1
|
Mills MT, Calvert P, Chiong J, Gupta D, Luther V. Dynamic Voltage Mapping of the Post-infarct Ventricular Tachycardia Substrate: A Practical Technique to Help Differentiate Scar from Borderzone Tissue. Arrhythm Electrophysiol Rev 2024; 13:e16. [PMID: 39507206 PMCID: PMC11539044 DOI: 10.15420/aer.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 11/08/2024] Open
Abstract
During catheter ablation of post-infarct ventricular tachycardia (VT), substrate mapping is used when VT is non-inducible or poorly tolerated. Substrate mapping aims to identify regions of slowly conducting myocardium (borderzone) within and surrounding myocardial scar for ablation. Historically, these tissue types have been identified using bipolar voltage mapping, with areas of low bipolar voltage (<0.50 mV) defined as scar, and areas with voltages between 0.50 mV and 1.50 mV as borderzone. In the era of high-density mapping, studies have demonstrated slow conduction within areas of bipolar voltage <0.50 mV, suggesting that this historical cut-off is outdated. While electrophysiologists often adapt voltage cut-offs to account for this, the optimal scar-borderzone threshold is not known. In this review, we discuss dynamic voltage mapping, a novel substrate mapping technique we have developed, which superimposes data from both activation and voltage maps, to help delineate the post-infarct VT circuit through identification of the optimal scar-borderzone voltage threshold.
Collapse
Affiliation(s)
- Mark T Mills
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest HospitalLiverpool, UK
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation TrustLiverpool, UK
| | - Peter Calvert
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest HospitalLiverpool, UK
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation TrustLiverpool, UK
| | - Justin Chiong
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation TrustLiverpool, UK
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest HospitalLiverpool, UK
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation TrustLiverpool, UK
| | - Vishal Luther
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest HospitalLiverpool, UK
- Department of Cardiology, Liverpool Heart & Chest Hospital NHS Foundation TrustLiverpool, UK
| |
Collapse
|
2
|
Grade Santos J, Mills MT, Calvert P, Worthington N, Phenton C, Modi S, Ashrafi R, Todd D, Waktare J, Mahida S, Gupta D, Luther V. Delineating postinfarct ventricular tachycardia substrate with dynamic voltage mapping in areas of omnipolar vector disarray. Heart Rhythm O2 2024; 5:224-233. [PMID: 38690145 PMCID: PMC11056467 DOI: 10.1016/j.hroo.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background Defining postinfarct ventricular arrhythmic substrate is challenging with voltage mapping alone, though it may be improved in combination with an activation map. Omnipolar technology on the EnSite X system displays activation as vectors that can be superimposed onto a voltage map. Objective The study sought to optimize voltage map settings during ventricular tachycardia (VT) ablation, adjusting them dynamically using omnipolar vectors. Methods Consecutive patients undergoing substrate mapping were retrospectively studied. We categorized omnipolar vectors as uniform when pointing in one direction, or in disarray when pointing in multiple directions. We superimposed vectors onto voltage maps colored purple in tissue >1.5 mV, and the voltage settings were adjusted so that uniform vectors appeared within purple voltages, a process termed dynamic voltage mapping (DVM). Vectors in disarray appeared within red-blue lower voltages. Results A total of 17 substrate maps were studied in 14 patients (mean age 63 ± 13 years; mean left ventricular ejection fraction 35 ± 6%, median 4 [interquartile range 2-8.5] recent VT episodes). The DVM mean voltage threshold that differentiated tissue supporting uniform vectors from disarray was 0.27 mV, ranging between patients from 0.18 to 0.50 mV, with good interobserver agreement (median difference: 0.00 mV). We found that VT isthmus components, as well as sites of latest activation, isochronal crowding, and excellent pace maps colocated with tissue along the DVM border zone surrounding areas of disarray. Conclusion DVM, guided by areas of omnipolar vector disarray, allows for individualized postinfarct ventricular substrate characterization. Tissue bordering areas of disarray may harbor greater arrhythmogenic potential.
Collapse
Affiliation(s)
- Joao Grade Santos
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Hospital Garcia de Orta, Almada, Portugal
| | - Mark T. Mills
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Peter Calvert
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Simon Modi
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Reza Ashrafi
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Derick Todd
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Johan Waktare
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Saagar Mahida
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Hospital Garcia de Orta, Almada, Portugal
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Vishal Luther
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Iacopino S, Sorrenti P, Campagna G, Fabiano G, Fabiano E, Colella J. Non-invasive cardiac activation mapping and identification of severity of epicardial substrate in Brugada Syndrome: a case report. Front Cardiovasc Med 2024; 11:1304404. [PMID: 38333419 PMCID: PMC10850375 DOI: 10.3389/fcvm.2024.1304404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction It has recently been shown that electrocardiographic imaging (ECGi) can be employed in individuals undergoing an ajmaline test who have Brugada Syndrome (BrS), to evaluate the extent of substrate-involved arrhythmia in the right ventricular overflow tract (RVOT). For the first time, we stratify the risk of sudden cardiac death (SCD) in BrS during ajmaline testing using the dST-Tiso interval (a robust predictor of the inducibility of ventricular arrhythmias (VAs) in the presence of drug-induced BrS type-1 pattern) in combination with ECGi technology. Case presentation We studied a 48-year-old man with BrS ECG type-2 pattern and presence of J-wave without a family history of SCD but with a previous syncope. Transthoracic echocardiography and cardiac magnetic resonance imaging were performed, showing normal results. The ECG was performed to assess the novel ECG marker "dST-Tiso interval." The 3D epicardial mapping of the RVOT surface was performed with the support of a non-contact cardiac mapping system in sinus rhythm during ajmaline infusion. The examination of the propagation map unveiled the presence of multiple conduction blocks in this pathologic epicardial region, and the conduction blocks were identified within the central part and/or near the boundary separating the normal and slow conduction areas. Conclusion The dST-Tiso interval, which lies between the onset and termination of the coved ST-segment elevation and serves as a robust predictor of VA inducibility in cases of drug-induced BrS type-1 pattern, was utilized in conjunction with ECGi technology (employed for the non-invasive confirmation and identification of the pathological substrate area). This combined approach was applied to stratify the risk of SCD in BrS during ajmaline testing, alongside clinical scores.
Collapse
Affiliation(s)
- Saverio Iacopino
- Electrophysiology Unit, Maria Cecilia Hospital GVM Care and Research, Cotignola, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Rosu-Bubulac M, Trankle CR, Mankad P, Grizzard JD, Ellenbogen KA, Jordan JH, Weiss E. Institutional experience report on the target contouring workflow in the radiotherapy department for stereotactic arrhythmia radioablation delivered on conventional linear accelerators. Strahlenther Onkol 2024; 200:83-96. [PMID: 37872398 DOI: 10.1007/s00066-023-02159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set. METHODS The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning-i.e., the average intensity projection (AIP) image set derived from a 4D CT-via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively. RESULTS The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target. CONCLUSION An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.
