1
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Aranda E, Vilchez-Vargas R, Jroundi F, Ojeda JJ, Merroun ML. Microbial influence in Spanish bentonite slurry microcosms: Unveiling a-year long geochemical evolution and early-stage copper corrosion related to nuclear waste repositories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124491. [PMID: 38964646 DOI: 10.1016/j.envpol.2024.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The deep geological repository (DGR) concept consists of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed deeply into a geological formation. Here, bentonite slurry microcosms with copper canisters, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of the copper canisters in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while the heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate, which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides, which could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of H2O) to copper sulfide (Cu2S), were identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Granada, Spain
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Rolland C, Burzan N, Leupin OX, Boylan AA, Frutschi M, Wang S, Jacquemin N, Bernier-Latmani R. Microbial hydrogen sinks in the sand-bentonite backfill material for the deep geological disposal of radioactive waste. Front Microbiol 2024; 15:1359677. [PMID: 38690357 PMCID: PMC11060177 DOI: 10.3389/fmicb.2024.1359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
The activity of subsurface microorganisms can be harnessed for engineering projects. For instance, the Swiss radioactive waste repository design can take advantage of indigenous microorganisms to tackle the issue of a hydrogen gas (H2) phase pressure build-up. After repository closure, it is expected that anoxic steel corrosion of waste canisters will lead to an H2 accumulation. This occurrence should be avoided to preclude damage to the structural integrity of the host rock. In the Swiss design, the repository access galleries will be back-filled, and the choice of this material provides an opportunity to select conditions for the microbially-mediated removal of excess gas. Here, we investigate the microbial sinks for H2. Four reactors containing an 80/20 (w/w) mixture of quartz sand and Wyoming bentonite were supplied with natural sulfate-rich Opalinus Clay rock porewater and with pure H2 gas for up to 108 days. Within 14 days, a decrease in the sulfate concentration was observed, indicating the activity of the sulfate-reducing bacteria detected in the reactor, e.g., from Desulfocurvibacter genus. Additionally, starting at day 28, methane was detected in the gas phase, suggesting the activity of methanogens present in the solid phase, such as the Methanosarcina genus. This work evidences the development, under in-situ relevant conditions, of a backfill microbiome capable of consuming H2 and demonstrates its potential to contribute positively to the long-term safety of a radioactive waste repository.
Collapse
Affiliation(s)
- Camille Rolland
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Niels Burzan
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivier X. Leupin
- National Cooperative for the Disposal of Radioactive Waste, Wettingen, Switzerland
| | - Aislinn A. Boylan
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simiao Wang
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquemin
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Beaver RC, Neufeld JD. Microbial ecology of the deep terrestrial subsurface. THE ISME JOURNAL 2024; 18:wrae091. [PMID: 38780093 PMCID: PMC11170664 DOI: 10.1093/ismejo/wrae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The terrestrial subsurface hosts microbial communities that, collectively, are predicted to comprise as many microbial cells as global surface soils. Although initially thought to be associated with deposited organic matter, deep subsurface microbial communities are supported by chemolithoautotrophic primary production, with hydrogen serving as an important source of electrons. Despite recent progress, relatively little is known about the deep terrestrial subsurface compared to more commonly studied environments. Understanding the composition of deep terrestrial subsurface microbial communities and the factors that influence them is of importance because of human-associated activities including long-term storage of used nuclear fuel, carbon capture, and storage of hydrogen for use as an energy vector. In addition to identifying deep subsurface microorganisms, recent research focuses on identifying the roles of microorganisms in subsurface communities, as well as elucidating myriad interactions-syntrophic, episymbiotic, and viral-that occur among community members. In recent years, entirely new groups of microorganisms (i.e. candidate phyla radiation bacteria and Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoloarchaeota, Nanoarchaeota archaea) have been discovered in deep terrestrial subsurface environments, suggesting that much remains unknown about this biosphere. This review explores the historical context for deep terrestrial subsurface microbial ecology and highlights recent discoveries that shape current ecological understanding of this poorly explored microbial habitat. Additionally, we highlight the need for multifaceted experimental approaches to observe phenomena such as cryptic cycles, complex interactions, and episymbiosis, which may not be apparent when using single approaches in isolation, but are nonetheless critical to advancing our understanding of this deep biosphere.
