1
|
Koski TM, Zhang B, Mogouong J, Wang H, Chen Z, Li H, Bushley KE, Sun J. Distinct metabolites affect the phloem fungal communities in ash trees (Fraxinus spp.) native and nonnative to the highly invasive emerald ash borer (AGRILUS PLANIPENNIS). PLANT, CELL & ENVIRONMENT 2024; 47:4116-4134. [PMID: 38922989 DOI: 10.1111/pce.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Emerald ash borer (EAB, Agrilus planipennis) is an invasive killer of ash trees (Fraxinus spp.) in North America and Europe. Ash species co-evolved with EAB in their native range in Asia are mostly resistant, although the precise mechanism(s) remain unclear. Very little is also known about EAB or ash tree microbiomes. We performed the first joint comparison of phloem mycobiome and metabolites between a native and a nonnative ash species, infested and uninfested with EAB, in conjunction with investigation of larval mycobiome. Phloem mycobiome communities differed between the tree species, but both were unaffected by EAB infestation. Several indicator taxa in the larval gut shared a similarly high relative abundance only with the native host trees. Widely targeted metabolomics revealed 24 distinct metabolites in native trees and 53 metabolites in nonnative trees, respectively, that differed in relative content between infested and uninfested trees only in one species. Interestingly, four metabolites shared a strong relationship with the phloem mycobiomes, majority of which affected only the native trees. Collectively, our results demonstrate a complex interplay between host tree chemistry and mycobiome, and suggest the shared relationships between the mycobiomes of the native host tree and EAB may reflect their shared co-evolution.
Collapse
Affiliation(s)
- Tuuli-Marjaana Koski
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Judith Mogouong
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Hualing Wang
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Zhenzhu Chen
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Huiping Li
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | | | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Sun J, Koski TM, Wickham JD, Baranchikov YN, Bushley KE. Emerald Ash Borer Management and Research: Decades of Damage and Still Expanding. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:239-258. [PMID: 37708417 DOI: 10.1146/annurev-ento-012323-032231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Since the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.
Collapse
Affiliation(s)
- Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/Collece of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China; ,
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- Hebei Basic Science Center for Biotic Interactions/Collece of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China; ,
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- A.N. Severstov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation;
| | - Yuri N Baranchikov
- V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation;
| | - Kathryn E Bushley
- Agricultural Research Service, US Department of Agriculture, Ithaca, New York, USA;
| |
Collapse
|
3
|
She W, Xiao Q, Meng Y, Zhao P, Wu C, Huang F, Cai M, Zhang J, Yu Z, Ur Rehman K, Peng D, Zheng L. Isolated and identified pathogenic bacteria from black soldier fly larvae with "soft rot" reared in mass production facilities and its incidence characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:85-95. [PMID: 37003117 DOI: 10.1016/j.wasman.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The black soldier fly larvae (BSFL) can transform organic waste into high-end proteins, lipids, chitin, biodiesel, and melanin at an industrial scale. But scaling up of its production capacity has also posed health risks to the insect itself. In this investigation, larval "soft rot" which is occurring in mass production facilities that cause larval developmental inhibition and a certain degree of death was reported. Responsible pathogen GX6 was isolated from BSFL with "soft rot" and identified to be Paenibacillus thiaminolyticus. No obvious impact on larval growth was observed when treated with GX6 spores, whereas mortality of 6-day-old BSFL increased up to 29.33% ± 2.05% when GX6 vegetative cells (1 × 106 cfu/g) were inoculated into the medium. Moreover, higher temperature further enhanced the BSFL mortality and suppressed larval development, but increasing substrate moisture showed the opposite effect. The middle intestine of infected larvae became swollen and transparent after dissection and examination. Transmission electron microscopy (TEM) observation indicated that GX6 had destroyed the peritrophic matrix and intestinal microvilli and damaged epithelial cells of larval gut. Furthermore, 16S rRNA gene sequencing analysis of intestinal samples revealed that gut microflora composition was significantly altered by GX6 infection as well. It can be noticed that Dysgonomonas, Morganella, Myroides, and Providencia bacteria became more numerous in the intestines of GX6-infected BSFL as compared to controls. This study will lay foundations for efficient control of "soft rot" and promote healthy development of the BSFL industry to contribute to organic waste management and circular economy.
