1
|
Abdullaeva Y, Ratering S, Rosado-Porto D, Ambika Manirajan B, Glatt A, Schnell S, Cardinale M. Domestication caused taxonomical and functional shifts in the wheat rhizosphere microbiota, and weakened the natural bacterial biocontrol against fungal pathogens. Microbiol Res 2024; 281:127601. [PMID: 38218094 DOI: 10.1016/j.micres.2024.127601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.
Collapse
Affiliation(s)
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - David Rosado-Porto
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | | | - Andrea Glatt
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany.
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany; Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Reid TE, Kavamura VN, Torres-Ballesteros A, Smith ME, Abadie M, Pawlett M, Clark IM, Harris JA, Mauchline TH. Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat. THE ISME JOURNAL 2024; 18:wrae131. [PMID: 38990206 PMCID: PMC11292143 DOI: 10.1093/ismejo/wrae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.
Collapse
Affiliation(s)
- Tessa E Reid
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Vanessa N Kavamura
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | - Monique E Smith
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Maïder Abadie
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Present address: INRAE, UR1264 MycSA, CS2032, 33882 Villenave d’Ornon, France
| | - Mark Pawlett
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Ian M Clark
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Jim A Harris
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
3
|
Thompson MEH, Shrestha A, Rinne J, Limay-Rios V, Reid L, Raizada MN. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023; 12:1322. [PMID: 38003787 PMCID: PMC10675081 DOI: 10.3390/pathogens12111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.
Collapse
Affiliation(s)
- Michelle E. H. Thompson
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Jeffrey Rinne
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street E, Ridgetown, ON N0P 2C0, Canada
| | - Lana Reid
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.E.H.T.)
| |
Collapse
|
4
|
Michl K, Berg G, Cernava T. The microbiome of cereal plants: The current state of knowledge and the potential for future applications. ENVIRONMENTAL MICROBIOME 2023; 18:28. [PMID: 37004087 PMCID: PMC10064690 DOI: 10.1186/s40793-023-00484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The plant microbiota fulfils various crucial functions related to host health, fitness, and productivity. Over the past years, the number of plant microbiome studies continued to steadily increase. Technological advancements not only allow us to produce constantly increasing datasets, but also to extract more information from them in order to advance our understanding of plant-microbe interactions. The growing knowledge base has an enormous potential to improve microbiome-based, sustainable agricultural practices, which are currently poorly understood and have yet to be further developed. Cereal plants are staple foods for a large proportion of the world's population and are therefore often implemented in microbiome studies. In the present review, we conducted extensive literature research to reflect the current state of knowledge in terms of the microbiome of the four most commonly cultivated cereal plants. We found that currently the majority of available studies are targeting the wheat microbiome, which is closely followed by studies on maize and rice. There is a substantial gap, in terms of published studies, addressing the barley microbiome. Overall, the focus of most microbiome studies on cereal plants is on the below-ground microbial communities, and there is more research on bacteria than on fungi and archaea. A meta-analysis conducted in the frame of this review highlights microbiome similarities across different cereal plants. Our review also provides an outlook on how the plant microbiota could be harnessed to improve sustainability of cereal crop production.
Collapse
Affiliation(s)
- Kristina Michl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Golm, OT Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Southampton, SO17 1BJ UK
| |
Collapse
|
5
|
Gruet C, Abrouk D, Börner A, Muller D, Moënne-Loccoz Y. Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. PLANT, CELL & ENVIRONMENT 2023; 46:1018-1032. [PMID: 36494920 DOI: 10.1111/pce.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits. We chose five wheat species representing genomic profiles AA (Triticum urartu), BB {SS} (Aegilops speltoides), DD (Aegilops tauschii), AABB (Triticum dicoccon) and AABBDD (Triticum aestivum) and assessed by quantitative polymerase chain reaction their ability to interact with free-nitrogen fixers, 1-aminocyclopropane-1-carboxylate deaminase producers, 2,4-diacetylphloroglucinol producers and auxin producers via the phenylpyruvate decarboxylase pathway, in combination with Illumina MiSeq metabarcoding analysis of N fixers (and of the total bacterial community). We found that the abundance of the microbial functional groups could fluctuate according to wheat genomic profile, as did the total bacterial abundance. N fixer diversity and total bacterial diversity were also influenced significantly by wheat genomic profile. Often, rather similar results were obtained for genomes DD (Ae. tauschii) and AABBDD (T. aestivum), pointing for the first time that the D genome could be particularly important for wheat-bacteria interactions.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
6
|
Abstract
The genus Bacillus has been widely applied in contemporary agriculture as an environmentally-friendly biological agent. However, the real effect of commercial Bacillus-based fertilizers and pesticides varies immensely in the field. To harness Bacillus for efficient wheat production, we reviewed the diversity, functionality, and applicability of wheat-associated native Bacillus for the first time. Our main findings are: (i) Bacillus spp. inhabit the rhizosphere, root, stem, leaf, and kernel of wheat; (ii) B. subtilis and B. velezensis are the most widely endophytic species that can be isolated from both below and aboveground tissues; (iii) major functions of these representative strains are promotion of plant growth and alleviation of both abiotic and biotic stresses in wheat; (iv) stability and effectiveness are 2 major challenges during field application; (v) a STVAE pipeline that includes 5 processes, namely, Screen, Test, Validation, Application, and Evaluation, has been proposed for the capture and refinement of wheat-associated Bacillus spp. In particular, this review comprehensively addresses possible solutions, concerns, and criteria during the development of native Bacillus-based inoculants for sustainable wheat production.
