1
|
Tabut P, Yongyod R, Ungcharoen R, Kerdsin A. The Distribution of Mobile Colistin-Resistant Genes, Carbapenemase-Encoding Genes, and Fluoroquinolone-Resistant Genes in Escherichia coli Isolated from Natural Water Sources in Upper Northeast Thailand. Antibiotics (Basel) 2022; 11:antibiotics11121760. [PMID: 36551417 PMCID: PMC9774790 DOI: 10.3390/antibiotics11121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is considered a serious problem in many countries, including Thailand. AMR and antibiotic resistance genes (ARGs) could transfer between humans, animals, and the environment causing a threat to human health. This study described the antibiotic resistance of Escherichia coli (E. coli) from surface water, wastewater, and discharge water in the Namsuay watershed in upper northeast Thailand. The water samples were collected in the dry and wet seasons. The 113 E. coli isolates were confirmed using a polymerase chain reaction and examined for their antibiotic susceptibility, ARGs, and genetic relationship. The results indicated that E. coli was resistant to the following classes of antibiotics: fluoroquinolone, third-generation cephalosporin, polymyxin, and carbapenem. The isolates carried the mcr-1, mcr-8, mcr-9, blaoxa-48-like, aac(6')-bl-cr, qepA, and oqxAB genes. Phylogroup B1 was a predominant group among the E. coli in the study. In addition, the E. coli isolates from the discharge water (a hospital and a fish farm) had a higher prevalence of antibiotic resistance and harboured more ARGs than the other water sample sources. The presence of antibiotic-resistant E. coli and ARG contamination in the natural water source reflected an AMR management issue that could drive strategic policy regarding the active surveillance and prevention of AMR contamination.
Collapse
|
2
|
Singh NS, Singhal N, Kumar M, Virdi JS. Public health implications of plasmid-mediated quinolone and aminoglycoside resistance genes in Escherichia coli inhabiting a major anthropogenic river of India. Epidemiol Infect 2022; 150:1-21. [PMID: 35343419 PMCID: PMC9044524 DOI: 10.1017/s095026882200053x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
Presence of antimicrobial resistance (AMR) genes in Escherichia coli inhabiting anthropogenic rivers is an important public health concern because plasmid-mediated AMR genes can easily spread to other pathogens by horizontal gene transfer. Besides β -lactams, quinolones and aminoglycosides are the major antibiotics against E. coli. In the present study, we have investigated the presence of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance genes in E. coli isolated from a major river of northern India. Our results revealed that majority of the strains were phenotypically susceptible for fluoroquinolones and some aminoglycosides like amikacin, netilmicin, tobramycin and gentamicin. However, 16.39% of the strains were resistant for streptomycin, 8.19% for kanamycin and 3.30% for gentamicin. Of the various PMQR genes investigated, only qnrS1 was present in 24.59% of the strains along with ISEcl2 . Aminoglycoside-resistance genes like strA-strB were found to be present in 16.39%, aphA1 in 8.19% and aacC 2 in only 3.30% of the strains. Though, no co-relation was observed between phenotypic resistance for fluorquinolones and presence of PMQR genes, phenotypic resistance for streptomycin, kanamycin and gentamicin exactly co-related with the presence of the genes strA-strB , aphA1 and aacC2 , respectively. Moreover, all the AMR genes discerned in aquatic E. coli were found to be situated on conjugative plasmids and, thus easily transferrable. Our study accentuates the importance of routine surveillance of urban rivers to curtail the spread of AMR genes in aquatic pathogens.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
3
|
Ferreira C, Bikkarolla SK, Frykholm K, Pohjanen S, Brito M, Lameiras C, Nunes OC, Westerlund F, Manaia CM. Polyphasic characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates suggests vertical transmission of the blaKPC-3 gene. PLoS One 2021; 16:e0247058. [PMID: 33635888 PMCID: PMC7909683 DOI: 10.1371/journal.pone.0247058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/30/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae are a major global threat in healthcare facilities. The propagation of carbapenem resistance determinants can occur through vertical transmission, with genetic elements being transmitted by the host bacterium, or by horizontal transmission, with the same genetic elements being transferred among distinct bacterial hosts. This work aimed to track carbapenem resistance transmission by K. pneumoniae in a healthcare facility. The study involved a polyphasic approach based on conjugation assays, resistance phenotype and genotype analyses, whole genome sequencing, and plasmid characterization by pulsed field gel electrophoresis and optical DNA mapping. Out of 40 K. pneumoniae clinical isolates recovered over two years, five were carbapenem- and multidrug-resistant and belonged to multilocus sequence type ST147. These isolates harboured the carbapenemase encoding blaKPC-3 gene, integrated in conjugative plasmids of 140 kbp or 55 kbp, belonging to replicon types incFIA/incFIIK or incN/incFIIK, respectively. The two distinct plasmids encoding the blaKPC-3 gene were associated with distinct genetic lineages, as confirmed by optical DNA mapping and whole genome sequence analyses. These results suggested vertical (bacterial strain-based) transmission of the carbapenem-resistance genetic elements. Determination of the mode of transmission of antibiotic resistance in healthcare facilities, only possible based on polyphasic approaches as described here, is essential to control resistance propagation.