Collapse
Affiliation(s)
- Mihaela Rosu-Bubulac
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Cory R Trankle
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pranav Mankad
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John D Grizzard
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth A Ellenbogen
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer H Jordan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Pancorbo L, Ruipérez-Campillo S, Tormos Á, Guill A, Cervigón R, Alberola A, Chorro FJ, Millet J, Castells F. Vector Field Heterogeneity for the Assessment of Locally Disorganised Cardiac Electrical Propagation Wavefronts From High-Density Multielectrodes. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:32-44. [PMID: 38445238 PMCID: PMC10914212 DOI: 10.1109/ojemb.2023.3344349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 03/07/2024] Open
Abstract
High-density multielectrode catheters are becoming increasingly popular in cardiac electrophysiology for advanced characterisation of the cardiac tissue, due to their potential to identify impaired sites. These are often characterised by abnormal electrical conduction, which may cause locally disorganised propagation wavefronts. To quantify it, a novel heterogeneity parameter based on vector field analysis is proposed, utilising finite differences to measure direction changes between adjacent cliques. The proposed Vector Field Heterogeneity metric has been evaluated on a set of simulations with controlled levels of organisation in vector maps, and a variety of grid sizes. Furthermore, it has been tested on animal experimental models of isolated Langendorff-perfused rabbit hearts. The proposed parameter exhibited superior capturing ability of heterogeneous propagation wavefronts compared to the classical Spatial Inhomogeneity Index, and simulations proved that the metric effectively captures gradual increments in disorganisation in propagation patterns. Notably, it yielded robust and consistent outcomes for [Formula: see text] grid sizes, underscoring its suitability for the latest generation of orientation-independent cardiac catheters.
Collapse
Affiliation(s)
- Lucía Pancorbo
- ITACA InstituteUniversitat Politècnica de València46022ValenciaSpain
| | | | - Álvaro Tormos
- ITACA InstituteUniversitat Politècnica de València46022ValenciaSpain
| | - Antonio Guill
- ITACA InstituteUniversitat Politècnica de València46022ValenciaSpain
| | | | - Antonio Alberola
- Departamento de FisiologíaUniversidad de València46010ValenciaSpain
- Instituto de Investigación INCLIVA46010ValenciaSpain
- CIBER E. Cardiovasculares28029MadridSpain
| | - Francisco Javier Chorro
- CIBER E. Cardiovasculares28029MadridSpain
- Departamento de MedicinaUniversidad de València46010ValenciaSpain
- Instituto de Investigación INCLIVA46010ValenciaSpain
- Servicio de CardiologíaHospital Clínic Universitari de València46010ValenciaSpain
| | - José Millet
- ITACA InstituteUniversitat Politècnica de València46022ValenciaSpain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovascular28029MadridSpain
| | | |
Collapse
|
6
|
Song X, Que D, Zhu Y, Yu W, Xu H, Zhang X, Yan J, Wang Y, Rui B, Yang Y, Zhuang Z, Huang G, Zhao X, Yang C, Cai Y, Yang P. Guiding ablation strategies for ventricular tachycardia in patients with structural heart disease by analyzing links and conversion patterns of traceable abnormal late potential zone. J Cardiovasc Electrophysiol 2023; 34:2273-2282. [PMID: 37694672 DOI: 10.1111/jce.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Substrate-based ablation can treat uninducible or hemodynamically instability scar-related ventricular tachycardia (VT). However, whether a correlation exists between the critical VT isthmus and late activation zone (LAZ) during sinus rhythm (SR) is unknown. OBJECTIVE To demonstrate the structural and functional properties of abnormal substrates and analyze the link between the VT circuit and abnormal activity during SR. METHODS Thirty-six patients with scar-related VT (age, 50.0 ± 13.7 years and 86.1% men) who underwent VT ablation were reviewed. The automatic rhythmia ultrahigh resolution mapping system was used for electroanatomic substrate mapping. The clinical characteristics and mapping findings, particularly the LAZ characteristics during SR and VT, were analyzed. To determine the association between the LAZ during the SR and VT circuits, the LAZ was defined as five activation patterns: entrance, exit, core, blind alley, and conduction barrier. RESULTS Forty-five VTs were induced in 36 patients, 91.1% of which were monomorphic. The LAZ of all patients was mapped during the SR and VT circuits, and the consistency of the anatomical locations of the LAZ and VT circuits was analyzed. Using the ultrahigh resolution mapping system, interconversion patterns, including the bridge, T, puzzle, maze, and multilayer types, were identified. VT ablation enabled precise ablation of abnormal late potential conduction channels. CONCLUSION Five interconversion patterns of the LAZ during the SR and VT circuits were summarized. These findings may help formulate more precise substrate-based ablation strategies for scar-related VT and shorter procedure times.
Collapse
Affiliation(s)
- Xudong Song
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Yingqi Zhu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Wenjie Yu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Haoran Xu
- Boston Scientific China, Shanghai, China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Yuxi Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Bowen Rui
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Yashu Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Zhenyu Zhuang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Guanlin Huang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Xiaoqing Zhao
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Chaobo Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Yanbin Cai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
| |
Collapse
|
7
|
Ascione C, Kowalewski C, Bergonti M, Yokoyama M, Monaco C, Bouyer B, Chauvel R, Arnaud M, Buliard S, Tixier R, Vlachos K, Krisai P, Kamakura T, Takagi T, Duchateau J, Pambrun T, Derval N, Hocini M, Haïssaguerre M, Jaïs P, Sacher F. Omnipolar versus bipolar mapping to guide ventricular tachycardia ablation. Heart Rhythm 2023; 20:1370-1377. [PMID: 37414109 DOI: 10.1016/j.hrthm.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Omnipolar technology (OT) was recently proposed to generate electroanatomic voltage maps with orientation-independent electrograms. We describe the first cohort of patients undergoing ventricular tachycardia (VT) ablation guided by OT. OBJECTIVE The purpose of this study was to compare omnipolar and bipolar high-density maps with regard to voltage amplitude, late potential (LP) annotation, and isochronal late activation mapping distribution. METHODS A total of 24 patients (16 [66%] ischemic cardiomyopathy and 12 [50%] redo cases) underwent VT ablation under OT guidance. Twenty-seven sinus rhythm substrate maps and 10 VT activation maps were analyzed. Omnipolar and bipolar (HD Wave Solution algorithm, Abbott, Abbott Park, IL) voltages were compared. Areas of LPs were correlated with the VT isthmus areas, and late electrogram misannotation was evaluated. Deceleration zones based on isochronal late activation maps were analyzed by 2 blinded operators and compared to the VT isthmuses. RESULTS OT maps had higher point density (13.8 points/cm2 vs 8.0 points/cm2). Omnipolar points had 7.1% higher voltages than bipolar points within areas of dense scar and border zone. The number of misannotated points was significantly lower for OT maps (6.8% vs 21.9%; P = .01), showing comparable sensitivity (53% vs 59%) but higher specificity (79% vs 63%). The sensitivity and specificity of detection of the VT isthmus in the deceleration zones were, respectively, 75% and 65% for OT and 35% and 55% for bipolar mapping. At 8.4 months, 71% freedom from VT recurrence was achieved. CONCLUSION OT is a valuable tool for guiding VT ablation, providing more accurate identification of LPs and isochronal crowding due to slightly higher voltages.
