1
|
Vlasselaer L, Crauwels S, Lievens B, De Coninck B. Unveiling the microbiome of hydroponically cultivated lettuce: impact of Phytophthora cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol 2024; 100:fiae010. [PMID: 38317643 PMCID: PMC10872686 DOI: 10.1093/femsec/fiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.
Collapse
Affiliation(s)
- Liese Vlasselaer
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Bart Lievens
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
3
|
Troussieux S, Gilgen A, Souche JL. Fighting Tomato Fungal Diseases with a Biocontrol Product Based on Amoeba Lysate. PLANTS (BASEL, SWITZERLAND) 2023; 12:3603. [PMID: 37896066 PMCID: PMC10609735 DOI: 10.3390/plants12203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
New solutions to reduce the use of chemical pesticides to combat plant diseases and to meet societal and political demands are needed to achieve sustainable agriculture. Tomato production, both in greenhouses and in open fields, is affected by numerous pathogens. The aim of this study is to assess the possibility of controlling both late blight and powdery mildew in tomatoes with a single biocontrol product currently under registration. The biocontrol product AXP12, based on the lysate of Willaertia magna C2c Maky, has already proved its efficacy against downy mildew of grapevine and potato late blight. Its ability to elicit tomato defenses and its efficacy in the greenhouse and in the field were tested. This study establishes that AXP12 stimulates the tomato genes involved in plant defense pathways and has the capacity to combat in greenhouse and field both late blight (Phytophtora infestans) and powdery mildew (Oidium neolycopersici and Leveillula taurica) of tomato.
Collapse
|
4
|
Dang QN, Burgess TI, McComb J, Pham TQ, Le BV, Tran TV, Nguyen LT, Hardy GESJ. Fungal and bacterial endophytes antagonistic to Phytophthora species causing root rot in Cinnamomum cassia. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractEndophytes were investigated for their potential to protect Cinnamomum cassia (cinnamon) from Phytophthora root rot. From healthy cinnamon trees in diseased plantations, 134 bacterial and fungal endophytes were isolated and screened in vitro for their ability to antagonise the root rot pathogens Phytophthora cinnamomi, P. multibullata and P. × vanyenensis. Seventeen endophytes exhibiting high levels of antagonism in vitro (more than 45%) were then tested in a glasshouse study for their ability to reduce the impact of Phytophthora infection in cinnamon seedlings. Trials using cinnamon seeds or seedlings inoculated with an endophyte and then infested with Phytophthora identified three endophytes expressing high levels of disease suppression (based on root damage reduction) and plant growth promotion. These were Penicillium citrinum, Xylaria curta and Clonostachys rosea. These endophytes can potentially be used in the biological control of root rot in cinnamon, but this must be explored further under field conditions.
Collapse
|
5
|
El-Hasan A, Ngatia G, Link TI, Voegele RT. Isolation, Identification, and Biocontrol Potential of Root Fungal Endophytes Associated with Solanaceous Plants against Potato Late Blight ( Phytophthora infestans). PLANTS (BASEL, SWITZERLAND) 2022; 11:1605. [PMID: 35736756 PMCID: PMC9229062 DOI: 10.3390/plants11121605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022]
Abstract
Late blight of potato caused by Phytophthora infestans is one of the most damaging diseases affecting potato production worldwide. We screened 357 root fungal endophytes isolated from four solanaceous plant species obtained from Kenya regarding their in vitro antagonistic activity against the potato late blight pathogen and evaluated their performance in planta. Preliminary in vitro tests revealed that 46 of these isolates showed potential activity against the pathogen. Based on their ITS-sequences, 37 out of 46 endophytes were identified to species level, three isolates were connected to higher taxa (phylum or genus), while two remained unidentified. Confrontation assays, as well as assays for volatile or diffusible organic compounds, resulted in the selection of three endophytes (KB1S1-4, KA2S1-42, and KB2S2-15) with a pronounced inhibitory activity against P. infestans. All three isolates produce volatile organic compounds that inhibit mycelial growth of P. infestans by up to 48.9%. The addition of 5% extracts obtained from KB2S2-15 or KA2S1-42 to P. infestans sporangia entirely suppressed their germination. A slightly lower inhibition (69%) was achieved using extract from KB1S1-4. Moreover, late blight symptoms and the mycelial growth of P. infestans were completely suppressed when leaflets were pre-treated with a 5% extract from these endophytes. This might suggest the implementation of such biocontrol candidates or their fungicidal compounds in late blight control strategies.