Collapse
Affiliation(s)
- Catarina Ferreira
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Santosh K. Bikkarolla
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Karolin Frykholm
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Saga Pohjanen
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Olga C. Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail: (CMM); (FW)
| | - Célia M. Manaia
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- * E-mail: (CMM); (FW)
| |
Collapse
|
4
|
López Cabo M, Romalde JL, Simal-Gandara J, Gago Martínez A, Giráldez Fernández J, Bernárdez Costas M, Pascual del Hierro S, Pousa Ortega Á, Manaia CM, Abreu Silva J, Rodríguez Herrera J. Identification of Emerging Hazards in Mussels by the Galician Emerging Food Safety Risks Network (RISEGAL). A First Approach. Foods 2020; 9:E1641. [PMID: 33182842 PMCID: PMC7697966 DOI: 10.3390/foods9111641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023] Open
Abstract
Emerging risk identification is a priority for the European Food Safety Authority (EFSA). The goal of the Galician Emerging Food Safety Risks Network (RISEGAL) is the identification of emerging risks in foods produced and commercialized in Galicia (northwest Spain) in order to propose prevention plans and mitigation strategies. In this work, RISEGAL applied a systematic approach for the identification of emerging food safety risks potentially affecting bivalve shellfish. First, a comprehensive review of scientific databases was carried out to identify hazards most quoted as emerging in bivalves in the period 2016-2018. Then, identified hazards were semiquantitatively assessed by a panel of food safety experts, who scored them accordingly with the five evaluation criteria proposed by EFSA: novelty, soundness, imminence, scale, and severity. Scores determined that perfluorinated compounds, antimicrobial resistance, Vibrio parahaemolyticus, hepatitis E virus (HEV), and antimicrobial residues are the emerging hazards that are considered most imminent and severe and that could cause safety problems of the highest scale in the bivalve value chain by the majority of the experts consulted (75%). Finally, in a preliminary way, an exploratory study carried out in the Galician Rías highlighted the presence of HEV in mussels cultivated in class B production areas.
Collapse
Affiliation(s)
- Marta López Cabo
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, E15782 Santiago de Compostela, Spain;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo–Ourense Campus, E32004 Ourense, Spain;
| | - Ana Gago Martínez
- Department Analytical and Food Chemistry, Universidade de Vigo, 36310 Vigo, Spain; (A.G.M.); (J.G.F.)
| | - Jorge Giráldez Fernández
- Department Analytical and Food Chemistry, Universidade de Vigo, 36310 Vigo, Spain; (A.G.M.); (J.G.F.)
| | - Marta Bernárdez Costas
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Santiago Pascual del Hierro
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Ánxela Pousa Ortega
- Direccion Xeral de Innovación e Xestión da Saúde Pública, Consellería de Sanidade, Xunta de Galicia, 15781 Santiago de Compostela, Spain;
| | - Célia M. Manaia
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.M.M.); (J.A.S.)
| | - Joana Abreu Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.M.M.); (J.A.S.)
| | - Juan Rodríguez Herrera
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| |
Collapse
|
5
|
Tavares RDS, Tacão M, Figueiredo AS, Duarte AS, Esposito F, Lincopan N, Manaia CM, Henriques I. Genotypic and phenotypic traits of bla CTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. WATER RESEARCH 2020; 184:116079. [PMID: 32717492 DOI: 10.1016/j.watres.2020.116079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are relevant sources of antibiotic resistance into aquatic environments. Disinfection of WWTPs' effluents (e.g. by UV-C irradiation) may attenuate this problem, though some clinically relevant bacteria have been shown to survive disinfection. In this study we characterized 25 CTX-M-producing Escherichia coli strains isolated from a WWTP's UV-C-irradiated effluent, aiming to identify putative human health hazards associated with such effluents. Molecular typing indicated that the strains belong to the phylogroups A, B2 and C and clustered into 9 multilocus sequence types (STs), namely B2:ST131 (n = 7), A:ST58 (n = 1), A:ST155 (n = 4), C:ST410 (n = 2), A:ST453 (n = 2), A:ST617 (n = 2), A:ST744 (n = 1), A:ST1284 (n = 3) and a putative novel ST (n = 3). PCR-screening identified 9 of the 20 antibiotic resistance genes investigated [i.e. sul1, sul2, sul3, tet(A), tet(B), blaOXA-1-like, aacA4, aacA4-cr and qnrS1]. The more prevalent were sul1, sul2 (n = 15 isolates) and tet(A) (n = 14 isolates). Plasmid restriction analysis indicated diverse plasmid content among strains (14 distinct profiles) and mating assays yielded cefotaxime-resistant transconjugants for 8 strains. Two of the transconjugants displayed a multi-drug resistance (MDR) phenotype. All strains were classified as cytotoxic to Vero cells (9 significantly more cytotoxic than the positive control) and 10 of 21 strains were invasive towards this cell line (including all B2:ST131 strains). The 10 strains tested against G. mellonella larvae exhibited a virulent behaviour. Twenty-four and 7 of the 25 strains produced siderophores and haemolysins, respectively. Approximately 66% of the strains formed biofilms. Genome analysis of 6 selected strains identified several virulence genes encoding toxins, siderophores, and colonizing, adhesion and invasion factors. Freshwater microcosms assays showed that after 28 days of incubation 3 out of 6 strains were still detected by cultivation and 4 strains by qPCR. Resistance phenotypes of these strains remained unaltered. Overall, we confirmed WWTP's UV-C-treated outflow as a source of MDR and/or virulent E. coli strains, some probably capable of persisting in freshwater, and that carry conjugative antibiotic resistance plasmids. Hence, disinfected wastewater may still represent a risk for human health. More detailed evaluation of strains isolated from wastewater effluents is urgent, to design treatments that can mitigate the release of such bacteria.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - Ana S Figueiredo
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana S Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar Em Saúde (CIIS), Estrada da Circunvalação, 3504-505, Viseu, Portugal
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
6
|
Adekanmbi AO, Akinpelu MO, Olaposi AV, Oyelade AA. Diversity of Extended Spectrum Beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a Sick Bay located in a University Health Care Facility. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 2020; 67:1804-1815. [PMID: 32239649 PMCID: PMC7540485 DOI: 10.1111/tbed.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried blaCTX-M -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.