Collapse
|
7
|
Sapkota R, Jørgensen LN, Boeglin L, Nicolaisen M. Fungal Communities of Spring Barley from Seedling Emergence to Harvest During a Severe Puccinia hordei Epidemic. MICROBIAL ECOLOGY 2023; 85:617-627. [PMID: 35229200 DOI: 10.1007/s00248-022-01985-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All plant tissues from leaves, stems, and roots are hosting a wide diversity of fungal species. Our understanding of the assembly of this diversity of fungi during the plant growth cycle is limited. Here, we characterized the mycobiome of three spring barley cultivars grown in Zealand, Denmark, at weekly intervals during a growth season from seedling emergence to senescence and seed maturity. A notable proportion of members of the fungal communities were shared among different plant organs, but community dynamics were tissue-specific. A severe attack of Puccinia hordei occurring during the vegetative stage had profound effects on the mycobiome, and P. hordei biomass displaced that of other taxa. Plant tissue type was the most important factor determining the mycobiome, but also plant age was contributing significantly. Using a random forest model, we found that specific members of the mycobiome were responding differently to plant age, for instance, Olpidium and Articulospora in roots, Dioszegia and Sporobolomyces in leaves, Pyrenophora in stems, and Epicoccum in heads. A co-occurrence network analysis revealed complex interactions among fungal OTUs, and network connectivity was changing as per plant growth stage and plant tissue type. This study contributes to the understanding of assembly of fungal communities in cereals by providing a detailed description of fungal communities associated with barley. This knowledge will be vital for microbiome assisted plant health management and our study will serve as an important baseline for future efforts to harness microbiota in cereal health.
Collapse
Affiliation(s)
- Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Laure Boeglin
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
8
|
Zhang YL, Guo XJ, Huang X, Guo RJ, Lu XH, Li SD, Zhang H. The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease. BIOLOGY 2023; 12:biology12020143. [PMID: 36829422 PMCID: PMC9952826 DOI: 10.3390/biology12020143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The root microbiota contributes to the plant's defense against stresses and pathogens. However, the co-association pattern of functional bacteria that improves plant resistance has not been interpreted clearly. Using Illumina high-throughput sequencing technology, the root bacterial community profiles of six cucumber cultivars with different resistance in response to the causative agent of cucumber Fusarium wilt (CFW), Fusarium oxysporum f. sp. cucumerinum (Foc), were analyzed. The principal coordinate analysis indicated that the interactions of the cultivars and pathogens drove the cucumber root bacterial communities (p = 0.001). The resistance-specific differential genera across the cultivars were identified, including Massilia in the resistant cultivars, unclassified Enterobacteriaceae in resistant CL11 and JY409, Pseudomonas in JY409, Cronobacter in moderately resistant ZN106, and unclassified Rhizobiaceae and Streptomyces in susceptible ZN6. The predominant root bacterium Massilia accounted for the relative abundance of up to 28.08-61.55%, but dramatically declined to 9.36% in Foc-inoculated susceptible ZN6. Pseudomonas ASV103 and ASV48 of Pseudomonadaceae and Cronobacter ASV162 of Enterobacteriaceae were consistently differential across the cultivars at the phylum, genus, and ASV levels. Using the culture-based method, antagonistic strains of Enterobacteriaceae with a high proportion of 51% were isolated. Furthermore, the bacterial complexes of Pantoea dispersa E318 + Pseudomonas koreensis Ps213 and Cronobacter spp. C1 + C7 reduced the disease index of CFW by 77.2% and 60.0% in the pot experiment, respectively. This study reveals the co-association of specific root bacteria with host plants and reveals insight into the suppressing mechanism of resistant cultivars against CFW disease by regulating the root microbiota.
