1
|
Liu Z, Cai R, Chen YL, Zhuo X, He C, Zheng Q, He D, Shi Q, Jiao N. Direct Production of Bio-Recalcitrant Carboxyl-Rich Alicyclic Molecules Evidenced in a Bacterium-Induced Steroid Degradation Experiment. Microbiol Spectr 2023; 11:e0469322. [PMID: 36744924 PMCID: PMC10100752 DOI: 10.1128/spectrum.04693-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023] Open
Abstract
Carboxyl-rich alicyclic molecules (CRAM) are highly unsaturated compounds extensively distributed throughout aquatic environments and sediments. This molecular group is widely referred to as a major proxy of recalcitrant organic materials, but its direct biosynthesis remains unclear. Steroids are a typical anthropogenic contaminant and have been previously suggested to be precursors of CRAM; however, experimental evidence to support this hypothesis is lacking. Here, a steroid-degrading bacterium, Comamonas testosteroni ATCC 11996, was incubated in a liquid medium supplemented with testosterone (a typical steroid) as the sole carbon source for 90 days. Testosterone-induced metabolites (TIM) were extracted for molecular characterization and to examine the bioavailability during an additional 90-day incubation after inoculation with a natural coastal microbial assemblage. The results showed that 1,775 molecular formulas (MFs) were assigned to TIM using ultrahigh-resolution mass spectrometry, with 66.99% categorized as CRAM-like constituents. A large fraction of TIM was respired or transformed during the additional 90-day seawater incubation; nevertheless, 638 MFs of the TIM persisted or increased during incubation. Among the 638 MFs, 394 were commonly assigned in natural deep seawater samples (depths of 500 to 2,000 m) from the South China Sea. Compared to the catabolites of the well-established testosterone degradation pathway, we compiled a list of bio-refractory MFs and potential chemical structures, some of which shared structural homology with CRAM. These results demonstrated direct microbial production of bio-refractory CRAM from steroid hormones and indicated that some of the biogenic CRAM resisted microbial decomposition, potentially contributing to the aquatic refractory dissolved organic matter (DOM) pool. IMPORTANCE CRAM are an operationally defined DOM group comprising a complex mixture of carboxylated and fused alicyclic structures. This DOM group is majorly characterized as refractory DOM in the marine environment. However, the origins of the complex CRAM remain unclear. In this study, we demonstrated that testosterone (a typical steroid) could be transformed into bio-refractory CRAM by a single bacterial strain and observed that some of the CRAM highly resisted microbial degradation. Through molecular comparison and screening, potential chemical structures of steroid-induced CRAM were suggested. This study established the biological connection between steroids and bio-refractory CRAM, and it provides a novel perspective explaining the fate of terrestrial contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zijing Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ding He
- Department of Ocean Science and the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Arandia-Gorostidi N, Parada AE, Dekas AE. Single-cell view of deep-sea microbial activity and intracommunity heterogeneity. THE ISME JOURNAL 2023; 17:59-69. [PMID: 36202927 PMCID: PMC9750969 DOI: 10.1038/s41396-022-01324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Microbial activity in the deep sea is cumulatively important for global elemental cycling yet is difficult to quantify and characterize due to low cell density and slow growth. Here, we investigated microbial activity off the California coast, 50-4000 m water depth, using sensitive single-cell measurements of stable-isotope uptake and nucleic acid sequencing. We observed the highest yet reported proportion of active cells in the bathypelagic (up to 78%) and calculated that deep-sea cells (200-4000 m) are responsible for up to 34% of total microbial biomass synthesis in the water column. More cells assimilated nitrogen derived from amino acids than ammonium, and at higher rates. Nitrogen was assimilated preferentially to carbon from amino acids in surface waters, while the reverse was true at depth. We introduce and apply the Gini coefficient, an established equality metric in economics, to quantify intracommunity heterogeneity in microbial anabolic activity. We found that heterogeneity increased with water depth, suggesting a minority of cells contribute disproportionately to total activity in the deep sea. This observation was supported by higher RNA/DNA ratios for low abundance taxa at depth. Intracommunity activity heterogeneity is a fundamental and rarely measured ecosystem parameter and may have implications for community function and resilience.