Collapse
Affiliation(s)
| | - Miriam R. Fernandes
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Fábio P. Sellera
- Department of Internal MedicineSchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Ralf Lopes
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Daniel F. Monte
- Department of Food and Experimental NutritionFaculty of Pharmaceutical SciencesFood Research CenterUniversity of São PauloSão PauloBrazil
| | - Alícia G. Hippólito
- Department of Veterinary Surgery and AnesthesiologySchool of Veterinary Medicine and Animal ScienceUniversidade Estadual Paulista (UNESP)BotucatuBrazil
| | - Liliane Milanelo
- Reception Center for WildlifeEcological Park TietêSão PauloBrazil
| | - Tânia F. Raso
- Department of PathologySchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Nilton Lincopan
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
8
|
Yoon MY, Kim YB, Ha JS, Seo KW, Noh EB, Son SH, Lee YJ. Molecular characteristics of fluoroquinolone-resistant avian pathogenic Escherichia coli isolated from broiler chickens. Poult Sci 2020; 99:3628-3636. [PMID: 32616259 PMCID: PMC7597827 DOI: 10.1016/j.psj.2020.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major pathogen in the poultry industry worldwide including Korea. In this study, the phenotypic and genotypic characteristics of 33 fluoroquinolone (FQ)-resistant APEC isolates from broilers were analyzed. All FQ-resistant APEC isolates showed amino acid exchanges at both gyrA and parC and high minimal inhibitory concentrations for FQs. A total of 11 (33.3%) isolates were positive for the plasmid-mediated quinolone resistance (PMQR) genes, qnrA (8 isolates) and qnrS (3 isolates), and showed multidrug resistance. Among the 11 PMQR-positive isolates, 1 and 2 isolates carried blaCTX-1 and blaCTX-15, respectively, as extended-spectrum β-lactamase (ESBL) producers, and the non-ESBL gene, blaTEM-1, was found in 4 isolates. Among 3 aminoglycoside-resistant isolates, aac(3)-II was only detected in 1 isolate. All 8 APEC isolates with resistance to tetracycline carried the tetA gene. Overall, 6 of the 7 trimethoprim-sulfamethoxazole-resistant isolates carried the sul1 or sul2 genes, while only 2 of the 8 chloramphenicol-resistant isolates carried the catA1 gene. Although 9 isolates carried class I integrons, only 4 isolates carried the gene cassettes dfrA12-aadA2 (2 isolates), dfrA17-aadA5 (1 isolate), extX-psp-aadA2 (1 isolate), and dfrA27 (1 isolate). The most common plasmid replicon was FIB (8 isolates, 72.7%), followed by K/B (4 isolates, 36.4%). Antimicrobial resistance monitoring and molecular analysis of APEC should be performed continuously to surveil the transmission between poultry farms.
Collapse
Affiliation(s)
- Mi Young Yoon
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong-gun, Chung Nam, 32291, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jong Su Ha
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong-gun, Chung Nam, 32291, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, 39762, USA
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Se Hyun Son
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Nowrotek M, Jałowiecki Ł, Płaza G. Fluoroquinolone Resistance and Virulence Properties Among Wastewater Aeromonas caviae Isolates. Microb Drug Resist 2020; 27:179-189. [PMID: 32552456 DOI: 10.1089/mdr.2019.0287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The study provides data on antibiotic resistance as well as the virulence characteristics of Aeromonas caviae isolated from raw and treated wastewater. The isolates were identified as A. caviae by 16S rRNA gene sequencing. In the analyzed strains, high frequency for the following genes was observed: aac(6')-Ib-cr, qnrB, and qnrD. The presence of qnrA and ogxB genes was not found in any strain. The higher frequency of the investigated genes was observed in strains from raw wastewater (RW). The strains of A. caviae showed multiple antibiotic resistance evaluated by the disk diffusion method. Multiple antibiotic resistance indices ranged from 0.36 to 0.69. Susceptibility to six heavy metals (Cd+2, Zn+2, Cu+2, Co+2, Mn+2, and Ni+2) was recorded for all the isolates. The order of metal resistance of A. caviae was Co > Cu > Zn > Cd > Ni > Mn. All the strains of A. caviae showed β-hemolytic activity. Enzymes of amylase, cellulase, and lipase were produced by all isolates. Only the strains from RW had the ability to form biofilms and showed motility. The obtained results indicate that wastewater is a potential source and/or reservoir of virulent and multidrug-resistant A. caviae as "high-risk isolates."