Collapse
Affiliation(s)
- Ciro Ascione
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France.
| | - Christopher Kowalewski
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Marco Bergonti
- Division of Cardiology, Cardiocentro Ticino Institute, Lugano, Switzerland
| | - Masaaki Yokoyama
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Cinzia Monaco
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Benjamin Bouyer
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Rémi Chauvel
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Marine Arnaud
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Samuel Buliard
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Romain Tixier
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Konstantinos Vlachos
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Philipp Krisai
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Tsukasa Kamakura
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Takamitsu Takagi
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Josselin Duchateau
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Thomas Pambrun
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Nicolas Derval
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Mélèze Hocini
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Michel Haïssaguerre
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Pierre Jaïs
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| | - Frederic Sacher
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France; CHU de Bordeaux, Cardiac arrhythmia department, INSERM, U 1045, Bordeaux, France
| |
Collapse
|
8
|
Ruipérez-Campillo S, Crespo M, Tormos Á, Guill A, Cebrián A, Alberola A, Heimer J, Chorro FJ, Millet J, Castells F. Evaluation and assessment of clique arrangements for the estimation of omnipolar electrograms in high density electrode arrays: an experimental animal model study. Phys Eng Sci Med 2023; 46:1193-1204. [PMID: 37358782 PMCID: PMC10480253 DOI: 10.1007/s13246-023-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
High-density catheters combined with Orientation Independent Sensing (OIS) methods have emerged as a groundbreaking technology for cardiac substrate characterisation. In this study, we aim to assess the arrangements and constraints to reliably estimate the so-called omnipolar electrogram (oEGM). Performance was evaluated using an experimental animal model. Thirty-eight recordings from nine retrospective experiments on isolated perfused rabbit hearts with an epicardial HD multielectrode were used. We estimated oEGMs according to the classic triangular clique (4 possible orientations) and a novel cross-orientation clique arrangement. Furthermore, we tested the effects of interelectrode spacing from 1 to 4 mm. Performance was evaluated by means of several parameters that measured amplitude rejection ratios, electric field loop area, activation pulse width and morphology distortion. Most reliable oEGM estimations were obtained with cross-configurations and interelectrode spacings [Formula: see text] mm. Estimations from triangular cliques resulted in wider electric field loops and unreliable detection of the direction of the propagation wavefront. Moreover, increasing interelectrode distance resulted in increased pulse width and morphology distortion. The results prove that current oEGM estimation techniques are insufficiently accurate. This study opens a new standpoint for the design of new-generation HD catheters and mapping software.
Collapse
Affiliation(s)
- Samuel Ruipérez-Campillo
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain.
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
- School of Medicine, Stanford University, Stanford, CA, USA.
| | - Marina Crespo
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Álvaro Tormos
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Guill
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Cebrián
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Antonio Alberola
- Departamento de Fisiología, Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovascular (CIBERCV), Madrid, Spain
| | - Jakob Heimer
- Department of Mathematics, Seminar for Statistics, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Francisco J Chorro
- Centro de Investigación Biomédica en Red Enfermedades Cardiovascular (CIBERCV), Madrid, Spain
- Departamento de Medicina, Universitat de València, Valencia, Spain
- Servicio de Cardiología, Hospital Clínic Universitari de València, Valencia, Spain
| | - José Millet
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovascular (CIBERCV), Madrid, Spain
| | | |
Collapse
|
9
|
Marashly Q, Najjar SN, Hahn J, Rector GJ, Khawaja M, Chelu MG. Innovations in ventricular tachycardia ablation. J Interv Card Electrophysiol 2023; 66:1499-1518. [PMID: 35879516 DOI: 10.1007/s10840-022-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Catheter ablation of ventricular arrhythmias (VAs) has evolved significantly over the past decade and is currently a well-established therapeutic option. Technological advances and improved understanding of VA mechanisms have led to tremendous innovations in VA ablation. The purpose of this review article is to provide an overview of current innovations in VA ablation. Mapping techniques, such as ultra-high density mapping, isochronal late activation mapping, and ripple mapping, have provided improved arrhythmogenic substrate delineation and potential procedural success while limiting duration of ablation procedure and potential hemodynamic compromise. Besides, more advanced mapping and ablation techniques such as epicardial and intramyocardial ablation approaches have allowed operators to more precisely target arrhythmogenic substrate. Moreover, advances in alternate energy sources, such as electroporation, as well as stereotactic radiation therapy have been proposed to be effective and safe. New catheters, such as the lattice and the saline-enhanced radiofrequency catheters, have been designed to provide deeper and more durable tissue ablation lesions compared to conventional catheters. Contact force optimization and baseline impedance modulation are important tools to optimize VT radiofrequency ablation and improve procedural success. Furthermore, advances in cardiac imaging, specifically cardiac MRI, have great potential in identifying arrhythmogenic substrate and evaluating ablation success. Overall, VA ablation has undergone significant advances over the past years. Innovations in VA mapping techniques, alternate energy source, new catheters, and utilization of cardiac imaging have great potential to improve overall procedural safety, hemodynamic stability, and procedural success.
Collapse
Affiliation(s)
- Qussay Marashly
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Salim N Najjar
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Joshua Hahn
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Graham J Rector
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Muzamil Khawaja
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Mihail G Chelu
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA.
- Baylor St. Luke's Medical Center, Houston, USA.
