1
|
Yang Z, Ji N, Huang J, Wang J, Drewniak L, Yin H, Hu C, Zhan Y, Yang Z, Zeng L, Liu Z. Decreasing lactate input for cost-effective sulfidogenic metal removal in sulfate-rich effluents: Mechanistic insights from (bio)chemical kinetics to microbiome response. CHEMOSPHERE 2023; 330:138662. [PMID: 37044147 DOI: 10.1016/j.chemosphere.2023.138662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
High material cost is the biggest barrier for the industrial use of low-molecular-weight organics (i.e. lactate) as external carbon and electron source for sulfidogenic metal removal in sulfate-rich effluents. This study aims to provide mechanistic evidence from kinetics to microbiome analysis by batch modeling to support the possibility of decreasing the lactate input to achieve cost-effective application. The results showed that gradient COD/SO42- ratios at a low level had promising treatment performance, reaching neutralized pH with nearly total elimination of COD (91%-99%), SO42- (85%-99%), metals (80%-99%) including Cu, Zn, and Mn. First-order kinetics exhibited the best fit (R2 = 0.81-0.98) to (bio)chemical reactions, and the simulation results revealed that higher COD/SO42- accelerated the reaction rate of SO42- and COD but not suitable to that of metals. On the other hand, we found that the decreasing COD/SO42- ratio increased average path distance but decreased clustering coefficient and heterogeneity in microbial interaction network. Genetic prediction found that the sulfate-reduction-related functions were significantly correlated with the reaction kinetics changed with COD/SO42- ratios. Our study, combining reaction kinetics with microbiome analysis, demonstrates that the use of lactate as a carbon source under low COD/SO42- ratios entails significant efficiency of metal removal in sulfate-rich effluent using SRB-based technology. However, further studies should be carried out, including parameter-driven optimization and life cycle assessments are necessary, for its practical application.
Collapse
Affiliation(s)
- Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Ne Ji
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Jing Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Lukasz Drewniak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Cheng Hu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yazhi Zhan
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Li Zeng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion and Utilization Technology, Chengdu, 610106, Sichuan, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
2
|
Giddings LA, Kunstman K, Moumen B, Asiama L, Green S, Delafont V, Brockley M, Samba-Louaka A. Isolation and Genome Analysis of an Amoeba-Associated Bacterium Dyella terrae Strain Ely Copper Mine From Acid Rock Drainage in Vermont, United States. Front Microbiol 2022; 13:856908. [PMID: 35677904 PMCID: PMC9169046 DOI: 10.3389/fmicb.2022.856908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Protozoa play important roles in microbial communities, regulating populations via predation and contributing to nutrient cycling. While amoebae have been identified in acid rock drainage (ARD) systems, our understanding of their symbioses in these extreme environments is limited. Here, we report the first isolation of the amoeba Stemonitis from an ARD environment as well as the genome sequence and annotation of an associated bacterium, Dyella terrae strain Ely Copper Mine, from Ely Brook at the Ely Copper Mine Superfund site in Vershire, Vermont, United States. Fluorescent in situ hybridization analysis showed this bacterium colonizing cells of Stemonitis sp. in addition to being outside of amoebal cells. This amoeba-resistant bacterium is Gram-negative with a genome size of 5.36 Mbp and GC content of 62.5%. The genome of the D. terrae strain Ely Copper Mine encodes de novo biosynthetic pathways for amino acids, carbohydrates, nucleic acids, and lipids. Genes involved in nitrate (1) and sulfate (7) reduction, metal (229) and antibiotic resistance (37), and secondary metabolite production (6) were identified. Notably, 26 hydrolases were identified by RAST as well as other biomass degradation genes, suggesting roles in carbon and energy cycling within the microbial community. The genome also contains type IV secretion system genes involved in amoebae resistance, revealing how this bacterium likely survives predation from Stemonitis sp. This genome analysis and the association of D. terrae strain Ely Copper Mine with Stemonitis sp. provide insight into the functional roles of amoebae and bacteria within ARD environments.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry, Smith College, Northampton, MA, United States.,Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Kevin Kunstman
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| | - Laurent Asiama
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Stefan Green
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| | - Matthew Brockley
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR7267, Poitiers, France
| |
Collapse
|