Collapse
Affiliation(s)
| | - A E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - A E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Silva L, Calleja ML, Ivetic S, Huete-Stauffer T, Roth F, Carvalho S, Morán XAG. Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141628. [PMID: 32896805 DOI: 10.1016/j.scitotenv.2020.141628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs.
Collapse
Affiliation(s)
- Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.
| | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | - Tamara Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Baltic Sea Centre, Stockholm University, 11418 Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, 00100 Helsinki, Finland
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Miranda ML, Osterholz H, Giebel HA, Bruhnke P, Dittmar T, Zielinski O. Impact of UV radiation on DOM transformation on molecular level using FT-ICR-MS and PARAFAC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118027. [PMID: 31986429 DOI: 10.1016/j.saa.2020.118027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is an omnipresent constituent of natural water bodies. Reuse and transformation of DOM compounds in the water column is driven by physicochemical and biological processes leading to the production of refractory DOM. Typically, breakdown of DOM chemical compounds into smaller or more condensed fragments is triggered by ultraviolet (UV) radiation. Here, we present a study on the photodegradation of DOM produced during an incubation experiment with a natural microbial community. At the end of the first incubation without UV irradiation, the samples from 3 mesocosms were filtered to remove microbes and particles and continuously exposed to UV radiation (280-365 nm). We investigated DOM in depth via monitoring of dissolved organic carbon (DOC) concentrations, DOM molecular characterization by Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and excitation emission matrix spectroscopy (EEMS). Analysis of variance indicated no significant differences in the DOC concentration between treatments. Main peaks in the fluorescent DOM (FDOM) were photo-bleached by UV radiation, and an increase in the fluorescent intensity of selected peaks was observed on irradiated samples toward the end of the experiment. Parallel factor analysis (PARAFAC) indicated the presence of three main components in all treatments: C1 (Marine humic M), C2 (Bacterial produced humic C), C3 (Tyrosine), and an additional component in the dark incubation of mesocosm 3, C4 (Tryptophan). Despite an intensive filtration protocol through 0.7, 0.2 and 0.1 μm filters, low bacterial abundances were determined (<2.5 × 10-3 cells mL-1). We observed a direct correlation between structural indices and the intensity of PARAFAC components. Average double bond equivalent and aromaticity were strongly positively correlated with PARAFAC components C1 and C2 for one or more mesocosm. Moreover, FT-ICR-MS showed that under the tested conditions, the refractory character of the DOM assessed as the similarity to a deep ocean DOM reference did not increase on molecular level. Thus, mechanisms other than photochemical transformations of relatively recent DOM are likely necessary to facilitate long-term stability of DOM in the oceans.
Collapse
Affiliation(s)
- Mario L Miranda
- Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26382, Wilhelmshaven, Germany; Laboratorio de la Calidad del Aire y Agua (LACAYA), El Cangrejo, Universidad de Panamá, 0824, Panamá..
| | - H Osterholz
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Department of Marine Chemistry, Leibniz-Institute for Baltic Sea Research (IOW), Rostock 18119, Germany
| | - H-A Giebel
- Biology of Geological Processes Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| | - P Bruhnke
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - T Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg 26129, Germany
| | - O Zielinski
- Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26382, Wilhelmshaven, Germany; Marine Perception Research Group, German Research Center for Artifical Intelligence (DFKI), 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Lønborg C, Baltar F, Carreira C, Morán XAG. Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming. Front Microbiol 2019; 10:2807. [PMID: 31866976 PMCID: PMC6906166 DOI: 10.3389/fmicb.2019.02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023] Open
Abstract
Global change impacts on marine biogeochemistry will be partly mediated by heterotrophic bacteria. Besides ocean warming, future environmental changes have been suggested to affect the quantity and quality of organic matter available for bacterial growth. However, it is yet to be determined in what way warming and changing substrate conditions will impact marine heterotrophic bacteria activity. Using short-term (4 days) experiments conducted at three temperatures (−3°C, in situ, +3°C) we assessed the temperature dependence of bacterial cycling of marine surface water used as a control and three different dissolved organic carbon (DOC) substrates (glucose, seagrass, and mangrove) in tropical coastal waters of the Great Barrier Reef, Australia. Our study shows that DOC source had the largest effect on the measured bacterial response, but this response was amplified by increasing temperature. We specifically demonstrate that (1) extracellular enzymatic activity and DOC consumption increased with warming, (2) this enhanced DOC consumption did not result in increased biomass production, since the increases in respiration were larger than for bacterial growth with warming, and (3) different DOC bioavailability affected the magnitude of the microbial community response to warming. We suggest that in coastal tropical waters, the magnitude of heterotrophic bacterial productivity and enzyme activity response to warming will depend partly on the DOC source bioavailability.
