1
|
Kolodkin-Gal I, Parsek MR, Patrauchan MA. The roles of calcium signaling and calcium deposition in microbial multicellularity. Trends Microbiol 2023; 31:1225-1237. [PMID: 37429751 PMCID: PMC10772221 DOI: 10.1016/j.tim.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Calcium signaling is an essential mediator of signal-controlling gene expression in most developmental systems. In addition, calcium has established extracellular functions as a structural component of biogenic minerals found in complex tissues. In bacteria, the formation of calcium carbonate structures is associated with complex colony morphology. Genes promoting the formation of biogenic minerals are essential for proper biofilm development and protection against antimicrobial solutes and toxins. Here we review recent findings on the role of calcium and calcium signaling as emerging regulators of biofilm formation in beneficial bacteria, as well as essential mediators of biofilm formation and virulence in human pathogens. The presented analysis concludes that the new understanding of calcium signaling may help to improve the performance of beneficial strains for sustainable agriculture, microbiome manipulation, and sustainable construction. Unraveling the roles of calcium may also promote the development of novel therapies against biofilm infections that target calcium uptake, calcium sensors, and calcium carbonate deposition.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
2
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
3
|
Manoharan A, Farrell J, Aldilla VR, Whiteley G, Kriel E, Glasbey T, Kumar N, Moore KH, Manos J, Das T. N-acetylcysteine prevents catheter occlusion and inflammation in catheter associated-urinary tract infections by suppressing urease activity. Front Cell Infect Microbiol 2023; 13:1216798. [PMID: 37965267 PMCID: PMC10641931 DOI: 10.3389/fcimb.2023.1216798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Proteus mirabilis is a key pathobiont in catheter-associated urinary tract infections (CA-UTIs), which is well known to form crystalline biofilms that occlude catheters. Urease activity alkylates urine through the release of ammonia, consequentially resulting in higher levels of Mg2+ and Ca2+ and formation of crystals. In this study, we showed that N-acetyl cysteine (NAC), a thiol antioxidant, is a potent urease inhibitor that prevents crystalline biofilm formation. Methods To quantify urease activity, Berthelot's method was done on bacterial extracts treated with NAC. We also used an in vitro catheterised glass bladder model to study the effect of NAC treatment on catheter occlusion and biofilm encrustation in P. mirabilis infections. Inductively-coupled plasma mass spectrometry (ICP-MS) was performed on catheter samples to decipher elemental profiles. Results NAC inhibits urease activity of clinical P. mirabilis isolates at concentrations as low as 1 mM, independent of bacterial killing. The study also showed that NAC is bacteriostatic on P. mirabilis, and inhibited biofilm formation and catheter occlusion in an in vitro. A significant 4-8log10 reduction in viable bacteria was observed in catheters infected in this model. Additionally, biofilms in NAC treated catheters displayed a depletion of calcium, magnesium, or phosphates (>10 fold reduction), thus confirming the absence of any urease activity in the presence of NAC. Interestingly, we also showed that not only is NAC anti-inflammatory in bladder epithelial cells (BECs), but that it mutes its inflammatory response to urease and P. mirabilis infection by reducing the production of IL-6, IL-8 and IL-1b. Discussion Using biochemical, microbiological and immunological techniques, this study displays the functionality of NAC in preventing catheter occlusion by inhibiting urease activity. The study also highlights NAC as a strong anti-inflammatory antibiofilm agent that can target both bacterial and host factors in the treatment of CA-UTIs.
