1
|
Carratalà A, Chappelier C, Selmoni O, Guillaume AS, Chmiel HE, Pasche N, Weil C, Kohn T, Joost S. Vertical distribution and seasonal dynamics of planktonic cyanobacteria communities in a water column of deep mesotrophic Lake Geneva. Front Microbiol 2023; 14:1295193. [PMID: 38169808 PMCID: PMC10758419 DOI: 10.3389/fmicb.2023.1295193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Temperate subalpine lakes recovering from eutrophication in central Europe are experiencing harmful blooms due to the proliferation of Planktothrix rubescens, a potentially toxic cyanobacteria. To optimize the management of cyanobacteria blooms there is the need to better comprehend the combination of factors influencing the diversity and dominance of cyanobacteria and their impact on the lake's ecology. The goal of this study was to characterize the diversity and seasonal dynamics of cyanobacteria communities found in a water column of Lake Geneva, as well as the associated changes on bacterioplankton abundance and composition. Methods We used 16S rRNA amplicon high throughput sequencing on more than 200 water samples collected from surface to 100 meters deep monthly over 18 months. Bacterioplankton abundance was determined by quantitative PCR and PICRUSt predictions were used to explore the functional pathways present in the community and to calculate functional diversity indices. Results The obtained results confirmed that the most dominant cyanobacteria in Lake Geneva during autumn and winter was Planktothrix (corresponding to P. rubescens). Our data also showed an unexpectedly high relative abundance of picocyanobacterial genus Cyanobium, particularly during summertime. Multidimensional scaling of Bray Curtis dissimilarity revealed that the dominance of P. rubescens was coincident with a shift in the bacterioplankton community composition and a significant decline in bacterioplankton abundance, as well as a temporary reduction in the taxonomic and PICRUSt2 predicted functional diversity. Conclusion Overall, this study expands our fundamental understanding of the seasonal dynamics of cyanobacteria communities along a vertical column in Lake Geneva and the ecology of P. rubescens, ultimately contributing to improve our preparedness against the potential occurrence of toxic blooms in the largest lake of western Europe.
Collapse
Affiliation(s)
- Anna Carratalà
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Chappelier
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oliver Selmoni
- Department of Embryology, Department of Plant Biology, Carnegie Institution for Science, Washington, DC, United States
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie S. Guillaume
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannah E. Chmiel
- Eusserthal Ecosystem Research Station (EERES), Institute for Environmental Sciences (iES), University of Kaiserslautern-Landau, Landau, Germany
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Natacha Pasche
- Limnology Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Weil
- ENAC-IT4R, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, ENAC, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory for Biological Geochemistry (LGB), Geospatial Molecular Epidemiology Group (GEOME), ENAC Faculty, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Increases in Picocyanobacteria Abundance in Agriculturally Eutrophic Pampean Lakes Inferred from Historical Records of Secchi Depth and Chlorophyll-a. WATER 2022. [DOI: 10.3390/w14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoplankton size structure has profound consequences on food-web organization and energy transfer. Presently, picocyanobacteria (size < 2 µm) represent a major fraction of the autotrophic plankton of Pampean lakes. Glyphosate is known to stimulate the development of picocyanobacteria capable of degrading the herbicide. Due to the worldwide adoption of glyphosate-resistant crops, herbicide usage has increased sharply since the mid-1990s. Unfortunately, there are very few studies (none for the Pampa region) reporting picocyanobacteria abundance before 2000. The proliferation of µm sized particles should decrease Secchi disc depth (ZSD). Therefore ZSD, conditional to chlorophyll-a, may serve as an indicator of picocyanobacteria abundance. We use generalized additive models (GAMs) to analyze a “validation” dataset consisting of 82 records of ZSD, chlorophyll-a, and picocyanobacteria abundance from two Pampean lakes surveys (2009 and 2015). In support of the hypothesis, ZSD was negatively related to picocyanobacteria after accounting for the effect of chlorophyll-a. We then fitted a “historical” dataset using hierarchical GAMs to compare ZSD conditional to chlorophyll-a, before and after 2000. We estimated that ZSD levels during 2000–2021 were, on average, only about half as deep as those during 1980–1999. We conclude that the adoption of glyphosate-resistant crops has stimulated outbreaks of picocyanobacteria populations, resulting in lower water transparency.
Collapse
|