Collapse
Affiliation(s)
- Monika Nowrotek
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - Łukasz Jałowiecki
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| | - Grażyna Płaza
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Katowice, Poland
| |
Collapse
|
10
|
Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214217. [PMID: 31671709 PMCID: PMC6862664 DOI: 10.3390/ijerph16214217] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for blaOXA-1 gene (0%–57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with blaCTX-M and intI1 (0.725 ≤ R2 ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (blaOXA-1 and,blaCTX-M), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment.
Collapse
|
11
|
Conjugal transfer of PMQR from uropathogenic E.coli under high ciprofloxacin selection pressure generates gyrA mutation. Microb Pathog 2019; 132:26-29. [DOI: 10.1016/j.micpath.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022]
|
12
|
Ferreira C, Bogas D, Bikarolla SK, Varela AR, Frykholm K, Linheiro R, Nunes OC, Westerlund F, Manaia CM. Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain. CHEMOSPHERE 2019; 220:748-759. [PMID: 30611073 DOI: 10.1016/j.chemosphere.2018.12.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative and two of these, pH1FC54_330 and pH1FC54_140, contained metal and antibiotic resistance genes. Transconjugants obtained in the absence or presence of tellurite (0.5 μM or 5 μM), arsenite (0.5 μM, 5 μM or 15 μM) or ceftazidime (10 mg/L) and selected in the presence of sodium azide (100 mg/L) and tetracycline (16 mg/L) presented distinct phenotypes, associated with the acquisition of different plasmid combinations, including two co-integrate plasmids, of 310 kbp and 517 kbp. The variable composition of the conjugative plasmidome, the formation of co-integrates during conjugation, as well as the transfer of non-transferable plasmids via co-integration, and the possible association between antibiotic, arsenite and tellurite tolerance was demonstrated. These evidences bring interesting insights into the comprehension of the molecular and physiological mechanisms that underlie antibiotic resistance propagation in the environment.
Collapse
Affiliation(s)
- Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Diana Bogas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Santosh K Bikarolla
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivagen 10, SE-412 96, Gothenburg, Sweden
| | - Ana Rita Varela
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Karolin Frykholm
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivagen 10, SE-412 96, Gothenburg, Sweden
| | - Raquel Linheiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivagen 10, SE-412 96, Gothenburg, Sweden
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal.
| |
Collapse
|
13
|
Fortunato G, Vaz-Moreira I, Becerra-Castro C, Nunes OC, Manaia CM. A rationale for the high limits of quantification of antibiotic resistance genes in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1696-1703. [PMID: 30300875 DOI: 10.1016/j.envpol.2018.09.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The determination of values of abundance of antibiotic resistance genes (ARGs) per mass of soil is extremely useful to assess the potential impacts of relevant sources of antibiotic resistance, such as irrigation with treated wastewater or manure application. Culture-independent methods and, in particular, quantitative PCR (qPCR), have been regarded as suitable approaches for such a purpose. However, it is arguable if these methods are sensitive enough to measure ARGs abundance at levels that may represent a risk for environmental and human health. This study aimed at demonstrating the range of values of ARGs quantification that can be expected based on currently used procedures of DNA extraction and qPCR analyses. The demonstration was based on the use of soil samples spiked with known amounts of wastewater antibiotic resistant bacteria (ARB) (Enterococcus faecalis, Escherichia coli, Acinetobacter johnsonii, or Pseudomonas aeruginosa), harbouring known ARGs, and also on the calculation of expected values determined based on qPCR. The limits of quantification (LOQ) of the ARGs (vanA, qnrS, blaTEM, blaOXA, blaIMP, blaVIM) were observed to be approximately 4 log-units per gram of soil dry weight, irrespective of the type of soil tested. These values were close to the theoretical LOQ values calculated based on currently used DNA extraction methods and qPCR procedures. The observed LOQ values can be considered extremely high to perform an accurate assessment of the impacts of ARGs discharges in soils. A key message is that ARGs accumulation will be noticeable only at very high doses. The assessment of the impacts of ARGs discharges in soils, of associated risks of propagation and potential transmission to humans, must take into consideration this type of evidence, and avoid the simplistic assumption that no detection corresponds to risk absence.