Collapse
Affiliation(s)
- Abbas El-Hasan
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, D-70599 Stuttgart, Germany; (G.N.); (T.I.L.); (R.T.V.)
| | | | | | | |
Collapse
|
6
|
Rai M, Zimowska B, Gade A, Ingle P. Promising antimicrobials from Phoma spp.: progress and prospects. AMB Express 2022; 12:60. [PMID: 35604500 PMCID: PMC9125353 DOI: 10.1186/s13568-022-01404-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiotics began after the discovery of penicillin by Alexander Fleming from Penicillium chrysogenum. This has attracted the scientific community to delve deep into the antimicrobial capabilities of various fungi in general and Phoma spp. in particular. Phoma spp. such as Phoma arachidicola, P. sorghina, P. exigua var. exigua, P. herbarum, P. multirostrata, P. betae, P. fimeti, P. tropica, among others are known to produce different bioactive metabolites including polyketides, macrosporin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifungal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of secondary metabolites produced by different Phoma species. We have also deliberated the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles from Phoma and their role as potential antimicrobial agents. Growing multidrug-resistance and emerging pathogens need new antimicrobial drugs Different species of Phoma produce antimicrobial metabolites Phoma spp. are potential synthesizers of silver nanoparticles demonstrating antimicrobial activity.
Collapse
|
7
|
Control of Early Blight Fungus (Alternaria alternata) in Tomato by Boric and Phenylboronic Acid. Antibiotics (Basel) 2022; 11:antibiotics11030320. [PMID: 35326783 PMCID: PMC8944593 DOI: 10.3390/antibiotics11030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a suitable alternative to the small pool of existing antifungal agents is a vital task in contemporary agriculture. Therefore, intensive research has been conducted globally to uncover environmentally friendly and efficient agents that can suppress pathogens resistant to the currently used antimycotics. Here, we tested the activity of boric acid (BA) and its derivative phenylboronic acid (PBA) in controlling the early blight symptoms in tomato plants infected with pathogenic fungus Alternaria alternata. By following the appearance and intensity of the lesions on leaves of the tested plants, as well as by measuring four selected physiological factors that reflect plant health, we have shown that both BA and PBA act prophylactically on fungal infection. They did it by reducing the amount and severity of early blight symptoms, as well as by preventing deterioration of the physiological traits, occurring upon fungal inoculation. Phenylboronic acid was more efficient in suppressing the impact of A. alternata infection. Therefore, we conclude that BA, and even more so PBA, may be used as agents for controlling early blight on tomato plants, as they are both quite effective and environmentally friendly.
Collapse
|
8
|
Rogozhin EA, Vasilchenko AS, Barashkova AS, Smirnov AN, Zavriev SK, Demushkin VP. Peptide Extracts from Seven Medicinal Plants Discovered to Inhibit Oomycete Phytophthora infestans, a Causative Agent of Potato Late Blight Disease. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1294. [PMID: 33007947 PMCID: PMC7599828 DOI: 10.3390/plants9101294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
We report the inhibitory effect of peptide extracts obtained from seven medicinal plants against a causative agent of late blight disease Phytophthora infestans. We find that all the extracts possess inhibitory activity toward the zoospores output, zoosporangium germination, and the development of P. infestans on potato disc tubers at different quantitative levels. Based on the biological effects detected, an extract of common horsetail (Equisetum arvense) biomass is recognized as the most effective and is selected for further structural analysis. We perform a combination of amino acid analysis and MALDI-TOF mass spectrometry, which reveal the presence of Asn/Asp- and Gln/Glu-rich short peptides with molecular masses in the range of 500-900 Da and not exceeding 1500 Da as the maximum. Analytical anion-exchange HPLC is successfully applied for separation of the peptide extract from common horsetail (E. arvense). We collect nine dominant components that are combined in two groups with differences in retention times. The N-terminal amino acid sequence of the prevalent compounds after analytical ion-exchange HPLC allows us to identify them as peptide fragments of functionally active proteins associated with photosynthesis, aquatic transport, and chitin binding. The anti-oomycete effects may be associated with the conversion of ribulose-1,5-bisphosphate carboxylase/oxygenase to produce a number of biologically active anionic peptides with possible regulatory functions. These data inform our knowledge regarding biologically active peptide fragments; they are the components of programmed or induced proteolysis of plant proteins and can realize secondary antimicrobial functions.