Collapse
Affiliation(s)
- Yu-Lu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiao-Jing Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Rong-Jun Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Xiao-Hong Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Malacrinò A, Abdelfattah A, Belgacem I, Schena L. Plant genotype influence the structure of cereal seed fungal microbiome. Front Microbiol 2023; 13:1075399. [PMID: 36687609 PMCID: PMC9846234 DOI: 10.3389/fmicb.2022.1075399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Plant genotype is a crucial factor for the assembly of the plant-associated microbial communities. However, we still know little about the variation of diversity and structure of plant microbiomes across host species and genotypes. Here, we used six species of cereals (Avena sativa, Hordeum vulgare, Secale cereale, Triticum aestivum, Triticum polonicum, and Triticum turgidum) to test whether the plant fungal microbiome varies across species, and whether plant species use different mechanisms for microbiome assembly focusing on the plant ears. Using ITS2 amplicon metagenomics, we found that host species influences the diversity and structure of the seed-associated fungal communities. Then, we tested whether plant genotype influences the structure of seed fungal communities across different cultivars of T. aestivum (Aristato, Bologna, Rosia, and Vernia) and T. turgidum (Capeiti, Cappelli, Mazzancoio, Trinakria, and Timilia). We found that cultivar influences the seed fungal microbiome in both species. We found that in T. aestivum the seed fungal microbiota is more influenced by stochastic processes, while in T. turgidum selection plays a major role. Collectively, our results contribute to fill the knowledge gap on the wheat seed microbiome assembly and, together with other studies, might contribute to understand how we can manipulate this process to improve agriculture sustainability.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria,Leibniz-Institute for Agricultural Engineering Potsdam (ATB) and University of Potsdam, Potsdam, Germany,*Correspondence: Ahmed Abdelfattah, ✉
| | - Imen Belgacem
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, Le Rheu, France
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
10
|
Ao J, Wang Z, Yang Q, Li B, Li Y, Li Y. Differentially enriched fungal communities in root rot resistant and susceptible varieties of tobacco ( Nicotiana tabacum L.) under continuous monoculture cropping. Front Microbiol 2022; 13:1036091. [PMID: 36569055 PMCID: PMC9768445 DOI: 10.3389/fmicb.2022.1036091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Root rot is a major disease of tobacco that causes crop losses of up to 15-20% of global tobacco production. The present study aimed to compare the fungal communities, and physicochemical properties of rhizosphere soil of root rot resistant (Yunyan 87; Y) and susceptible (Honghua Dajinyuan; H) tobacco varieties. Four treatments of each variety under continuous monocropping cultures included: control groups (HT0 and YT0); 2 years of continuous cropping (HT2 and YT2); 4 years of continuous cropping (HT4 and YT4); and 8 years of continuous cropping (YT8 and HT8). The soil physicochemical properties including available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic matter (OM) were increased (p < 0.05) from HT0 to HT8, whereas the resistant variety (Y) showed an inconsistent trend from YT0 to YT8. The pH was decreased (p < 0.05) from HT0 to HT8 and YT0 to YT8. Further, the disease incidence rate and disease index of the H variety also increased (p < 0.05) from HT0 to HT8. Alpha diversity analysis revealed that susceptible variety had higher fungal diversity from HT0 to HT8, while resistant variety exhibited lower diversity from YT0 to YT8. Ascomycota and Mortierellomycota were the dominant phyla in H and Y. Ascomycota abundance was increased (p < 0.05), whereas Mortierellomycota was decreased (p < 0.05) for continuous cropping years in H and Y. Penicillium, Fusarium, and Chrysosporium were the top three abundant genera in both varieties. The relative abundance of Penicillium spp. was increased (p < 0.05) in Y, whereas decreased (p < 0.05) in H variety. Specifically, Chrysosporium spp. was increased (p < 0.05) whereas Fusarium spp. was decreased (p < 0.05) in YT2. Redundancy analysis (RDA) revealed that fungal communities in H and Y rhizospheres were influenced by pH and carbon content, respectively. The top three highly enriched (p < 0.05) pathways in both varieties were fatty acid elongation, fatty acid β-oxidation I, and glyoxylate cycle. Our study concluded that resistant variety exhibited lower fungal diversity and functionally enriched metabolic pathways than susceptible variety that might be the result of molecular breeding practices, however, the relative abundance of Penicillium spp. were increased in resistant variety under long-term monoculture cropping.