Collapse
Affiliation(s)
- Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Mitzscherling J, Genderjahn S, Schleicher AM, Bartholomäus A, Kallmeyer J, Wagner D. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation. Microbiologyopen 2023; 12:e1370. [PMID: 37642485 PMCID: PMC10333725 DOI: 10.1002/mbo3.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.
Collapse
Affiliation(s)
- Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Inorganic and Isotope GeochemistryPotsdamGermany
| | | | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
- Institute of GeosciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
5
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Ojeda JJ, Jroundi F, Merroun ML. Impact of compacted bentonite microbial community on the clay mineralogy and copper canister corrosion: a multidisciplinary approach in view of a safe Deep Geological Repository of nuclear wastes. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131940. [PMID: 37390682 DOI: 10.1016/j.jhazmat.2023.131940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Deep Geological Repository (DGR) is the preferred option for the final disposal of high-level radioactive waste. Microorganisms could affect the safety of the DGR by altering the mineralogical properties of the compacted bentonite or inducing the corrosion of the metal canisters. In this work, the impact of physicochemical parameters (bentonite dry density, heat shock, electron donors/acceptors) on the microbial activity, stability of compacted bentonite and corrosion of copper (Cu) discs was investigated after one-year anoxic incubation at 30 ºC. No-illitization in the bentonite was detected confirming its structural stability over 1 year under the experimental conditions. The microbial diversity analysis based on 16 S rRNA gene Next Generation Sequencing showed slight changes between the treatments with an increase of aerobic bacteria belonging to Micrococcaceae and Nocardioides in heat-shock tyndallized bentonites. The survival of sulfate-reducing bacteria (the main source of Cu anoxic corrosion) was demonstrated by the most probable number method. The detection of CuxS precipitates on the surface of Cu metal in the bentonite/Cu metal samples amended with acetate/lactate and sulfate, indicated an early stage of Cu corrosion. Overall, the outputs of this study help to better understand the predominant biogeochemical processes at the bentonite/Cu canister interface upon DGR closure.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML. Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 2023; 14:1134078. [PMID: 37007474 PMCID: PMC10062484 DOI: 10.3389/fmicb.2023.1134078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, the increasing production of radioactive waste due to the extensive use of nuclear power is becoming a global environmental concern for society. For this reason, many countries have been considering the use of deep geological repositories (DGRs) for the safe disposal of this waste in the near future. Several DGR designs have been chemically, physically, and geologically well characterized. However, less is known about the influence of microbial processes for the safety of these disposal systems. The existence of microorganisms in many materials selected for their use as barriers for DGRs, including clay, cementitious materials, or crystalline rocks (e.g., granites), has previously been reported. The role that microbial processes could play in the metal corrosion of canisters containing radioactive waste, the transformation of clay minerals, gas production, and the mobility of the radionuclides characteristic of such residues is well known. Among the radionuclides present in radioactive waste, selenium (Se), uranium (U), and curium (Cm) are of great interest. Se and Cm are common components of the spent nuclear fuel residues, mainly as 79Se isotope (half-life 3.27 × 105 years), 247Cm (half-life: 1.6 × 107 years) and 248Cm (half-life: 3.5 × 106 years) isotopes, respectively. This review presents an up-to-date overview about how microbes occurring in the surroundings of a DGR may influence their safety, with a particular focus on the radionuclide-microbial interactions. Consequently, this paper will provide an exhaustive understanding about the influence of microorganisms in the safety of planned radioactive waste repositories, which in turn might improve their implementation and efficiency.
Collapse
|
7
|
Burzan N, Murad Lima R, Frutschi M, Janowczyk A, Reddy B, Rance A, Diomidis N, Bernier-Latmani R. Growth and Persistence of an Aerobic Microbial Community in Wyoming Bentonite MX-80 Despite Anoxic in situ Conditions. Front Microbiol 2022; 13:858324. [PMID: 35547138 PMCID: PMC9082992 DOI: 10.3389/fmicb.2022.858324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial activity has the potential to enhance the corrosion of high-level radioactive waste disposal canisters, which, in the proposed Swiss deep geological repository, will be embedded in bentonite and placed in the Opalinus Clay (OPA) rock formation. A total of 12 stainless steel cylindrical vessels (referred to as modules) containing bentonite were deployed in an anoxic borehole in OPA for up to 5.5 years. Carbon steel coupons were embedded in the bentonite. Individual modules were retrieved after 1, 1.5, 2.5, and 5.5 years. Enumeration of aerobic and anaerobic heterotrophs and sulfate-reducing bacteria (SRB) revealed microbial growth for 1.5 years followed by a decline or stagnation in microbial viability. It was surprising to observe the growth of aerobic heterotrophs followed by their persistent viability in bentonite, despite the nominally anoxic conditions. In contrast, SRB numbers remained at very low levels. DNA-based amplicon sequencing confirmed the persistence of aerobes and the relatively low contribution of anaerobes to the bentonite microbiome. Bentonite dry density, in situ exposure time, and bioavailable trapped oxygen are observed to shape the bentonite microbial community in the clay.