Collapse
Affiliation(s)
- Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Becerra-Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal.
| |
Collapse
|
14
|
van der Putten BCL, Remondini D, Pasquini G, Janes VA, Matamoros S, Schultsz C. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC inEscherichia coli: a systematic review. J Antimicrob Chemother 2018; 74:298-310. [DOI: 10.1093/jac/dky417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boas C L van der Putten
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Giovanni Pasquini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Victoria A Janes
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Sébastien Matamoros
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Constance Schultsz
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
15
|
Narciso-da-Rocha C, Rocha J, Vaz-Moreira I, Lira F, Tamames J, Henriques I, Martinez JL, Manaia CM. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2018; 118:179-188. [PMID: 29883764 DOI: 10.1016/j.envint.2018.05.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 05/25/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, blaCTX-M, blaOXA-A, blaTEM, blaSHV, sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Felipe Lira
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - Javier Tamames
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Isabel Henriques
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - José Luis Martinez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
16
|
Basu S, Mukherjee M. Incidence and risk of co-transmission of plasmid-mediated quinolone resistance and extended-spectrum β-lactamase genes in fluoroquinolone-resistant uropathogenic Escherichia coli: a first study from Kolkata, India. J Glob Antimicrob Resist 2018; 14:217-223. [DOI: 10.1016/j.jgar.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/15/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022] Open
|
17
|
Roschanski N, Guenther S, Vu TTT, Fischer J, Semmler T, Huehn S, Alter T, Roesler U. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. ACTA ACUST UNITED AC 2018; 22. [PMID: 29090680 PMCID: PMC5718389 DOI: 10.2807/1560-7917.es.2017.22.43.17-00032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbapenems belong to the group of last resort antibiotics in human medicine. Therefore, the emergence of growing numbers of carbapenemase-producing bacteria in food-producing animals or the environment is worrying and an important concern for the public health sector. In the present study, a set of 45 Enterobacteriaceae isolated from German retail seafood (clams and shrimps), sampled in 2016, were investigated by real-time PCR for the presence of carbapenemase-producing bacteria. One Escherichia coli (ST10), isolated from a Venus clam (Ruditapes philippinarum) harvested in the Mediterranean Sea (Italy), contained the carbapenemase gene blaVIM-1 as part of the variable region of a class I integron. Whole-genome sequencing indicated that the integron was embedded in a Tn3-like transposon that also contained the fluoroquinolone resistance gene qnrS1. Additional resistance genes such as the extended-spectrum beta-lactamase blaSHV-12 and the AmpC gene blaACC-1 were also present in this isolate. Except blaACC-1, all resistance genes were located on an IncY plasmid. These results confirm previous observations that carbapenemase-producing bacteria have reached the food chain and are of increasing concern for public health.
Collapse
Affiliation(s)
- Nicole Roschanski
- Freie Universitaet Berlin, Institute for Animal Hygiene and Environmental Health, Berlin, Germany
| | - Sebastian Guenther
- Freie Universitaet Berlin, Institute for Animal Hygiene and Environmental Health, Berlin, Germany
| | - Thi Thu Tra Vu
- Freie Universitaet Berlin, Institute of Food Safety and Food Hygiene, Berlin, Germany
| | - Jennie Fischer
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | | | - Stephan Huehn
- Beuth University of Applied Sciences, Life Science and Technology, Berlin, Germany.,Freie Universitaet Berlin, Institute of Food Safety and Food Hygiene, Berlin, Germany
| | - Thomas Alter
- Freie Universitaet Berlin, Institute of Food Safety and Food Hygiene, Berlin, Germany
| | - Uwe Roesler
- Freie Universitaet Berlin, Institute for Animal Hygiene and Environmental Health, Berlin, Germany
| |
Collapse
|
18
|
Jørgensen SB, Søraas AV, Arnesen LS, Leegaard TM, Sundsfjord A, Jenum PA. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS One 2017; 12:e0186576. [PMID: 29040337 PMCID: PMC5645111 DOI: 10.1371/journal.pone.0186576] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Extended spectrum β-lactamase producing Escherichia coli (ESBL-EC) are excreted via effluents and sewage into the environment where they can re-contaminate humans and animals. The aim of this observational study was to detect and quantify ESBL-EC in recreational water and wastewater, and perform a genetic and phenotypic comparative analysis of the environmental strains with geographically associated human urinary ESBL-EC. Recreational fresh- and saltwater samples from four different beaches and wastewater samples from a nearby sewage plant were filtered and cultured on differential and ESBL-selective media. After antimicrobial susceptibility testing and multi-locus variable number of tandem repeats assay (MLVA), selected ESBL-EC strains from recreational water were characterized by whole genome sequencing (WGS) and compared to wastewater and human urine isolates from people living in the same area. We detected ESBL-EC in recreational water samples on 8/20 occasions (40%), representing all sites. The ratio of ESBL-EC to total number of E. coli colony forming units varied from 0 to 3.8%. ESBL-EC were present in all wastewater samples in ratios of 0.56-0.75%. ST131 was most prevalent in urine and wastewater samples, while ST10 dominated in water samples. Eight STs and identical ESBL-EC MLVA-types were detected in all compartments. Clinical ESBL-EC isolates were more likely to be multidrug-resistant (p<0.001). This study confirms that ESBL-EC, including those that are capable of causing human infection, are present in recreational waters where there is a potential for human exposure and subsequent gut colonisation and infection in bathers. Multidrug-resistant E. coli strains are present in urban aquatic environments even in countries where antibiotic consumption in both humans and animals is highly restricted.