Collapse
Affiliation(s)
- Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 St.-Petersburg-Pushkin, Russia
| | - Alexey S. Vasilchenko
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Anna S. Barashkova
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Alexey N. Smirnov
- Timiryazev Russian State Agrarian University, 127550 Moscow, Russia;
| | - Sergey K. Zavriev
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| | - Vladimir P. Demushkin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| |
Collapse
|
9
|
Selection of Native Non-Saccharomyces Yeasts with Biocontrol Activity against Spoilage Yeasts in Order to Produce Healthy Regional Wines. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two major spoilage yeasts in the wine industry, Brettanomyces bruxellensis and Zygosaccharomyces rouxii, produce off-flavors and gas, causing considerable economic losses. Traditionally, SO2 has been used in winemaking to prevent spoilage, but strict regulations are in place regarding its use due to its toxic and allergenic effects. To reduce its usage researchers have been searching for alternative techniques. One alternative is biocontrol, which can be used either independently or in a complementary way to chemical control (SO2). The present study analyzed 122 native non-Saccharomyces yeasts for their biocontrol activity and their ability to be employed under fermentation conditions, as well as certain enological traits. After the native non-Saccharomyces yeasts were assayed for their biocontrol activity, 10 biocontroller yeasts were selected and assayed for their ability to prevail in the fermentation medium, as well as with respect to their corresponding positive/negative contribution to the wine. Two yeasts that satisfy these characteristics were Wickerhamomyces anomalus BWa156 and Metschnikowia pulcherrima BMp29, which were selected for further research in application to mixed fermentations.
Collapse
|
10
|
Bahramisharif A, Rose LE. Efficacy of biological agents and compost on growth and resistance of tomatoes to late blight. PLANTA 2019; 249:799-813. [PMID: 30406411 DOI: 10.1007/s00425-018-3035-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
This study identified biocontrol measures for improving plant quality and resistance under biotic stress caused by the most devastating pathogen in tomato production. The management of plant diseases are dependent on a variety of factors. Two important variables are the soil quality and its bacterial/fungal community. However, the interaction of these factors is not well understood and remains problematic in producing healthy crops. Here, the effect of oak-bark compost, Bacillus subtilis subsp. subtilis, Trichoderma harzianum and two commercial products (FZB24 and FZB42) were investigated on tomato growth, production of metabolites and resistance under biotic stress condition (infection with Phytophthora infestans). Oak-bark compost, B. subtilis subsp. subtilis, and T. harzianum significantly enhanced plant growth and immunity when exposed to P. infestans. However, the commercial products were not as effective in promoting growth, with FZB42 having the weakest protection. Furthermore, elevated levels of anthocyanins did not correlate with enhanced plant resistance. Overall, the most effective and consistent plant protection was obtained when B. subtilis subsp. subtilis was combined with oak-bark compost. In contrast, the combination of T. harzianum and oak-bark compost resulted in increased disease severity. The use of compost in combination with bio-agents should, therefore, be evaluated carefully for a reliable and consistent tomato protection.
Collapse
Affiliation(s)
- Amirhossein Bahramisharif
- Institute of Population genetics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 26.03.00.25, 40225, Düsseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Düsseldorf, Germany
| | - Laura E Rose
- Institute of Population genetics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 26.03.00.25, 40225, Düsseldorf, Germany.
- International Graduate School in Plant Sciences (iGRAD-Plant), Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
| |
Collapse
|