- Texas Heart Institute, Houston, USA.
| |
Collapse
|
10
|
Castells F, Ruipérez-Campillo S, Segarra I, Cervigón R, Casado-Arroyo R, Merino JL, Millet J. Performance assessment of electrode configurations for the estimation of omnipolar electrograms from high density arrays. Comput Biol Med 2023; 154:106604. [PMID: 36709520 DOI: 10.1016/j.compbiomed.2023.106604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The aim of this study is to propose a method to reduce the sensitivity of the estimated omnipolar electrogram (oEGM) with respect to the angle of the propagation wavefront. METHODS A novel configuration of cliques taking into account all four electrodes of a squared cell is proposed. To test this approach, simulations of HD grids of cardiac activations at different propagation angles, conduction velocities, interelectrode distance and electrogram waveforms are considered. RESULTS The proposed approach successfully provided narrower loops (essentially a straight line) of the electrical field described by the bipole pair with respect to the conventional approach. Estimation of the direction of propagation was improved. Additionally, estimated oEGMs presented larger amplitude, and estimations of the local activation times were more accurate. CONCLUSIONS A novel method to improve the estimation of oEGMs in HD grid of electrodes is proposed. This approach is superior to the existing methods and avoids pitfalls not yet resolved. RELEVANCE Robust tools for quantifying the cardiac substrate are crucial to determine with accuracy target ablation sites during an electrophysiological procedure.
Collapse
Affiliation(s)
| | - Samuel Ruipérez-Campillo
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain; Department of Bioengineering, University of California, Berkeley, CA, USA; School of Medicine, Stanford University, Palo Alto, CA, USA.
| | - Izan Segarra
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | | | | | - José Luis Merino
- Arrhythmia and Robotic Electrophysiology Unit, Hospital Universitario La Paz, Madrid, Spain
| | - José Millet
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
11
|
Khan H, Bonvissuto MR, Rosinski E, Shokr M, Metcalf K, Jankelson L, Kushnir A, Park DS, Bernstein SA, Spinelli MA, Aizer A, Holmes D, Chinitz LA, Barbhaiya CR. Comparison of combined substrate-based mapping techniques to identify critical sites for ventricular tachycardia ablation. Heart Rhythm 2023; 20:808-814. [PMID: 36863636 DOI: 10.1016/j.hrthm.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Established electroanatomic mapping techniques for substrate mapping for ventricular tachycardia (VT) ablation includes voltage mapping, isochronal late activation mapping (ILAM), and fractionation mapping. Omnipolar mapping (Abbott Medical, Inc.) is a novel optimized bipolar electrogram creation technique with integrated local conduction velocity annotation. The relative utilities of these mapping techniques are unknown. OBJECTIVE The purpose of this study was to evaluate the relative utility of various substrate mapping techniques for the identification of critical sites for VT ablation. METHODS Electroanatomic substrate maps were created and retrospectively analyzed in 27 patients in whom 33 VT critical sites were identified. RESULTS Both abnormal bipolar voltage and omnipolar voltage encompassed all critical sites and were observed over a median of 66 cm2 (interquartile range [IQR] 41.3-86 cm2) and 52 cm2 (IQR 37.7-65.5 cm2), respectively. ILAM deceleration zones were observed over a median of 9 cm2 (IQR 5.0-11.1 cm2) and encompassed 22 critical sites (67%), while abnormal omnipolar conduction velocity (CV <1 mm/ms) was observed over 10 cm2 (IQR 5.3-16.6 cm2) and identified 22 critical sites (67%), and fractionation mapping was observed over a median of 4 cm2 (IQR 1.5-7.6 cm2) and encompassed 20 critical sites (61%). The mapping yield was the highest for fractionation + CV (2.1 critical sites/cm2) and least for bipolar voltage mapping (0.5 critical sites/cm2). CV identified 100% of critical sites in areas with a local point density of >50 points/cm2. CONCLUSION ILAM, fractionation, and CV mapping each identified distinct critical sites and provided a smaller area of interest than did voltage mapping alone. The sensitivity of novel mapping modalities improved with greater local point density.
Collapse
Affiliation(s)
- Hassan Khan
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | | | | | - Mohamed Shokr
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | | | - Lior Jankelson
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Alexander Kushnir
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Scott A Bernstein
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Michael A Spinelli
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Anthony Aizer
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Douglas Holmes
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Larry A Chinitz
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York
| | - Chirag R Barbhaiya
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York.
| |
Collapse
|
12
|
Karatela MF, Dowell RS, Friedman D, Jackson KP, Piccini JP. Omnipolar Versus Bipolar Electrode Mapping in Patients With Atrial Fibrillation Undergoing Catheter Ablation. JACC Clin Electrophysiol 2022; 8:1539-1552. [PMID: 36779625 DOI: 10.1016/j.jacep.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Peak-to-peak bipolar voltage varies with electrode orientation, fractionation, and collision events. Novel, omnipolar mapping is less dependent on electrode orientation but has limited data in humans. OBJECTIVES This study sought to compare bipolar peak-to-peak voltage with omnipolar maximum voltage (Vmax) during sinus rhythm in the left atrium of patients with persistent (PerAF) or paroxysmal atrial fibrillation (PAF). METHODS Baseline voltage maps were generated with bipolar and omnipolar mapping in 20 patients undergoing de novo catheter ablation for PerAF or PAF and 9 patients with known scar from prior cardiac surgery, to validate voltage-based scar approximations. Low voltage was defined as <0.5 mV and scar <0.1 mV. Mean voltage was compared with unpaired t testing. Percent low voltage and scar were compared with chi-square testing. A point-to-point comparison was performed with Bland-Altman analysis. RESULTS The mean age was 62.2 ± 9.9 years, 34% were women, and 41% had heart failure. Omnipolar mapping identified significantly higher mean voltage than bipolar mapping and classified less points as low voltage (PerAF: 32.90% vs 43.40%; PAF: 19.20% vs 25.60%) and scar (PerAF: 7.72% vs 12.10%; PAF: 4.03% vs 6.07%) (all P < 0.0001). Omnipolar Vmax displayed significant disagreement with bipolar by Bland-Altman analysis. Scar and low-voltage approximations were validated in atria with known scar, in which bipolar mapping overestimated the extent of low voltage (P < 0.0001) and scar (P < 0.0001). CONCLUSIONS Omnipolar mapping identifies higher voltage and has greater specificity for the detection of low voltage and scar than conventional bipolar mapping in patients with PerAF or PAF.