Collapse
Affiliation(s)
- Arthika Manoharan
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute of Infectious Disease, The University of Sydney, Sydney, NSW, Australia
| | - Jessica Farrell
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Whiteley Corporation, Tomago, NSW, Australia
| | - Vina R. Aldilla
- School of Chemistry, The University of New South Wales, Sydney, NSW, Australia
| | - Greg Whiteley
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Whiteley Corporation, Tomago, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
| | - Erik Kriel
- Whiteley Corporation, Tomago, NSW, Australia
| | | | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW, Australia
| | - Kate H. Moore
- Department of Urogynaecology, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Jim Manos
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute of Infectious Disease, The University of Sydney, Sydney, NSW, Australia
| | - Theerthankar Das
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute of Infectious Disease, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Dubern JF, Hook AL, Carabelli AM, Chang CY, Lewis-Lloyd CA, Luckett JC, Burroughs L, Dundas AA, Humes DJ, Irvine DJ, Alexander MR, Williams P. Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. SCIENCE ADVANCES 2023; 9:eadd7474. [PMID: 36696507 PMCID: PMC9876547 DOI: 10.1126/sciadv.add7474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming, encrustation, and host protein deposition, which are major challenges associated with preventing CAUTIs. After screening ~400 acrylate polymers, poly(tert-butyl cyclohexyl acrylate) was selected for its biofilm- and encrustation-resistant properties. When combined with the swarming inhibitory poly(2-hydroxy-3-phenoxypropyl acrylate), the copolymer retained the bioinstructive properties of the respective homopolymers when challenged with Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Urinary tract catheterization causes the release of host proteins that are exploited by pathogens to colonize catheters. After preconditioning the copolymer with urine collected from patients before and after catheterization, reduced host fibrinogen deposition was observed, and resistance to diverse uropathogens was maintained. These data highlight the potential of the copolymer as a urinary catheter coating for preventing CAUTIs.
Collapse
Affiliation(s)
- Jean-Frédéric Dubern
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew L. Hook
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alessandro M. Carabelli
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Chien-Yi Chang
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Christopher A. Lewis-Lloyd
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Jeni C. Luckett
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurence Burroughs
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Adam A. Dundas
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J. Humes
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, University of Nottingham and Nottingham University Hospitals NHS Trust, School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Derek J. Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Williams
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Gmiter D, Kaca W. Into the understanding the multicellular lifestyle of Proteus mirabilis on solid surfaces. Front Cell Infect Microbiol 2022; 12:864305. [PMID: 36118021 PMCID: PMC9478170 DOI: 10.3389/fcimb.2022.864305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Indwelling urinary catheterization can lead to the development of catheter-associated urinary tract infections (CAUTIs), an important type of nosocomial infection, as well as other medical issues among institutionalized adults. Recently, Proteus mirabilis was highlighted as the important cause of CAUTIs. The pathogenicity of P. mirabilis is dependent on two multicellular types of surface colonization: the adherence and swarming motility. Adhesion, mostly mediated by fimbrial and nonfimbrial adhesins, is important for the initiation of biofilm formation. Moreover, the production of urease frequently results in biofilm crystallization, which leads to the blockage of catheters. The heterologous polymeric matrix of the biofilm offers protection against antibiotics and the host immune system. P. mirabilis displays remarkable motility abilities. After contact with solid surfaces, hyper-flagellated cells are able to rapidly migrate. The importance of swarming motility in CAUTIs development remains controversial; however, it was indicated that swarming cells were able to co-express other virulence factors. Furthermore, flagella are strong immunomodulating proteins. On the other hand, both biofilm formation and swarming motility implicates multiple inter- and intraspecies interactions, which might contribute to the pathogenicity.