Collapse
Affiliation(s)
- Silje B. Jørgensen
- Section for Medical Microbiology, Department of Laboratory Medicine, Vestre Viken Hospital Trust, Bærum, Norway
- Department of Clinical Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| | - Arne V. Søraas
- Section for Medical Microbiology, Department of Laboratory Medicine, Vestre Viken Hospital Trust, Bærum, Norway
| | | | - Truls M. Leegaard
- Department of Clinical Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Pål A. Jenum
- Section for Medical Microbiology, Department of Laboratory Medicine, Vestre Viken Hospital Trust, Bærum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Christou A, Agüera A, Bayona JM, Cytryn E, Fotopoulos V, Lambropoulou D, Manaia CM, Michael C, Revitt M, Schröder P, Fatta-Kassinos D. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. WATER RESEARCH 2017; 123:448-467. [PMID: 28689129 DOI: 10.1016/j.watres.2017.07.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 05/06/2023]
Abstract
The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.
Collapse
Affiliation(s)
- Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516, Nicosia, Cyprus.
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Josep Maria Bayona
- IDAEA-CSIC, Environmental Chemistry Department, E-08034, Barcelona, Spain
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 15159, Rishon Lezion, Israel
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus
| | - Dimitra Lambropoulou
- Aristotle University of Thessaloniki, Department of Chemistry, 54124, Thessaloniki, Greece
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Costas Michael
- NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Mike Revitt
- Middlesex University, Department of Natural Sciences, NW4 4BT, London, United Kingdom
| | - Peter Schröder
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Environmental Genomics, 85764, Neuherberg, Germany
| | - Despo Fatta-Kassinos
- NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
20
|
Manageiro V, Félix D, Jones-Dias D, Sampaio DA, Vieira L, Sancho L, Ferreira E, Caniça M. Genetic Background and Expression of the New qepA4 Gene Variant Recovered in Clinical TEM-1- and CMY-2-Producing Escherichia coli. Front Microbiol 2017; 8:1899. [PMID: 29062302 PMCID: PMC5640717 DOI: 10.3389/fmicb.2017.01899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
A new QepA4 variant was detected in an O86:H28 ST156-fimH38 Escherichia coli, showing a multidrug-resistance phenotype. PAβN inhibition of qepA4-harboring transconjugant resulted in increase of nalidixic acid accumulation. The qepA4 and catA1 genes were clustered in a 26.0-kp contig matching an IncF-type plasmid, and containing a Tn21-type transposon with multiple mobile genetic elements. This QepA variant is worrisome because these determinants might facilitate the selection of higher-level resistance mutants, playing a role in the development of resistance, and/or confer higher-level resistance to fluoroquinolones in association with chromosomal mutations.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Oporto, Portugal
| | - David Félix
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Oporto, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luísa Sancho
- Laboratory of Microbiology, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
21
|
Lien LTQ, Lan PT, Chuc NTK, Hoa NQ, Nhung PH, Thoa NTM, Diwan V, Tamhankar AJ, Stålsby Lundborg C. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E699. [PMID: 28661465 PMCID: PMC5551137 DOI: 10.3390/ijerph14070699] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.
Collapse
Affiliation(s)
- La Thi Quynh Lien
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18A, 17177 Stockholm, Sweden.
- Department of Pharmaceutical Management and Pharmaco-Economics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem District, Hanoi 110403, Vietnam.
| | - Pham Thi Lan
- Department of Dermatology and Venereology, Department of Family Medicine, Department of Microbiology, Hanoi Medical University, 01 Ton That Tung, Dong Da District, Hanoi 116516, Vietnam.
| | - Nguyen Thi Kim Chuc
- Department of Dermatology and Venereology, Department of Family Medicine, Department of Microbiology, Hanoi Medical University, 01 Ton That Tung, Dong Da District, Hanoi 116516, Vietnam.
| | - Nguyen Quynh Hoa
- National Centralized Drug Procurement Centre, Vietnam Ministry of Health, 138A Giang Vo Street, Ba Dinh district, Hanoi 118401, Vietnam.
| | - Pham Hong Nhung
- Department of Dermatology and Venereology, Department of Family Medicine, Department of Microbiology, Hanoi Medical University, 01 Ton That Tung, Dong Da District, Hanoi 116516, Vietnam.
- Department of Microbiology, Bach Mai Hospital, 78 Giai Phong, Dong Da District, Hanoi 116365, Vietnam.
| | - Nguyen Thi Minh Thoa
- Department of Dermatology and Venereology, Department of Family Medicine, Department of Microbiology, Hanoi Medical University, 01 Ton That Tung, Dong Da District, Hanoi 116516, Vietnam.
| | - Vishal Diwan
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18A, 17177 Stockholm, Sweden.
- Department of Public Health & Environment, R.D. Gardi Medical College, Agar Road, Ujjain 456006, India.
| | - Ashok J Tamhankar
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18A, 17177 Stockholm, Sweden.
- Indian Initiative for Management of Antibiotic Resistance, Department of Environmental Medicine, R.D. Gardi Medical College, Agar Road, Ujjain 456006, India.
| | - Cecilia Stålsby Lundborg
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Public Health Sciences, Karolinska Institutet, Tomtebodavägen 18A, 17177 Stockholm, Sweden.
| |
Collapse
|
22
|
Plasmidic qnr Genes Confer Clinical Resistance to Ciprofloxacin under Urinary Tract Physiological Conditions. Antimicrob Agents Chemother 2017; 61:AAC.02615-16. [PMID: 28096153 DOI: 10.1128/aac.02615-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli variants expressing plasmid-mediated qnr genes are usually susceptible to fluoroquinolones by standard susceptibility testing. Here we show that, under specific urinary tract physiological conditions, susceptible laboratory and clinical strains harboring qnr determinants become fully resistant to ciprofloxacin (CIP). Therefore, physiological conditions, mainly urine pH values, should be considered when performing susceptibility testing of CIP activity against E. coli in treating urinary tract infection (UTI) and for selecting appropriate antibiotics for UTI treatment.