Collapse
Affiliation(s)
- Niels Burzan
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberta Murad Lima
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew Janowczyk
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bharti Reddy
- Jacobs Engineering Group Inc., Critical Missions Solutions, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Andrew Rance
- Jacobs Engineering Group Inc., Critical Missions Solutions, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Nikitas Diomidis
- National Cooperative for the Disposal of Radioactive Waste, Wettingen, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Shrestha R, Černoušek T, Stoulil J, Kovářová H, Sihelská K, Špánek R, Ševců A, Steinová J. Anaerobic microbial corrosion of carbon steel under conditions relevant for deep geological repository of nuclear waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149539. [PMID: 34392220 DOI: 10.1016/j.scitotenv.2021.149539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We examined microbial corrosion of carbon steel in synthetic bentonite pore water inoculated with natural underground water containing microorganisms over a period of 780-days under sterile and anaerobic conditions. Corrosion behaviour was determined using the mass loss method, SEM-EDS analysis and Raman spectroscopy, while qualitative and quantitative changes in the microbial community were analysed using molecular-biological tools (16S rDNA amplicon sequencing and qPCR analysis, respectively). Corrosion rates were significantly higher in the biotic environment (compared with an abiotic environment), with significant localisation of corrosion attacks of up to 1 mm arising within 12-months. Nitrate reducing bacteria, such as Pseudomonas, Brevundimonas and Methyloversatilis, dominated the microbial consortium, the high abundance of Methyloversatilis correlating with periods of highest localised corrosion penetrations, suggesting that this bacterium plays an important role in microbially influenced corrosion. Our results indicate that nitrate-reducing bacteria could represent a potential threat to waste canisters under nuclear repository conditions.
Collapse
Affiliation(s)
- Rojina Shrestha
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Tomáš Černoušek
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Jan Stoulil
- University of Chemistry and Technology, Department of Metals and Corrosion Engineering, Technická 5, Prague 166 28, Czech Republic
| | - Hana Kovářová
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Kristína Sihelská
- Research Center Řež, Department of Nuclear Fuel Cycle, Husinec-Řež 130 25068, Czech Republic
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic
| | - Jana Steinová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague 128 01, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1407/7, Liberec 1 461 17, Czech Republic.
| |
Collapse
|
9
|
Vachon MA, Engel K, Beaver RC, Slater GF, Binns WJ, Neufeld JD. Fifteen shades of clay: distinct microbial community profiles obtained from bentonite samples by cultivation and direct nucleic acid extraction. Sci Rep 2021; 11:22349. [PMID: 34785699 PMCID: PMC8595889 DOI: 10.1038/s41598-021-01072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Characterizing the microbiology of swelling bentonite clays can help predict the long-term behaviour of deep geological repositories (DGRs), which are proposed as a solution for the management of used nuclear fuel worldwide. Such swelling clays represent an important component of several proposed engineered barrier system designs and, although cultivation-based assessments of bentonite clay are routinely conducted, direct nucleic acid detection from these materials has been difficult due to technical challenges. In this study, we generated direct comparisons of microbial abundance and diversity captured by cultivation and direct nucleic acid analyses using 15 reference bentonite clay samples. Regardless of clay starting material, the corresponding profiles from cultivation-based approaches were consistently associated with phylogenetically similar sulfate-reducing bacteria, denitrifiers, aerobic heterotrophs, and fermenters, demonstrating that any DGR-associated growth may be consistent, regardless of the specific bentonite clay starting material selected for its construction. Furthermore, dominant nucleic acid sequences in the as-received clay microbial profiles did not correspond with the bacteria that were enriched or isolated in culture. Few core taxa were shared among cultivation and direct nucleic acid analysis profiles, yet those in common were primarily affiliated with Streptomyces, Micrococcaceae, Bacillus, and Desulfosporosinus genera. These putative desiccation-resistant bacteria associated with diverse bentonite clay samples can serve as targets for experiments that evaluate microbial viability and growth within DGR-relevant conditions. Our data will be important for global nuclear waste management organizations, demonstrating that identifying appropriate design conditions with suitable clay swelling properties will prevent growth of the same subset of clay-associated bacteria, regardless of clay origin or processing conditions.