Collapse
Affiliation(s)
- Maham F Karatela
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Robert S Dowell
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Abbott, St Paul, Minnesota, USA
| | - Daniel Friedman
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Kevin P Jackson
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Jonathan P Piccini
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA.
| |
Collapse
|
13
|
Takigawa M, Goya M, Ikenouchi T, Shimizu Y, Amemiya M, Kamata T, Nishimura T, Tao S, Takahashi Y, Miyazaki S, Sasano T. Confirmation of the achievement of linear lesions using "activation vectors" based on omnipolar technology. Heart Rhythm 2022; 19:1792-1801. [PMID: 35961492 DOI: 10.1016/j.hrthm.2022.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although differential pacing conventionally has been used to confirm the achievement of block across linear lesion sets, high-resolution mapping demonstrates that pseudo-block is observed in 20%-30% of cases. OBJECTIVES The purpose of this study was to examine the reliability and versatility of a method using "activation vectors" based on omnipolar technology to confirm the block line. METHODS Linear ablation was performed during pacing, with the HD Grid catheter (Abbott) placed beside the linear lesion opposite the pacing site. The endpoint of complete linear lesion was complete inversion of the activation vectors to the opposite direction. When inversion of the activation vectors was not observed after 10 minutes of radiofrequency (RF) application, high-resolution mapping was performed to assess whether complete block was achieved. RESULTS In 33 patients, 24 cavotricuspid isthmus lines, 11 mitral isthmus (MI) lines, 16 posterior lines, and 2 intercaval lines were performed using this method. Of the total of 53 lines, 10 (18.9%) required intermediate evaluation of the block line with high-resolution mapping because of the absence of inversion of activation vectors despite 10 minutes of RF application, resulting in incomplete block with endocardial gaps or epicardial conductions. Additional RF applications finally achieved inversion in direction of activation vectors in the 10 lines. In total, the present method can diagnose achievement of complete block line with 100% accuracy, whereas conventional differential pacing misdiagnosed incomplete block with epicardial conduction in posterior lines in 3 cases and in MI lines in 2 cases. CONCLUSION Confirmation of complete linear lesions using "activation vectors" based on omnipolar technology is a reliable and versatile method.
Collapse
Affiliation(s)
- Masateru Takigawa
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan.
| | - Masahiko Goya
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Takashi Ikenouchi
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yuki Shimizu
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Miki Amemiya
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Tatsuaki Kamata
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Takuro Nishimura
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Susumu Tao
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yoshihide Takahashi
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Shinsuke Miyazaki
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Vázquez-Calvo S, Garre P, Sanchez-Somonte P, Borras R, Quinto L, Caixal G, Pujol-Lopez M, Althoff T, Guasch E, Arbelo E, Tolosana JM, Brugada J, Mont L, Roca-Luque I. Orthogonal high-density mapping with ventricular tachycardia isthmus analysis vs. pure substrate ventricular tachycardia ablation: A case-control study. Front Cardiovasc Med 2022; 9:912335. [PMID: 35979023 PMCID: PMC9376368 DOI: 10.3389/fcvm.2022.912335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Substrate-based ablation has become a successful technique for ventricular tachycardia (VT) ablation. High-density (HD) mapping catheters provide high-resolution electroanatomical maps and better discrimination of local abnormal electrograms. The HD Grid Mapping Catheter is an HD catheter with the ability to map orthogonal signals on top of conventional bipolar signals, which could provide better discrimination of the arrhythmic substrate. On the other hand, conventional mapping techniques, such as activation mapping, when possible, help to identify the isthmus of the tachycardia. Aim The purpose of this study was to compare clinical outcomes after using two different VT ablation strategies: one based on extensive mapping with the HD Grid Mapping Catheter, including VT isthmus analysis, and the other based on pure substrate ablation. Methods Forty consecutive patients undergoing VT ablation with extensive HD mapping method in the hospital clinic (November 2018–November 2019) were included. Clinical outcomes were compared with a historical cohort of 26 consecutive patients who underwent ablation using a scar dechanneling technique before 2018. Results The density of mapping points was higher in the extensive mapping group (2370.24 ± 920.78 vs. 576.45 ± 294.46; p < 0.001). After 1 year of follow-up, VT recurred in 18.4% of patients in the extensive mapping group vs. 34.6% of patients in the historical control group (p = 0.14), with a significantly greater reduction of VT burden: VT episodes (81.7 ± 7.79 vs. 43.4 ± 19.9%, p < 0.05), antitachycardia pacing (99.45 ± 2.29 vs. 33.9 ± 102.5%, p < 0.001), and implantable cardioverter defibrillator (ICD) shocks (99 ± 4.5 vs. 64.7 ± 59.9%, p = 0.02). Conclusion The use of a method based on extensive mapping with the HD Grid Mapping Catheter and VT isthmus analysis allows better discrimination of the arrhythmic substrate and could be associated with a greater decrease in VT burden.
Collapse
Affiliation(s)
- Sara Vázquez-Calvo
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paz Garre
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Sanchez-Somonte
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Roger Borras
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Levio Quinto
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gala Caixal
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Margarida Pujol-Lopez
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Till Althoff
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Guasch
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Elena Arbelo
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Maria Tolosana
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Josep Brugada
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Lluís Mont
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ivo Roca-Luque
- Department of Cardiology, Cardiovascular Clinical Institute, Arrythmia Section, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
15
|
Miyazaki S. Low-voltage areas identified with new mapping catheters and technologies. J Cardiovasc Electrophysiol 2022; 33:1412-1413. [PMID: 35437822 DOI: 10.1111/jce.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shinsuke Miyazaki
- Department of Advanced Arrhythmia Research and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Wiles BM, Li AC, Waight MC, Saba MM. Contemporary Management of Complex Ventricular Arrhythmias. Arrhythm Electrophysiol Rev 2022; 11:e04. [PMID: 35734144 PMCID: PMC9194914 DOI: 10.15420/aer.2021.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 12/02/2022] Open
Abstract
Percutaneous catheter ablation is an effective and safe therapy that can eliminate ventricular tachycardia, reducing the risks of both recurrent arrhythmia and shock therapies from a defibrillator. Successful ablation requires accurate identification of arrhythmic substrate and the effective delivery of energy to the targeted tissue. A thorough pre-procedural assessment is needed before considered 3D electroanatomical mapping can be performed. In contemporary practice, this must combine traditional electrophysiological techniques, such as activation and entrainment mapping, with more novel physiological mapping techniques for which there is an ever-increasing evidence base. Novel techniques to maximise energy delivery to the tissue must also be considered and balanced against their associated risks of complication. This review provides a comprehensive appraisal of contemporary practice and the evidence base that supports recent developments in mapping and ablation, while also considering potential future developments in the field.