Collapse
|
6
|
Keren-Paz A, Maan H, Karunker I, Olender T, Kapishnikov S, Dersch S, Kartvelishvily E, Wolf SG, Gal A, Graumann PL, Kolodkin-Gal I. The roles of intracellular and extracellular calcium in Bacillus subtilis biofilms. iScience 2022; 25:104308. [PMID: 35663026 PMCID: PMC9160756 DOI: 10.1016/j.isci.2022.104308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, bacteria reside in biofilms– multicellular differentiated communities held together by an extracellular matrix. This work identified a novel subpopulation—mineral-forming cells—that is essential for biofilm formation in Bacillus subtilis biofilms. This subpopulation contains an intracellular calcium-accumulating niche, in which the formation of a calcium carbonate mineral is initiated. As the biofilm colony develops, this mineral grows in a controlled manner, forming a functional macrostructure that serves the entire community. Consistently, biofilm development is prevented by the inhibition of calcium uptake. Our results provide a clear demonstration of the orchestrated production of calcite exoskeleton, critical to morphogenesis in simple prokaryotes. The orchestrated formation of calcite scaffolds supports the morphogenesis of microbial biofilms A novel subpopulation—mineral-forming cells—is essential for biofilm formation This subpopulation contains an intracellular calcium-accumulating niche, supporting the formation of calcium carbonate Intracellular calcium homeostasis and calcium export are associated with a functional biofilm macrostructure
Collapse
Affiliation(s)
- Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sharon G Wolf
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Cohen-Cymberknoh M, Kolodkin-Gal D, Keren-Paz A, Peretz S, Brumfeld V, Kapishnikov S, Suissa R, Shteinberg M, McLeod D, Maan H, Patrauchan M, Zamir G, Kerem E, Kolodkin-Gal I. Calcium carbonate mineralization is essential for biofilm formation and lung colonization. iScience 2022; 25:104234. [PMID: 35521519 PMCID: PMC9062676 DOI: 10.1016/j.isci.2022.104234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are differentiated microbial communities held together by an extracellular matrix. μCT X-ray revealed structured mineralized areas within biofilms of lung pathogens belonging to two distant phyla - the proteobacteria Pseudomonas aeruginosa and the actinobacteria Mycobacterium abscessus. Furthermore, calcium chelation inhibited the assembly of complex bacterial structures for both organisms with little to no effect on cell growth. The molecular mechanisms promoting calcite scaffold formation were surprisingly conserved between the two pathogens as biofilm development was similarly impaired by genetic and biochemical inhibition of calcium uptake and carbonate accumulation. Moreover, chemical inhibition and mutations targeting mineralization significantly reduced the attachment of P. aeruginosa to the lung, as well as the subsequent damage inflicted by biofilms to lung tissues, and restored their sensitivity to antibiotics. This work offers underexplored druggable targets for antibiotics to combat otherwise untreatable biofilm infections.
Collapse
Affiliation(s)
- Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Dror Kolodkin-Gal
- Department of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- National Center for Antibiotic Resistance and Infection Control, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Shani Peretz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Vlad Brumfeld
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Suissa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | - Daniel McLeod
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marianna Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Gideon Zamir
- Department of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Kerem
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Ramstedt M, Burmølle M. Can multi-species biofilms defeat antimicrobial surfaces on medical devices? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Liu X, Zarfel G, van der Weijden R, Loiskandl W, Bitschnau B, Dinkla IJT, Fuchs EC, Paulitsch-Fuchs AH. Density-dependent microbial calcium carbonate precipitation by drinking water bacteria via amino acid metabolism and biosorption. WATER RESEARCH 2021; 202:117444. [PMID: 34314923 DOI: 10.1016/j.watres.2021.117444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Drinking water plumbing systems appear to be a unique environment for microorganisms as they contain few nutrients but a high mineral concentration. Interactions between mineral content and bacteria, such as microbial calcium carbonate precipitation (MCP) however, has not yet attracted too much attention in drinking water sector. This study aims to carefully examine MCP behavior of two drinking water bacteria species, which may potentially link scaling and biofouling processes in drinking water distribution systems. Evidence from cell density evolution, chemical parameters, and microscopy suggest that drinking water isolates can mediate CaCO3 precipitation through previously overlooked MCP mechanisms like ammonification or biosorption. The results also illustrate the active control of bacteria on the MCP process, as the calcium starts to concentrate onto cell surfaces only after reaching a certain cell density, even though the cell surfaces are shown to be the ideal location for the CaCO3 nucleation.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gernot Zarfel
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Renata van der Weijden
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Sub-Department of Environmental Technology, Wageningen University, Wageningen, the Netherlands
| | - Willibald Loiskandl
- Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigitte Bitschnau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Elmar C Fuchs
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Optical Sciences group, Faculty of Science and Technology, University of Twente. Twente. the Netherlands.