Collapse
Affiliation(s)
- Melody A Vachon
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Katja Engel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Beaver RC, Engel K, Binns WJ, Neufeld JD. Microbiology of barrier component analogues of a deep geological repository. Can J Microbiol 2021; 68:73-90. [PMID: 34648720 DOI: 10.1139/cjm-2021-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canada is currently implementing a site selection process to identify a location for a deep geological repository (DGR) for the long-term storage of Canada's used nuclear fuel, wherein used nuclear fuel bundles will be sealed inside copper-coated carbon steel containers, encased in highly compacted bentonite clay buffer boxes, and sealed deep underground in a stable geosphere. Because a DGR must remain functional for a million years, it is important to examine ancient natural systems that serve as analogues for planned DGR components. Specifically, studying the microbiology of natural analogue components of a DGR is important for developing an understanding of the types of microorganisms that may be able to grow and influence the long-term stability of a DGR. This study explored the abundance, viability, and composition of microorganisms in several ancient natural analogues using a combination of cultivation and cultivation-independent approaches. Samples were obtained from the Tsukinuno bentonite deposit (Japan) that formed ∼10 mya, the Opalinus Clay formation (Switzerland) that formed ∼174 mya, and Canadian shield crystalline rock from Northern Ontario that formed ∼2.7 bya. Analysis of 16S rRNA gene amplicons revealed that three of the ten Tsukinuno bentonite samples analyzed were dominated by putative aerobic heterotrophs and fermenting bacteria from the phylum Actinobacteria, whereas five of the Tsukinuno bentonite samples were dominated by sequences associated with putative acidophilic chemolithoautotrophs capable of sulfur reduction. The remaining Tsukinuno bentonite samples, the Northern Ontario rock samples, and the Opalinus Clay samples generated inconsistent replicate 16S rRNA gene profiles and were associated primarily with contaminant sequences, suggesting that the microbial profiles detected were not sample-specific but spurious. Culturable aerobic heterotroph abundances were relatively low for all Tsukinuno bentonite samples, culturable anaerobic heterotrophs were only detected in half of the Tsukinuno samples, and sulfate-reducing bacteria (SRB) were only detected in one Tsukinuno sample by cultivation. Culture-specific 16S rRNA gene profiles from Tsukinuno clay samples demonstrated the presence of phyla Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes among aerobic heterotroph cultures and additional bacteria from the phyla Actinobacteria and Firmicutes from anaerobic heterotroph plate incubations. Only one nucleic acid sequence detected from a culture was also associated with its corresponding clay sample profile, suggesting that nucleic acids from culturable bacteria were relatively rare within the clay samples. Sequencing of DNA extracted from the SRB culture revealed that the taxon present in the culture was affiliated with the genus Desulfosporosinus, which has been found in related bentonite clay analyses. Although the crystalline rock and Opalinus Clay samples were associated with inconsistent, likely spurious 16S rRNA gene profiles, we show evidence for viable and detectable microorganisms within several Tsukinuno natural analogue bentonite samples.
Collapse
Affiliation(s)
- Rachel C Beaver
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Katja Engel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - W Jeffrey Binns
- Nuclear Waste Management Organization, Toronto, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Ex and In Situ Reactivity and Sorption of Selenium in Opalinus Clay in the Presence of a Selenium Reducing Microbial Community. MINERALS 2021. [DOI: 10.3390/min11070757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
79Se is a critical radionuclide concerning the safety of deep geological disposal of certain radioactive wastes in clay-rich formations. To study the fate of selenium oxyanions in clayey rocks in the presence of a selenium reducing microbial community, in situ tests were performed in the Opalinus Clay at the Mont Terri Rock Laboratory (Switzerland). Furthermore, biotic and abiotic batch tests were performed to assess Se(VI) and Se(IV) reactivity in the presence of Opalinus Clay and/or stainless steel, in order to support the interpretation of the in situ tests. Geochemical modeling was applied to simulate Se(VI) reduction, Se(IV) sorption and solubility, and diffusion processes. This study shows that microbial activity is required to transform Se(VI) into more reduced and sorbing Se species in the Opalinus Clay, while in abiotic conditions, Se(VI) remains unreactive. On the other hand, Se(IV) can be reduced by microorganisms but can also sorb in the presence of clay without microorganisms. In situ microbial reduction of Se oxyanions can occur with electron donors provided by the clay itself. If microorganisms would be active in the clay surrounding a disposal facility, microbial reduction of leached Se could thus contribute to the overall retention of Se in clayey host rocks.