Collapse
Affiliation(s)
- Benedict M Wiles
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Anthony C Li
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Michael C Waight
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Magdi M Saba
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| |
Collapse
|
17
|
Yavin HD, Sroubek J, Yarnitsky J, Bubar ZP, Higuchi K, Zilberman I, Basu S, Anter E. Direction-aware mapping algorithms have minimal impact on bipolar voltage maps created using high-resolution multielectrode catheters. J Cardiovasc Electrophysiol 2021; 33:73-80. [PMID: 34822200 DOI: 10.1111/jce.15299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Direction-aware mapping algorithms improve the accuracy of voltage mapping by measuring the maximal voltage amplitude recorded in the direction of wavefront propagation. While beneficial for stationary catheters, its utility for roving catheters collecting electrograms (EGMs) at multiple angles is unknown. OBJECTIVE To compare the directional dependence of bipolar voltage amplitude between stationary and roving catheters. METHODS In 10 swine, a transcaval ablation line with a gap was created. The gap was mapped using an array catheter (Optrell™; Biosense Webster). In Step 1, the array was kept stationary over the gap, and four voltage maps were created during activation of the gap from superior, inferior, septal, and lateral directions. In Step 2, four additional maps were created; however, the catheter was allowed to move with points acquired at multiple angles. In Step 3, the gap was remapped; however, bipoles were computed using a direction-aware mapping algorithm. RESULTS In a stationary catheter position, bipolar voltage distribution was influenced by the direction of activation with maximal differences obtained between orthogonal directions 32% (13%-53%). However, roving the catheter produced similar bipolar voltage maps irrespective of the direction of activation 11% (5%-18%). A direction-aware mapping algorithm was beneficial for reducing the directional dependence of voltage maps created by stationary catheters but not by roving catheters. CONCLUSION The directional dependency of bipolar voltage amplitude is greatest when the catheter is stationary. However, when the catheter is allowed to rove and collect EGMs at multiple angles as occurs clinically, the directional dependence of bipolar voltage is minimal.
Collapse
Affiliation(s)
- Hagai D Yavin
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jakub Sroubek
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Zachary P Bubar
- Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Biosense Webster of Johnson & Johnson, Irvine, California, USA
| | - Koji Higuchi
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Israel Zilberman
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shubhayu Basu
- Biosense Webster of Johnson & Johnson, Irvine, California, USA
| | - Elad Anter
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Mark-Josephson and Andrew Wit Research Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Maximizing detection and optimal characterization of local abnormal ventricular activity in nonischemic cardiomyopathy: LAVA MAX & LAVA FLOW. Heart Rhythm O2 2021; 2:529-536. [PMID: 34667969 PMCID: PMC8505212 DOI: 10.1016/j.hroo.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Sites of local abnormal ventricular activation (LAVA) are ventricular tachycardia (VT) ablation targets. In nonischemic cardiomyopathy (NICM), minute and sparse LAVA potentials are mapped with difficulty with direction-sensitive bipolar electrograms (EGM). A method for its optimal characterization independent of electrode orientation has not been explored. Objective Maximize voltages and calculate overall activation direction at LAVA sites, independent of catheter and wave direction, using omnipolar technology (OT) in NICM. Methods Four diseased isolated human hearts from NICM patients were mapped epicardially using a high-density grid. Bipolar EGMs with at least 2 activation segments separated by at least 25 ms were identified. We used OT to maximize voltages (LAVAMAX) and measured overall wave direction (LAVAFLOW) for both segments. Clinically relevant voltage proportion (CRVP) was used to estimate the proportion of directionally corrected bipoles. Concordance and changes in direction vectors were measured via mean vector length and angular change. Results OT provides maximal LAVA voltages (OT: 0.83 ± 0.09 mV vs Bi: 0.61 ± 0.06 mV, P < .05) compared to bipolar EGMs. OT optimizes LAVA voltages, with 32% (CRVP) of LAVA bipoles directionally corrected by OT. OT direction vectors at LAVA sites demonstrate general concordance, with an average of 62% ± 5%. A total of 72% of direction vectors change by more than 35° at LAVA sites. Conclusion The omnipolar mapping approach allows maximizing voltage and determining the overall direction of wavefront activity at LAVA sites in NICM.
Collapse
|
19
|
Riccio J, Alcaine A, Rocher S, Martinez-Mateu L, Laranjo S, Saiz J, Laguna P, Martínez JP. Characterization of Atrial Propagation Patterns and Fibrotic Substrate With a Modified Omnipolar Electrogram Strategy in Multi-Electrode Arrays. Front Physiol 2021; 12:674223. [PMID: 34539424 PMCID: PMC8446360 DOI: 10.3389/fphys.2021.674223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: The omnipolar electrogram method was recently proposed to try to generate orientation-independent electrograms. It estimates the electric field from the bipolar electrograms of a clique, under the assumption of locally plane and homogeneous propagation. The local electric field evolution over time describes a loop trajectory from which omnipolar signals in the propagation direction, substrate and propagation features, are derived. In this work, we propose substrate and conduction velocity mapping modalities based on a modified version of the omnipolar electrogram method, which aims to reduce orientation-dependent residual components in the standard approach. Methods: A simulated electrical propagation in 2D, with a tissue including a circular patch of diffuse fibrosis, was used for validation. Unipolar electrograms were calculated in a multi-electrode array, also deriving bipolar electrograms along the two main directions of the grid. Simulated bipolar electrograms were also contaminated with real noise, to assess the robustness of the mapping strategies against noise. The performance of the maps in identifying fibrosis and in reproducing unipolar reference voltage maps was evaluated. Bipolar voltage maps were also considered for performance comparison. Results: Results show that the modified omnipolar mapping strategies are more accurate and robust against noise than bipolar and standard omnipolar maps in fibrosis detection (accuracies higher than 85 vs. 80% and 70%, respectively). They present better correlation with unipolar reference voltage maps than bipolar and original omnipolar maps (Pearson's correlations higher than 0.75 vs. 0.60 and 0.70, respectively). Conclusion: The modified omnipolar method improves fibrosis detection, characterization of substrate and propagation, also reducing the residual sensitivity to directionality over the standard approach and improving robustness against noise. Nevertheless, studies with real electrograms will elucidate its impact in catheter ablation interventions.
Collapse
Affiliation(s)
- Jennifer Riccio
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Alejandro Alcaine
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Sara Rocher
- Centro de Investigación e Innovación en Ingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Laura Martinez-Mateu
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Sergio Laranjo
- Department of Pediatric Cardiology, Hospital Santa Marta, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Javier Saiz
- Centro de Investigación e Innovación en Ingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Juan Pablo Martínez
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| |
Collapse
|
20
|
Zoppo F, Gagno G, Perazza L, Cocciolo A, Mugnai G, Vaccari D, Calzolari V. Electroanatomic voltage mapping for tissue characterization beyond arrhythmia definition: A systematic review. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1432-1448. [PMID: 34096635 DOI: 10.1111/pace.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) reconstruction by means of electroanatomic mapping (EAM) systems, allows for the understanding of the mechanism of focal or re-entrant arrhythmic circuits, which can be identified by means of dynamic (activation and propagation) and static (voltage) color-coded maps. However, besides this conventional use, EAM may offer helpful anatomical and functional information for tissue characterisation in several clinical settings. Today, data regarding electromechanical myocardial viability, scar detection in ischaemic and nonischaemic cardiomyopathy and arrhythmogenic right ventricle dysplasia (ARVC/D) definition are mostly consolidated, while emerging results are becoming available in contexts such as Brugada syndrome and cardiac resynchronisation therapy (CRT) implant procedures. As part of an invasive procedure, EAM has not yet been widely adopted as a stand-alone tool in the diagnostic path. We aim to review the data in the current literature regarding the use of 3D EAM systems beyond the definition of arrhythmia.