Collapse
Affiliation(s)
| | - Federico Baltar
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria.,Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Cátia Carreira
- Departamento de Biologia and CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Fitch A, Orland C, Willer D, Emilson EJS, Tanentzap AJ. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. GLOBAL CHANGE BIOLOGY 2018; 24:5110-5122. [PMID: 29998600 PMCID: PMC6220883 DOI: 10.1111/gcb.14391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Boreal lakes are major components of the global carbon cycle, partly because of sediment-bound heterotrophic microorganisms that decompose within-lake and terrestrially derived organic matter (t-OM). The ability for sediment bacteria to break down and alter t-OM may depend on environmental characteristics and community composition. However, the connection between these two potential drivers of decomposition is poorly understood. We tested how bacterial activity changed along experimental gradients in the quality and quantity of t-OM inputs into littoral sediments of two small boreal lakes, a dark and a clear lake, and measured the abundance of operational taxonomic units and functional genes to identify mechanisms underlying bacterial responses. We found that bacterial production (BP) decreased across lakes with aromatic dissolved organic matter (DOM) in sediment pore water, but the process underlying this pattern differed between lakes. Bacteria in the dark lake invested in the energetically costly production of extracellular enzymes as aromatic DOM increased in availability in the sediments. By contrast, bacteria in the clear lake may have lacked the nutrients and/or genetic potential to degrade aromatic DOM and instead mineralized photo-degraded OM into CO2 . The two lakes differed in community composition, with concentrations of dissolved organic carbon and pH differentiating microbial assemblages. Furthermore, functional genes relating to t-OM degradation were relatively higher in the dark lake. Our results suggest that future changes in t-OM inputs to lake sediments will have different effects on carbon cycling depending on the potential for photo-degradation of OM and composition of resident bacterial communities.
Collapse
Affiliation(s)
- Amelia Fitch
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Chloe Orland
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - David Willer
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Erik J. S. Emilson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Natural Resources Canada, Great Lakes Forestry CentreSault Ste. MarieOntario
| | | |
Collapse
|
7
|
Oladeinde A, Lipp E, Chen CY, Muirhead R, Glenn T, Cook K, Molina M. Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM. Front Microbiol 2018; 9:882. [PMID: 29867797 PMCID: PMC5953345 DOI: 10.3389/fmicb.2018.00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this study, we investigated gene expression changes in three bacterial strains (Escherichia coli C3000, Escherichia coli O157:H7 B6914, and Enterococcus faecalis ATCC 29212), commonly used as indicators of water quality and as control strains in clinical, food, and water microbiology laboratories. Bacterial transcriptome responses from pure cultures were monitored in microcosms containing water amended with manure-derived dissolved organic matter (DOM), previously exposed to simulated sunlight for 12 h. We used RNA sequencing (RNA-seq) and quantitative real-time reverse transcriptase (qRT-PCR) to compare differentially expressed temporal transcripts between bacteria incubated in microcosms containing sunlight irradiated and non-irradiated DOM, for up to 24 h. In addition, we used whole genome sequencing simultaneously with RNA-seq to identify single nucleotide variants (SNV) acquired in bacterial populations during incubation. These results indicate that E. coli and E. faecalis have different mechanisms for removal of reactive oxygen species (ROS) produced from irradiated DOM. They are also able to produce micromolar concentrations of H2O2 from non-irradiated DOM, that should be detrimental to other bacteria present in the environment. Notably, this study provides an assessment of the role of two conjugative plasmids carried by the E. faecalis and highlights the differences in the overall survival dynamics of environmentally-relevant bacteria in the presence of naturally-produced ROS.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- National Exposure Research Laboratory, Student Volunteer, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States.,Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Erin Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Chia-Ying Chen
- National Exposure Research Laboratory, National Research Council Associate, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| | | | - Travis Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Marirosa Molina
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| |
Collapse
|