Collapse
|
12
|
Song D, Jiang Z, Ma T, Dong Y, Shi L. Bacterial and Archaeal Diversity and Abundance in Shallow Subsurface Clay Sediments at Jianghan Plain, China. Front Microbiol 2020; 11:572560. [PMID: 33193171 PMCID: PMC7642157 DOI: 10.3389/fmicb.2020.572560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Clay layers are common in subsurface where microbial activities play an important role in impacting the biogeochemical properties of adjacent aquifers. In this study, we analyzed the community structure and abundance of bacteria and archaea in response to geochemical properties of six clay sediments at different depths in a borehole (112°34'0″E, 30°36'21″N) of Jianghan Plain (JHP), China. Our results suggested that the top two clay layers were oxic, while the remaining bottom four clay layers were anoxic. Both high-throughput sequencing and qPCR of 16S rRNA gene showed relatively high abundance of archaea (up to 60%) in three of the anoxic clay layers. Furthermore, microbial communities in these clay sediments showed distinct vertical stratification, which may be impacted by changes in concentrations of sulfate, HCl-extractable Fe2+ and total organic carbon (TOC) in the sediments. In the upper two oxic clay layers, identification of phyla Thaumarchaeota (11.2%) and Nitrosporales (1.2%) implied nitrification in these layers. In the two anoxic clay layers beneath the oxic zone, high abundances of Anaeromyxobacter, Chloroflexi bacterium RBG 16_58_14 and Deltaproteobacteria, suggested the reductions of nitrate, iron and sulfate. Remarkably, a significant portion of Bathyarchaeota (∼25%) inhabited in the bottom two anoxic clay layers, which may indicate archaeal anaerobic degradation of TOC by these organisms. The results of this study provide the first systematic understandings of microbial activities in subsurface clay layers at JHP, which may help develop microorganism-based solutions for mitigating subsurface contaminations.
Collapse
Affiliation(s)
- Dandan Song
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
13
|
Active sulfur cycling in the terrestrial deep subsurface. ISME JOURNAL 2020; 14:1260-1272. [PMID: 32047278 DOI: 10.1038/s41396-020-0602-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The deep terrestrial subsurface remains an environment where there is limited understanding of the extant microbial metabolisms. At Olkiluoto, Finland, a deep geological repository is under construction for the final storage of spent nuclear fuel. It is therefore critical to evaluate the potential impact microbial metabolism, including sulfide generation, could have upon the safety of the repository. We investigated a deep groundwater where sulfate is present, but groundwater geochemistry suggests limited microbial sulfate-reducing activity. Examination of the microbial community at the genome-level revealed microorganisms with the metabolic capacity for both oxidative and reductive sulfur transformations. Deltaproteobacteria are shown to have the genetic capacity for sulfate reduction and possibly sulfur disproportionation, while Rhizobiaceae, Rhodocyclaceae, Sideroxydans, and Sulfurimonas oxidize reduced sulfur compounds. Further examination of the proteome confirmed an active sulfur cycle, serving for microbial energy generation and growth. Our results reveal that this sulfide-poor groundwater harbors an active microbial community of sulfate-reducing and sulfide-oxidizing bacteria, together mediating a sulfur cycle that remained undetected by geochemical monitoring alone. The ability of sulfide-oxidizing bacteria to limit the accumulation of sulfide was further demonstrated in groundwater incubations and highlights a potential sink for sulfide that could be beneficial for geological repository safety.