Collapse
|
23
|
Impact of anthropogenic activities on the dissemination of antibiotic resistance across ecological boundaries. Essays Biochem 2017; 61:11-21. [DOI: 10.1042/ebc20160054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/27/2022]
Abstract
Antibiotics are considered to be one of the major medical breakthroughs in history. Nonetheless, over the past four decades, antibiotic resistance has reached alarming levels worldwide and this trend is expected to continue to increase, leading some experts to forecast the coming of a ‘post-antibiotic’ era. Although antibiotic resistance in pathogens is traditionally linked to clinical environments, there is a rising concern that the global propagation of antibiotic resistance is also associated with environmental reservoirs that are linked to anthropogenic activities such as animal husbandry, agronomic practices and wastewater treatment. It is hypothesized that the emergence and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) within and between environmental microbial communities can ultimately contribute to the acquisition of antibiotic resistance in human pathogens. Nonetheless, the scope of this phenomenon is not clear due to the complexity of microbial communities in the environment and methodological constraints that limit comprehensive in situ evaluation of microbial genomes. This review summarizes the current state of knowledge regarding antibiotic resistance in non-clinical environments, specifically focusing on the dissemination of antibiotic resistance across ecological boundaries and the contribution of this phenomenon to global antibiotic resistance.
Collapse
|
24
|
Röderova M, Halova D, Papousek I, Dolejska M, Masarikova M, Hanulik V, Pudova V, Broz P, Htoutou-Sedlakova M, Sauer P, Bardon J, Cizek A, Kolar M, Literak I. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic. Front Microbiol 2017; 7:2147. [PMID: 28119674 PMCID: PMC5220107 DOI: 10.3389/fmicb.2016.02147] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6')-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates sharing 100% relatedness and originating from different areas were identified. In conclusion, our study identified PMQR genes in E. coli isolates in all areas studied, including highly virulent multiresistant clones such as ST131 producing CTX-M-15 beta-lactamases.
Collapse
Affiliation(s)
- Magdalena Röderova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc Olomouc, Czechia
| | - Dana Halova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Brno, Czechia
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno Brno, Czechia
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia; Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Martina Masarikova
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Vojtech Hanulik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomouc, Czechia; Department of Microbiology, University Hospital OlomoucOlomouc, Czechia
| | - Vendula Pudova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc Olomouc, Czechia
| | - Petr Broz
- Institute of Applied Biotechnologies (IAB) Prague, Czechia
| | - Miroslava Htoutou-Sedlakova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomouc, Czechia; Department of Microbiology, University Hospital OlomoucOlomouc, Czechia
| | - Pavel Sauer
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomouc, Czechia; Department of Microbiology, University Hospital OlomoucOlomouc, Czechia
| | - Jan Bardon
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc Olomouc, Czechia
| | - Alois Cizek
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Milan Kolar
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc Olomouc, Czechia
| | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia; Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| |
Collapse
|
25
|
Wen Y, Pu X, Zheng W, Hu G. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. PLoS One 2016; 11:e0159418. [PMID: 27427763 PMCID: PMC4948828 DOI: 10.1371/journal.pone.0159418] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/01/2016] [Indexed: 12/23/2022] Open
Abstract
Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.
Collapse
Affiliation(s)
- Yanping Wen
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoying Pu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People’s Republic of China
| | - Guang Hu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Ory J, Bricheux G, Togola A, Bonnet JL, Donnadieu-Bernard F, Nakusi L, Forestier C, Traore O. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:635-645. [PMID: 27131824 DOI: 10.1016/j.envpol.2016.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater and question the role of environmental biofilms communities as efficient shelters for hospital-released resistance genes.
Collapse
Affiliation(s)
- Jérôme Ory
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France; Service d'hygiène, CHU de Clermont-Ferrand, rue Montalembert, 63003, Clermont-Ferrand, France
| | - Geneviève Bricheux
- Université Clermont Auvergne, Université Blaise Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France
| | - Anne Togola
- Bureau de recherches géologiques et minières (BRGM), 3 avenue Claude Guillemin, F-45100, Orléans, France
| | - Jean Louis Bonnet
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France
| | - Florence Donnadieu-Bernard
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, Université Blaise Pascal, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France
| | - Laurence Nakusi
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France
| | - Christiane Forestier
- Université Clermont Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France
| | - Ousmane Traore
- Université Clermont Auvergne, Université d'Auvergne, Laboratoire "Microorganismes: Génome et Environnement", BP 10448, F-63000, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, F-63170, Campus Universitaire des Cézeaux, France; Service d'hygiène, CHU de Clermont-Ferrand, rue Montalembert, 63003, Clermont-Ferrand, France.
| |
Collapse
|
27
|
Qin TT, Kang HQ, Ma P, Li PP, Huang LY, Gu B. SOS response and its regulation on the fluoroquinolone resistance. ANNALS OF TRANSLATIONAL MEDICINE 2016; 3:358. [PMID: 26807413 DOI: 10.3978/j.issn.2305-5839.2015.12.09] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.