| | - Astrid H Paulitsch-Fuchs
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; School of Health Sciences & Social Work, Biomedical Sciences, Carinthia University of Applied Sciences, Klagenfurt, Austria
| |
Collapse
|
10
|
Gaston JR, Johnson AO, Bair KL, White AN, Armbruster CE. Polymicrobial interactions in the urinary tract: is the enemy of my enemy my friend? Infect Immun 2021; 89:IAI.00652-20. [PMID: 33431702 DOI: 10.1128/iai.00652-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of research pertaining to urinary tract infection has focused on a single pathogen in isolation, and predominantly Escherichia coli. However, polymicrobial urine colonization and infection are prevalent in several patient populations, including individuals with urinary catheters. The progression from asymptomatic colonization to symptomatic infection and severe disease is likely shaped by interactions between traditional pathogens as well as constituents of the normal urinary microbiota. Recent studies have begun to experimentally dissect the contribution of polymicrobial interactions to disease outcomes in the urinary tract, including their role in development of antimicrobial-resistant biofilm communities, modulating the innate immune response, tissue damage, and sepsis. This review aims to summarize the epidemiology of polymicrobial urine colonization, provide an overview of common urinary tract pathogens, and present key microbe-microbe and host-microbe interactions that influence infection progression, persistence, and severity.
Collapse
Affiliation(s)
- Jordan R Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Alexandra O Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Kirsten L Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Ashley N White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo
| |
Collapse
|
11
|
The susceptibility of Proteus mirabilis and Enterococcus faecalis to various antimicrobial agents in the polymicrobial biofilms formed using a drip flow reactor. MARMARA MEDICAL JOURNAL 2019. [DOI: 10.5472/marumj.637153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
|
13
|
Keren-Paz A, Brumfeld V, Oppenheimer-Shaanan Y, Kolodkin-Gal I. Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms. NPJ Biofilms Microbiomes 2018; 4:8. [PMID: 29675263 PMCID: PMC5904145 DOI: 10.1038/s41522-018-0051-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
In nature, bacteria predominantly exist as highly structured biofilms, which are held together by extracellular polymeric substance and protect their residents from environmental insults, such as antibiotics. The mechanisms supporting this phenotypic resistance are poorly understood. Recently, we identified a new mechanism maintaining biofilms - an active production of calcite minerals. In this work, a high-resolution and robust µCT technique is used to study the mineralized areas within intact bacterial biofilms. µCT is a vital tool for visualizing bacterial communities that can provide insights into the relationship between bacterial biofilm structure and function. Our results imply that dense and structured calcium carbonate lamina forms a diffusion barrier sheltering the inner cell mass of the biofilm colony. Therefore, µCT can be employed in clinical settings to predict the permeability of the biofilms. It is demonstrated that chemical interference with urease, a key enzyme in biomineralization, inhibits the assembly of complex bacterial structures, prevents the formation of mineral diffusion barriers and increases biofilm permeability. Therefore, biomineralization enzymes emerge as novel therapeutic targets for highly resistant infections.
Collapse
Affiliation(s)
- Alona Keren-Paz
- 1Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vlad Brumfeld
- 2Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | - Ilana Kolodkin-Gal
- 1Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
14
|
Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microb Biotechnol 2017; 10:1157-1163. [PMID: 28815998 PMCID: PMC5609236 DOI: 10.1111/1751-7915.12833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
In his text 'On Architecture', Vitruvius suggested that architecture is an imitation of nature. Here we discuss what happens when we begin using nature in architecture. We describe recent developments in the study of biofilm structure, and propose combining modern architecture and synthetic microbiology to develop sustainable construction approaches. Recently, Kolodkin-Gal laboratory and others revealed a role for precipitation of calcium carbonate in the maturation and assembly of bacterial communities with complex structures. Importantly, they demonstrated that different secreted organic materials shape the calcium carbonate crystals formed by the bacterial cells. This provides a proof-of-concept for a potential use of bacteria in designing rigid construction materials and altering crystal morphology and function. In this study, we discuss how these recent discoveries may change the current strategies of architecture and construction. We believe that biofilm communities enhanced by synthetic circuits may be used to construct buildings and to sequester carbon dioxide in the process.
Collapse
Affiliation(s)
- Martyn Dade-Robertson
- Faculty of Humanities and Social Sciences, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, UK
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|