Collapse
|
14
|
Engel K, Ford SE, Coyotzi S, McKelvie J, Diomidis N, Slater G, Neufeld JD. Stability of Microbial Community Profiles Associated with Compacted Bentonite from the Grimsel Underground Research Laboratory. mSphere 2019; 4:e00601-19. [PMID: 31852805 PMCID: PMC6920512 DOI: 10.1128/msphere.00601-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/16/2019] [Indexed: 11/25/2022] Open
Abstract
To assess the microbiology and corrosion potential of engineered components of a deep geological repository for long-term storage of high-level nuclear waste, the Materials Corrosion Test is being conducted at the Underground Research Laboratory in Grimsel, Switzerland. Modules containing metal coupons surrounded by highly compacted MX-80 bentonite, at two dry densities (1.25 and 1.50 g/cm3), were emplaced within 9-m-deep boreholes, and the first modules were retrieved after 13 months of exposure. Bentonite and associated module materials were sampled, and microbial communities and their distributions were assessed using 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) analysis. Borehole fluid was dominated by amplicon sequence variants (ASVs) affiliated with Desulfosporosinus and Desulfovibrio, which are putatively involved in sulfate reduction. The relative abundance of these ASVs was lower for samples from inside the borehole module, and they were almost undetectable in samples of the inner bentonite layer. The dominant ASV in case and filter sample sequence data was affiliated with Pseudomonas stutzeri, yet its relative abundance decreased in the inner layer samples. Streptomyces sp. ASVs were relatively abundant in all bentonite core sample data both prior to emplacement and after 13 months of exposure, presumably as metabolically inactive spores or extracellular "relic" DNA. PLFA concentrations in outer and inner layer bentonite samples suggested cellular abundances of 1 × 106 to 3 × 106 cells/g, with similar PLFA distributions within all bentonite samples. Our results demonstrate consistent microbial communities inside the saturated borehole module, providing the first evidence for microbial stability under conditions that mimic a deep geological repository.IMPORTANCE The Materials Corrosion Test in Grimsel Underground Research Laboratory, Switzerland, enables an evaluation of microbiological implications of bentonite clay at densities relevant for a deep geological repository. Our research demonstrates that after 13 months of exposure within a granitic host rock, the microbial 16S rRNA gene signatures of saturated bentonite clay within the modules were consistent with the profiles in the original clay used to pack the modules. Such results provide evidence that densities chosen for this emplacement test are refractory to microbial activity, at least on the relatively short time frame leading to the first time point sampling event, which will help inform in situ engineered barrier system science. This study has important implications for the design of deep geological repository sites under consideration for the Canadian Shield.
Collapse
Affiliation(s)
- Katja Engel
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sian E Ford
- School of Geography & Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Greg Slater
- School of Geography & Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
16
|
Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, Probst A, Burstein D, Thomas BC, Banfield JF. Potential for microbial H 2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME JOURNAL 2017; 11:1915-1929. [PMID: 28350393 PMCID: PMC5520028 DOI: 10.1038/ismej.2017.39] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/02/2017] [Accepted: 02/05/2017] [Indexed: 01/24/2023]
Abstract
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration.
Collapse
Affiliation(s)
- Alex W Hernsdorf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.,Horonobe Underground Research Center, Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan
| | - Kazuya Miyakawa
- Horonobe Underground Research Center, Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan
| | - Kotaro Ise
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | - David Burstein
- Department of Earth and Planetary Sciences, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, Berkeley, CA, USA
| |
Collapse
|
17
|
Bleyen N, Smets S, Small J, Moors H, Leys N, Albrecht A, De Cannière P, Schwyn B, Wittebroodt C, Valcke E. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland). SWISS JOURNAL OF GEOSCIENCES 2017; 110:355-374. [PMID: 32214982 PMCID: PMC7081829 DOI: 10.1007/s00015-016-0256-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/17/2016] [Indexed: 06/10/2023]
Abstract
At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H2 (originating from radiolysis and corrosion in the repository). The results of these tests indicate that-in case microorganisms would be active in the repository or the surrounding clay-microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H2), the microbial activity will be strongly stimulated. Both in the presence of H2 and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H2 is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification.
Collapse
Affiliation(s)
- Nele Bleyen
- 1Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Steven Smets
- 1Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Joe Small
- 2National Nuclear Laboratory NLL, Chadwick House, Birchwood Park, WA3 6AS Warrington, UK
| | - Hugo Moors
- 1Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Natalie Leys
- 1Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Achim Albrecht
- 3Agence Nationale pour la Gestion des Déchets Radioactifs Andra, 1-7, Rue Jean-Monnet, 92298 Châtenay-Malabry Cedex, France
| | - Pierre De Cannière
- 4Federal Agency for Nuclear Control FANC, Rue Ravenstein 36, 1000 Brussels, Belgium
| | - Bernhard Schwyn
- 5National Cooperative for the Disposal of Radioactive Waste NAGRA, Hardstrasse 73, 5430 Wettingen, Switzerland
| | - Charles Wittebroodt
- 6Institut de Radioprotection et de Sûreté Nucléaire IRSN, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses, France
| | - Elie Valcke
- 1Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|