Collapse
Affiliation(s)
- Franco Zoppo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giulia Gagno
- Dipartimento di Cardiologia, Azienda Sanitaria Universitaria Giuliano Isontina, ed Università degli Studi di Trieste, Trieste, Italy
| | - Luca Perazza
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Andrea Cocciolo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giacomo Mugnai
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Arzignano, Vicenza, Italy
| | - Diego Vaccari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Feltre, Belluno, Italy
| | - Vittorio Calzolari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Treviso, Treviso, Italy
| |
Collapse
|
21
|
Zoppo F, Gagno G, Perazza L, Cocciolo A, Mugnai G, Vaccari D, Calzolari V. Electroanatomic voltage mapping and characterisation imaging for "right ventricle arrhythmic syndromes" beyond the arrhythmia definition: a comprehensive review. Int J Cardiovasc Imaging 2021; 37:2347-2357. [PMID: 33761057 DOI: 10.1007/s10554-021-02221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
Three-dimensional (3D) reconstruction by means of electroanatomic mapping (EAM) systems, allows for the understanding of the mechanism of focal or re-entrant arrhythmic circuits along with pacing techniques. However, besides this conventional use, EAM may offer helpful anatomical and functional information. Data regarding electromechanical scar detection in ischaemic (and nonischaemic) cardiomyopathy are mostly consolidated, while emerging results are becoming available in contexts such as arrhythmogenic right ventricular dysplasia (ARVC/D) definition and Brugada syndrome. As part of an invasive procedure, EAM has not yet been widely adopted as a stand-alone tool in the diagnostic path. We aim to review the current literature regarding the use of 3D EAM systems for right ventricle (RV) functional characterisation beyond the definition of arrhythmia.
Collapse
Affiliation(s)
- Franco Zoppo
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy.
| | - Giulia Gagno
- Azienda Sanitaria Universitaria Giuliano Isontina - Dipartimento di Cardiologia Trieste, Trieste, Italy
| | - Luca Perazza
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Andrea Cocciolo
- Elettrofisiologia, U.O.C. Di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giacomo Mugnai
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Arzignano, Vicenza, Italy
| | - Diego Vaccari
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Feltre, Belluno, Italy
| | - Vittorio Calzolari
- Elettrofisiologia, U.O.C Di Cardiologia, Ospedale Civile Treviso, Treviso, Italy
| |
Collapse
|
22
|
Initial experience of the High-Density Grid catheter in patients undergoing catheter ablation for atrial fibrillation. J Interv Card Electrophysiol 2021; 63:259-266. [PMID: 33638777 DOI: 10.1007/s10840-021-00950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE A significant proportion of patients undergoing catheter ablation for atrial fibrillation (AF) experience arrhythmia recurrence. This is mostly due to pulmonary vein reconnection (PVR). Whether mapping using High-Density Wave (HDW) technology is superior to standard bipolar (SB) configuration at detecting PVR is unknown. We aimed to evaluate the efficacy of HDW technology compared to SB mapping in identifying PVR. METHODS High-Density (HD) multipolar Grid catheters were used to create left atrial geometries and voltage maps in 36 patients undergoing catheter ablation for AF (either due to recurrence of an atrial arrhythmia from previous AF ablation or de novo AF ablation). Nineteen SB maps were also created and compared. Ablation was performed until pulmonary vein isolation was achieved. RESULTS Median time of mapping with HDW was 22.3 [IQR: 8.2] min. The number of points collected with HDW (13299.6±1362.8 vs 6952.8±841.9, p<0.001) and used (2337.3±158.0 vs 1727.5±163.8, p<0.001) was significantly higher compared to SB. Moreover, HDW was able to identify more sleeves (16 for right and 8 for left veins), where these were confirmed electrically silent by SB, with significantly increased PVR sleeve size as identified by HDW (p<0.001 for both right and left veins). Importantly, with the use of HDW, the ablation strategy changed in 23 patients (64% of targeted veins) with a significantly increased number of lesions required as compared to SB for right (p=0.005) and left veins (p=0.003). CONCLUSION HDW technology is superior to SB in detecting pulmonary vein reconnections. This could potentially result into a significant change in ablation strategy and possibly to increased success rate following pulmonary vein isolation.
Collapse
|
23
|
Campbell T, Bennett RG, Kotake Y, Kumar S. Updates in Ventricular Tachycardia Ablation. Korean Circ J 2021; 51:15-42. [PMID: 33377327 PMCID: PMC7779814 DOI: 10.4070/kcj.2020.0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) due to recurrent ventricular tachycardia is an important clinical sequela in patients with structural heart disease. As a result, ventricular tachycardia (VT) has emerged as a major clinical and public health problem. The mechanism of VT is predominantly mediated by re-entry in the presence of arrhythmogenic substrate (scar), though focal mechanisms are also important. Catheter ablation for VT, when compared to standard medical therapy, has been shown to improve VT-free survival and burden of device therapies. Approaches to VT ablation are dependent on the underlying disease process, broadly classified into idiopathic (no structural heart disease) or structural heart disease (ischemic or non-ischemic heart disease). This update aims to review recent advances made for the treatment of VT ablation, with respect to current clinical trials, peri-procedure risk assessments, pre-procedural cardiac imaging, electro-anatomic mapping and advances in catheter and non-catheter based ablation techniques.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Glashan CA, Beukers HKC, Tofig BJ, Tao Q, Blom S, Mertens B, Kristiansen SB, Zeppenfeld K. Mini-, Micro-, and Conventional Electrodes: An in Vivo Electrophysiology and Ex Vivo Histology Head-to-Head Comparison. JACC Clin Electrophysiol 2020; 7:197-205. [PMID: 33602400 DOI: 10.1016/j.jacep.2020.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study sought to assess the relative effect of catheter, tissue, and catheter-tissue parameters, on the ability to determine the amount of viable myocardium in vivo. BACKGROUND Although multiple variables impact bipolar voltages (BVs), electrode size, interelectrode spacing, and directional dependency are of particular interest with the development of catheters incorporating mini and microelectrodes. METHODS Nine swine with early reperfusion myocardial infarctions were mapped using the QDot catheter and then remapped using a Pentaray catheter. All QDot points were matched with Pentaray points within 5 mm. The swine were sacrificed, and mapping data projected onto the heart. Transmural biopsies corresponding to mapping points were obtained, allowing a comparison of electrograms recorded by mini, micro-, and conventional electrodes with histology. RESULTS The conventional BV of 2,322 QDot points was 1.9 ± 1.3 mV. The largest of the 3 microelectrode BVs (BVµMax) average 4.8 ± 3.1 mV. The difference between the largest (BVμMax) and smallest (BVμMin) at a given location was 53.7 ± 18.1%. The relationships between both BVμMax and BVμMin and between the conventional BV and BVμMax were positively related but with a significant spread in data, which was more pronounced for the latter. Pentaray points positively related to the BVμMax with poor fit. On histology, increasing viable myocardium increased voltage, but both the slope coefficient and fit were best for BVμMax. CONCLUSIONS Using histology, we could demonstrate that BVμMax is superior to identify viable myocardium compared with BVC and BV using the Pentaray catheter. The ability to simultaneously record 3 BVμs with different orientations, for the same beat, with controllable contact and selecting BVμMax for local BV may partially compensate for wave front direction.