Collapse
Affiliation(s)
- Jincheng Ao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Tuer Lanyi Agricultural Technology Co., Ltd., Kunming, China
| | - Zheng Wang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Qigang Yang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Bo Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Jacquiod S, Raynaud T, Pimet E, Ducourtieux C, Casieri L, Wipf D, Blouin M. Wheat Rhizosphere Microbiota Respond to Changes in Plant Genotype, Chemical Inputs, and Plant Phenotypic Plasticity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.903008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modern wheat varieties that were selected since the Green Revolution are generally grown with synthetic chemical inputs, and ancient varieties released before1960 without. Thus, when changes occur in rhizosphere microbiota structure, it is not possible to distinguish if they are due to (i) changes in wheat genotypes by breeding, (ii) modifications of the environment via synthetic chemical inputs, or (iii) phenotypic plasticity, the interaction between wheat genotype and the environment. Using a crossed factorial design in the field, we evaluated the effects of either modern or ancient wheat varieties grown with or without chemical inputs (a N fertilizer, a fungicide, and an herbicide) on “microbiome as a phenotype.” We analyzed the rhizosphere microbiota by bacterial and fungal amplicon sequencing, coupled with microscope observations of mycorrhizal associations. We found that plant genotype and phenotypic plasticity had the most influence on rhizosphere microbiota, whereas inputs had only marginal effects. Phenotypic plasticity was particularly important in explaining diversity variations in bacteria and fungi but had no impact on the mycorrhizal association. Our results show an interest in considering the interaction between wheat genotype and the environment in breeding programs, by focusing on genes involved in the phenotypic plasticity of plant-microbe interactions.
Collapse
|
12
|
Gruet C, Muller D, Moënne-Loccoz Y. Significance of the Diversification of Wheat Species for the Assembly and Functioning of the Root-Associated Microbiome. Front Microbiol 2022; 12:782135. [PMID: 35058901 PMCID: PMC8764353 DOI: 10.3389/fmicb.2021.782135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Wheat, one of the major crops in the world, has had a complex history that includes genomic hybridizations between Triticum and Aegilops species and several domestication events, which resulted in various wild and domesticated species (especially Triticum aestivum and Triticum durum), many of them still existing today. The large body of information available on wheat-microbe interactions, however, was mostly obtained without considering the importance of wheat evolutionary history and its consequences for wheat microbial ecology. This review addresses our current understanding of the microbiome of wheat root and rhizosphere in light of the information available on pre- and post-domestication wheat history, including differences between wild and domesticated wheats, ancient and modern types of cultivars as well as individual cultivars within a given wheat species. This analysis highlighted two major trends. First, most data deal with the taxonomic diversity rather than the microbial functioning of root-associated wheat microbiota, with so far a bias toward bacteria and mycorrhizal fungi that will progressively attenuate thanks to the inclusion of markers encompassing other micro-eukaryotes and archaea. Second, the comparison of wheat genotypes has mostly focused on the comparison of T. aestivum cultivars, sometimes with little consideration for their particular genetic and physiological traits. It is expected that the development of current sequencing technologies will enable to revisit the diversity of the wheat microbiome. This will provide a renewed opportunity to better understand the significance of wheat evolutionary history, and also to obtain the baseline information needed to develop microbiome-based breeding strategies for sustainable wheat farming.
Collapse
Affiliation(s)
| | | | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
13
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Kavamura VN, Mendes R, Bargaz A, Mauchline TH. Defining the wheat microbiome: Towards microbiome-facilitated crop production. Comput Struct Biotechnol J 2021; 19:1200-1213. [PMID: 33680361 PMCID: PMC7902804 DOI: 10.1016/j.csbj.2021.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Wheat is one of the world's most important crops, but its production relies heavily on agrochemical inputs which can be harmful to the environment when used excessively. It is well known that a multitude of microbes interact with eukaryotic organisms, including plants, and the sum of microbes and their functions associated with a given host is termed the microbiome. Plant-microbe interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the development of next generation DNA sequencing technology, our understanding of the plant microbiome structure has dramatically increased. Considering that defining the wheat microbiome is key to leverage crop production in a sustainable way, here we describe how different factors drive microbiome assembly in wheat, including crop management, edaphic-environmental conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary approach to define and explore the wheat core microbiome to generate solutions based on microbial (synthetic) communities or single inoculants. Advances in plant microbiome research will facilitate the development of microbial strategies to guarantee a sustainable intensification of crop production.
Collapse
Affiliation(s)
- Vanessa N. Kavamura
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariúna, SP, Brazil
| | - Adnane Bargaz
- Agrobiosciences, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tim H. Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|