Collapse
Affiliation(s)
- Ting-Ting Qin
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Hai-Quan Kang
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Ping Ma
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Peng-Peng Li
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Lin-Yan Huang
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Bing Gu
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| |
Collapse
|
28
|
Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol 2015; 100:1543-1557. [PMID: 26649735 DOI: 10.1007/s00253-015-7202-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed.
Collapse
Affiliation(s)
- Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| | - Gonçalo Macedo
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Despo Fatta-Kassinos
- Department of Civil Engineering and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
29
|
Vaz-Moreira I, Varela AR, Pereira TV, Fochat RC, Manaia CM. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. Microb Drug Resist 2015; 22:155-63. [PMID: 26469134 DOI: 10.1089/mdr.2015.0118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Ana Rita Varela
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Thamiris V Pereira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Romário C Fochat
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Célia M Manaia
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| |
Collapse
|
30
|
Varela AR, Manageiro V, Ferreira E, Guimarães MA, da Costa PM, Caniça M, Manaia CM. Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. J Glob Antimicrob Resist 2015; 3:286-289. [PMID: 27842875 DOI: 10.1016/j.jgar.2015.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli with reduced susceptibility to quinolones isolated from different environmental sources (urban wastewater treatment plants, n=61; hospital effluent, n=10; urban streams, n=9; gulls, n=18; birds of prey, n=17) and from hospitalised patients (n=28) were compared based on multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The habitats with the most diversified genotypes of quinolone-resistant E. coli, corresponding to the highest genetic diversity (H'), were wastewater and gulls. In addition, genetically distinct populations were observed in clinical samples and birds of prey, suggesting the influence of the habitat or selective pressures on quinolone-resistant E. coli. The close genetic relatedness between isolates of clinical origin and from gulls and wastewater suggests the existence of potential routes of propagation between these sources. The most common sequence types were ST131 and ST10, with ST131 being highly specific to patients, although distributed in all of the other habitats except birds of prey. The prevalence of antimicrobial resistance was significantly higher in isolates from patients and gulls than from other sources (P<0.01), suggesting that the effect of selective pressures met by isolates subjected to strong human impacts. The evidence presented suggests the potential circulation of bacteria between the environmental and clinical compartments, with gulls being a relevant vector of bacteria and resistance genes.
Collapse
Affiliation(s)
- Ana Rita Varela
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antimicrobial Resistance and Healthcare Associated Infections, National Institute of Health Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antimicrobial Resistance and Healthcare Associated Infections, National Institute of Health Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - M Augusta Guimarães
- Instituto Português de Oncologia Francisco Gentil, E.P.E, 4200-072 Porto, Portugal
| | - Paulo Martins da Costa
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antimicrobial Resistance and Healthcare Associated Infections, National Institute of Health Dr Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Célia M Manaia
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
31
|
Meireles D, Leite-Martins L, Bessa LJ, Cunha S, Fernandes R, de Matos A, Manaia CM, Martins da Costa P. Molecular characterization of quinolone resistance mechanisms and extended-spectrum β-lactamase production in Escherichia coli isolated from dogs. Comp Immunol Microbiol Infect Dis 2015; 41:43-8. [PMID: 25999092 DOI: 10.1016/j.cimid.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 01/30/2023]
Abstract
The increasing prevalence of antimicrobial resistances is now a worldwide problem. Investigating the mechanisms by which pets harboring resistant strains may receive and/or transfer resistance determinants is essential to better understanding how owners and pets can interact safely. Here, we characterized the genetic determinants conferring resistance to β-lactams and quinolones in 38 multidrug-resistant Escherichia coli isolated from fecal samples of dogs, through PCR and sequencing. The most frequent genotype included the β-lactamase groups TEM (n=5), and both TEM+CTX-M-1 (n=5). Within the CTX-M group, we identified the genes CTX-M-32, CTX-M-1, CTX-M-15, CTX-M-55/79, CTX-M-14 and CTX-M-2/44. Thirty isolates resistant to ciprofloxacin presented two mutations in the gyrA gene and one or two mutations in the parC gene. A mutation in gyrA (reported here for the first time), due to a transversion and transition (TCG→GTG) originating a substitution of a serine by a valine in position 83 was also detected. The plasmid-encoded quinolone resistance gene, qnrs1, was detected in three isolates. Dogs can be a reservoir of genetic determinants conferring antimicrobial resistance and thus may play an important role in the spread of antimicrobial resistance to humans and other co-habitant animals.
Collapse
Affiliation(s)
- D Meireles
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - L Leite-Martins
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Clínica Veterinária, ICBAS, Universidade do Porto, Porto, Portugal
| | - L J Bessa
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - S Cunha
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - R Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - A de Matos
- Clínica Veterinária, ICBAS, Universidade do Porto, Porto, Portugal; CECA - Centro de Estudos de Ciência Animal, ICETA - Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares, Universidade do Porto, Porto, Portugal
| | - C M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - P Martins da Costa
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| |
Collapse
|