electro-anatomic potential duration maps (epi-PDMs) were detected on a right ventricle (RV) outflow tract (RVOT), an arrhythmogenic substrate area (AS area), abolished by epicardial-radiofrequency ablation (EPI-AS-RFA). Novel CineECG, projecting 12-lead electrocardiogram (ECG) waveforms on a 3D heart model, previously localized depolarization forces in RV/RVOT in BrS patients. We evaluate 12-lead ECG and CineECG depolarization/repolarization changes in spontaneous type-1 BrS patients before/after EPI-AS-RFA, compared with normal controls. Methods and results In 30 high-risk BrS patients (93% males, age 37 + 9 years), 12-lead ECGs and epi-PDMs were obtained at baseline, early after EPI-AS-RFA, and late follow-up (FU) (2.7-16.1 months). CineECG estimates temporo-spatial localization during depolarization (Early-QRS and Terminal-QRS) and repolarization (ST-Tpeak, Tpeak-Tend). Differences within BrS patients (baseline vs. early after EPI-AS-RFA vs. late FU) were analysed by Wilcoxon signed-rank test, while differences between BrS patients and 60 age-sex-matched normal controls were analysed by the Mann-Whitney test. In BrS patients, baseline QRS and QTc durations were longer and normalized after EPI-AS-ATC (151 ± 15 vs. 102 ± 13 ms, P < 0.001; 454 ± 40 vs. 421 ± 27 ms, P < 0.000). Baseline QRS amplitude was lower and increased at late FU (0.63 ± 0.26 vs. 0.84 ± 13 ms, P < 0.000), while Terminal-QRS amplitude decreased (0.24 ± 0.07 vs. 0.08 ± 0.03 ms, P < 0.000). At baseline, CineECG depolarization/repolarization wavefront prevalently localized in RV/RVOT (Terminal-QRS, 57%; ST-Tpeak, 100%; and Tpeak-Tend, 61%), congruent with the AS area on epi-PDM. Early after EPI-AS-RFA, RV/RVOT localization during depolarization disappeared, as Terminal-QRS prevalently localized in the left ventricle (LV, 76%), while repolarization still localized on RV/RVOT [ST-Tpeak (44%) and Tpeak-Tend (98%)]. At late FU, depolarization/repolarization forces prevalently localized in the LV (Terminal-QRS, 94%; ST-Tpeak, 63%; Tpeak-Tend, 86%), like normal controls. Conclusion CineECG and 12-lead ECG showed a complex temporo-spatial perturbation of both depolarization and repolarization in BrS patients, prevalently localized in RV/RVOT, progressively normalizing after epicardial ablation.
Collapse
Affiliation(s)
- Emanuela T Locati
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Peter M Van Dam
- Cardiology Department, Utrecht University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
- Center for Digital Medicine and Robotics, Jagiellonian University Medical College, Kopernika 7e, 31-034 Kraków, Poland
| | - Giuseppe Ciconte
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Francesca Heilbron
- Milano Bicocca University, Istituto Auxologico, Via Thomas Mann 8, 20162 Milan, Italy
| | - Machteld Boonstra
- Cardiology Department, Utrecht University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Gabriele Vicedomini
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Emanuele Micaglio
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Žarko Ćalović
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology-Electrophysiology Department, IRCCS Policlinico San Donato, Piazza Malan 2, 20097 San Donato Milanese, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
2
|
Gorgels APM, van der Schaaf I, Kloosterman M, van Dam PM. The CineECG in ischemia localization in ST-elevation (equivalent) acute coronary syndromes. J Electrocardiol 2023; 81:258-264. [PMID: 39491305 DOI: 10.1016/j.jelectrocard.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
AIM OF THE STUDY In this proof of concept study we aimed to visualize and quantify the injury vectors using the CineECG in representative examples of ST elevation acute myocardial infarction (STEMI) and STEMI-equivalent electrocardiograms (ECG's). For this purpose ECG's were selected with different ST deviation patterns in acute anterior wall, inferior or posterolateral wall infarctions. METHODS The ST-amplitudes of the individual leads were measured between J-point and 60 ms after the J-point. These data were used to compute the direction and size (i.e. ST-amplitudes) of the injury vectors of the respective STEMI (equivalent)'s and displayed in the frontal, transverse and sagittal view. The relative contribution of the ST vector was computed for each axis (X,Y,Z) and per view using the length of the projected ST vector on the respective plane. RESULTS The injury vectors accurately pointed to the area at risk in either proximal, mid or distal occlusions of the respective coronary arteries. Moreover in LCX occlusions, where no or small ST abnormalities in the standard ECG were present, the CineECG was found to be capable in pointing towards the ischemic area. Especially the visualization of the ST-vector in the sagittal plane was found to be contributing. CONCLUSIONS These findings suggest that the CineECG could become a useful additional tool to support the clinician. Moreover our preliminary findings suggest that CineECG may be more capable in detecting ischemic changes in situations where the ECG is not supportive, such as in LCX occlusions. Further studies in patient cohorts are needed to confirm these observations.
Collapse
Affiliation(s)
- Anton P M Gorgels
- School for Cardiovascular Diseases, Maastricht University, P. Debyelaan 25, 6299, HX, Maastricht, the Netherlands; Hartkliniek Maastricht, Victor de Stuersstraat 15, 6217, KP, Maastricht, the Netherlands.
| | - Iris van der Schaaf
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Manon Kloosterman
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Peter M van Dam
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands; ECG Excellence, Weijland 38, 2415, BC, Nieuwerbrug, the Netherlands
| |
Collapse
|