Collapse
Affiliation(s)
- Wangjun She
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Qi Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ying Meng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Peng Zhao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Chuanliang Wu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; DIL Deutsches Institut für Lebensmitteltechnik e. V. - German Institute of Food Technologies, Quakenbrück, Germany; Poultry Research Institute, Rawalpindi, Livestock and Dairy Development Department, Punjab, Pakistan
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Hubei Hongshan Laboratory, Wuhan, PR China.
| |
Collapse
|
4
|
Barragán-Fonseca KY, Nurfikari A, van de Zande EM, Wantulla M, van Loon JJA, de Boer W, Dicke M. Insect frass and exuviae to promote plant growth and health. TRENDS IN PLANT SCIENCE 2022; 27:646-654. [PMID: 35248491 DOI: 10.1016/j.tplants.2022.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Beneficial soil microorganisms can contribute to biocontrol of plant pests and diseases, induce systemic resistance (ISR) against attackers, and enhance crop yield. Using organic soil amendments has been suggested to stimulate the abundance and/or activity of beneficial indigenous microbes in the soil. Residual streams from insect farming (frass and exuviae) contain chitin and other compounds that may stimulate beneficial soil microbes that have ISR and biocontrol activity. Additionally, changes in plant phenotype that are induced by beneficial microorganisms may directly influence plant-pollinator interactions, thus affecting plant reproduction. We explore the potential of insect residual streams derived from the production of insects as food and feed to promote plant growth and health, as well as their potential benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Katherine Y Barragán-Fonseca
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; Grupo en Conservación y Manejo de Vida Silvestre, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Azkia Nurfikari
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Els M van de Zande
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Max Wantulla
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; Soil Biology Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Discovery of Rickettsia and Rickettsiella Intracellular Bacteria in Emerald Ash Borer Agrilus planipennis by Metagenomic Study of Larval Gut Microbiome in European Russia. FORESTS 2022. [DOI: 10.3390/f13070974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) is a quarantine pest posing a threat to ash trees all over Europe. This wood-boring beetle native to Asia is quickly spreading in North America and European Russia, and approaching the European Union and the Middle East. It is important to study microorganisms associated with this pest, because the knowledge of its “natural enemies” and “natural allies” could be potentially used for the control of the pest. All previously published information about the A. planipennis microbiome was obtained in North America and China. We present the first study on procaryotes associated with A. planipennis in Europe. Alive larvae were sampled from under the bark of Fraxinus pennsylvanica in the Moscow Oblast and the gut microbiome was studied using metagenomic methods. Next-generation Illumina-based amplicon sequencing of the v3-v4 region 16S-RNA gene was performed. In total, 439 operational taxonomic units from 39 families and five phyla were detected. The dominant families in our samples were Pseudomonadaceae, Erwiniaceae and Enterobacteriaceae, in accordance with the published information on the larval gut microbiome in North America and China. We detected intracellular bacteria in A. planipennis for the first time, namely Rickettsia (Rickettsiaceae) and Rickettsiella (Diplorickettsiaceae). Representatives of the genus Rickettsia are known to be in mutualistic symbiosis with some phytophagous insects, while Rickettsiella bacteria are pathogenic to many arthropods. The finding of Rickettsia and Rickettsiella opens perspectives for future research on the interactions between these bacteria and A. planipennis and the possible use of these interactions for the control of the pest.
Collapse
|
6
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
7
|
Bozorov TA, Toshmatov ZO, Kahar G, Zhang D, Shao H, Gafforov Y. Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus mali in Tianshan Forests. Front Microbiol 2021; 12:743831. [PMID: 34721341 PMCID: PMC8554297 DOI: 10.3389/fmicb.2021.743831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of the gut bacteria to address this absence of fungi in the larval gut. The results demonstrated that the gut bacteria were able to selectively inhibit wild apple tree-associated fungi. Among them, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC, and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, our study showed that the gut bacteria could originate from noninfested apple microflora during infestation. Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.
Collapse
Affiliation(s)
- Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Laboratory of Molecular Biochemistry and Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Zokir O Toshmatov
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Laboratory of Molecular Biochemistry and Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
8
|
The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure. Sci Rep 2021; 11:15911. [PMID: 34354124 PMCID: PMC8342481 DOI: 10.1038/s41598-021-95146-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
The microbiome composition of living organisms is closely linked to essential functions determining the fitness of the host for thriving and adapting to a particular ecosystem. Although multiple factors, including the developmental stage, the diet, and host-microbe coevolution have been reported to drive compositional changes in the microbiome structures, very few attempts have been made to disentangle their various contributions in a global approach. Here, we focus on the emerald ash borer (EAB), an herbivorous pest and a real threat to North American ash tree species, to explore the responses of the adult EAB gut microbiome to ash leaf properties, and to identify potential predictors of EAB microbial variations. The relative contributions of specific host plant properties, namely bacterial and fungal communities on leaves, phytochemical composition, and the geographical coordinates of the sampling sites, to the EAB gut microbial community was examined by canonical analyses. The composition of the phyllosphere microbiome appeared to be a strong predictor of the microbial community structure in EAB guts, explaining 53 and 48% of the variation in fungi and bacteria, respectively. This study suggests a potential covariation of the microorganisms associated with food sources and the insect gut microbiome.
Collapse
|
9
|
Fungi associated with galleries of the emerald ash borer. Fungal Biol 2021; 125:551-559. [PMID: 34140151 DOI: 10.1016/j.funbio.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/16/2020] [Accepted: 02/14/2021] [Indexed: 11/21/2022]
Abstract
The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect.
Collapse
|