Collapse
Affiliation(s)
- Claire A Glashan
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans K C Beukers
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bawer J Tofig
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Qian Tao
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sira Blom
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Mertens
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
Montgomery JA. Focal arrhythmia ablation with multipolar mapping: Does it still make sense to stay off-grid? J Cardiovasc Electrophysiol 2020; 31:2298-2299. [PMID: 32583626 DOI: 10.1111/jce.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/29/2022]
Abstract
Multipolar mapping (MPM) has primarily been studied in complex arrhythmia substrates or reentrant circuits. Chieng et al. use a case-control design to compare MPM and point-by-point mapping with an ablation catheter for focal atrial and ventricular tachycardias, showing reduced procedure times and earlier electrograms in the MPM group but no difference in clinical outcomes. It is plausible that faster mapping and better delineation of earliest signals may translate to improved clinical outcomes if studied in a randomized trial in a larger population. Future MPM systems will guide the operator toward the focus in real-time and may even triangulate the source in three dimensions, giving an estimate of depth within the myocardium or likely focus in the opposite chamber.
Collapse
Affiliation(s)
- Jay A Montgomery
- Arrhythmia Section, Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Hospital, Tennessee Valley Health System, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Porta-Sánchez A. Beyond High-Density Mapping. JACC Clin Electrophysiol 2020; 6:324-326. [DOI: 10.1016/j.jacep.2019.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022]
|
27
|
Campbell T, Trivic I, Bennett RG, Anderson RD, Turnbull S, Pham T, Nalliah C, Kizana E, Watts T, Lee G, Kumar S. Catheter ablation of ventricular arrhythmia guided by a high-density grid catheter. J Cardiovasc Electrophysiol 2020; 31:474-484. [PMID: 31930658 DOI: 10.1111/jce.14351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Minimal data exist on the Advisor HD Grid (HDG) catheter and the Precision electroanatomic mapping (EAM) system for ventricular arrhythmia (VA) procedures. Using the HDG catheter, the EAM uses the high-density (HD) wave mapping and best duplicate software to compare the maximum peak-to-peak bipolar voltages within a small zone independent of wavefront direction and catheter orientation. This study aimed to summarize the procedural experience for VAs using the HDG catheter. METHODS Clinical and procedural characteristics of VA ablation procedures were retrospectively reviewed that used the HDG catheter and the Precision EAM over a 12-month period. RESULTS A total of 22 patients, 18 with sustained ventricular tachycardia and 4 with premature ventricular contractions were included. Clinically indicated left and/or right ventricular (LV, RV, respectively), and aortic maps were created. LV substrate maps (n = 13) used a median 1700 points (interquartile range [IQR]25%-75% , 1427-2412) out of a median 18 573 (IQR25%-75% , 15 713-41 067) total points collected. RV substrate maps (n = 11) used a median 1435 points (IQR25%-75% , 1114-1871) out of a median 16 005 (IQR25%-75% , 11 063-21 405) total points collected. Total point utilization, used vs collected, was 9%. Mean mapping time was 43 ± 17 minutes (substrate, 34 ± 18 minutes; activation/pace mapping, 9 ± 13 minutes). Acute success was achieved in 56 (86%) and short-term success achieved in 16 patients (73%) at a median follow-up of 145 days (IQR25%-75% , 62-273 days). There were no procedural complications. CONCLUSION HD wave mapping using the novel HDG catheter integrated with the Precision EAM is safe and feasible in VA procedures in the LV, RV, and aorta. Mapping times are consistent with other multielectrode mapping catheters.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ivana Trivic
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Robert D Anderson
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Samual Turnbull
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Timmy Pham
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Chrishan Nalliah
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Troy Watts
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Magtibay K, Porta-Sánchez A, Haldar SK, Deno DC, Massé S, Nanthakumar K. Reinserting Physiology into Cardiac Mapping Using Omnipolar Electrograms. Card Electrophysiol Clin 2019; 11:525-536. [PMID: 31400876 DOI: 10.1016/j.ccep.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Omnipolar electrograms (EGMs) make use of biophysical electric fields that accompany activation along the surface of the myocardium. A grid-like electrode array provides bipolar signals in orthogonal directions to deliver catheter-orientation-independent assessments of cardiac electrophysiology. Studies with myocyte monolayers, isolated animal and human hearts, and anesthetized animals validated the tenets of omnipolar EGMs. The combination of information from omnipolar-based activation vectors and voltages may aid in localizing areas of scar, lesion gaps, wavefront disorganization, and fractionation or collision during arrhythmias. The goal of omnipolar EGMs is to better characterize myocardium through reintroducing electrogram direction related fundamentals of cardiac electrophysiology.
Collapse
Affiliation(s)
- Karl Magtibay
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Andreu Porta-Sánchez
- Hospital Universitario Quironsalud Madrid, Calle Diego de Velázquez, 1, 28223 Pozuelo de Alarcón, Madrid, Spain; Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Shouvik K Haldar
- Royal Brompton & Harefield NHS Foundation Trust, Harefield Hospital, Hill End Road, Harefield, Uxbridge UB9 6JH, UK
| | - Don Curtis Deno
- Abbott Laboratories, One St. Jude Medical Drive, St. Paul, MN 55117, USA
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|