1
|
Yang P, Gao Y, Wang N, Zhu Y, Xue L, Han Y, Liu J, He W, Feng Y. The restricted mass transfer inside the anode pore channel affects the electroactive biofilms formation, community composition and the power production in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165448. [PMID: 37442459 DOI: 10.1016/j.scitotenv.2023.165448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Porous anodes improve system performance in microbial electrochemical systems by increasing the specific surface area for electroactive bacteria. In this study, multilayer anodes with different pore diameters were constructed to assess the impact of pore size and depth on anode performance. This layered structure makes detecting electroactive biofilms more accessible layer by layer, which is the first study to examine electroactive biofilms' molecular biology and electrochemical properties at different depths in pores with varied pore sizes. The millimeter-scale pores inside the bioanode have a limited effect in increasing power. The larger the pore diameter, the higher the maximum power density (Pmax) obtained. The Pmax of anodes with 4 mm pore (1.91 ± 0.15 W m-2) was 1.4 times higher than that of the non-perforated (1.37 ± 0.07 W m-2) and 0.5 mm pore anodes (1.39 ± 0.04 W m-2). Electricigens can colonize into pore channels for at least 10 mm with a pore diameter ≥3 mm and current densities >0.05 A m-2. However, in the pores channel with 0.5 mm diameter, electricigens can only colonize to a depth of 2 mm. The biofilm thickness, electricity output, metabolic activity, and biocommunity changed with pore depth and were restricted by the limited mass transfer. The Geobacter sp. was the dominant species in inter-pore biofilms, with 43.8 %-78.6 % in abundance and decreased in quantity as pore depth increased. The inter-pore biofilms on the outer layer contributed a current density of 0.17 ± 0.003 A m-2, while that of the inner layer was only 0.02 ± 0.01 A m-2. Further studies found that the pore edge mass transfer effect can contribute up to 75 % of the current. The mass transfer process at the pore edge region could be a multidirectional mass transfer rather than a pore channel mass transfer.
Collapse
Affiliation(s)
- Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yujie Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No 92 Weijin Road, Nankai District, 300072 Tianjin, China
| |
Collapse
|
2
|
Wu X, Yu Z, Yuan S, Tawfik A, Meng F. An ecological explanation for carbon source-associated denitrification performance in wastewater treatment plants. WATER RESEARCH 2023; 247:120762. [PMID: 39492355 DOI: 10.1016/j.watres.2023.120762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The underlying mechanism associated with the roles of dosed carbon source in denitrification performance remains largely unknown. In this study, three denitrifying consortia (DNC) were constructed via evolutionary top-down enrichment method with well-defined conditions and specific carbon sources (acetate, glucose and their mixture). The reactor operation shows that nearly complete nitrate removal was achieved; however, the glucose feeding resulted in much higher concentrations of biomass and non-settable flocs. The 16S rRNA sequencing suggests that the bacterial diversity of the acetate-fed DNC was significantly higher than those of acetate/glucose-fed and glucose-fed DNCs. The dentrifying population in the acetate-fed DNC was dominated by Propionivibrio (16.1 %) and Thauera (3.4 %); whereas those of acetate/glucose- and glucose-fed DNCs were dominated by Pleomorphomonas (21.5 % and 26.3 %, respectively). Interestingly, the supernatant of acetate-fed DNC contained a high abundance of genera Thauera (averaged at 85.1 %), indicating the free-living nature of Thauera. Both PICURSt2 analysis of 16S rRNA sequencing and metagenomic analysis indicate that the acetate-fed DNC contained higher abundances of denitrifying genes; the acetate/glucose-fed and glucose-fed DNCs, in comparison, enriched genes related to glucose transportation and metabolism. Additionally, the acetate-fed DNC had better network stability than other two groups. This study adds important knowledge regarding the ecological traits of DNC, providing important clues for rational addition of carbon sources in wastewater treatment plants.
Collapse
Affiliation(s)
- Xueshen Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt; Department of Environmental Science, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Lee HJ, Whang KS. Oryzibacter oryziterrae gen. nov., sp. nov., isolated from rice paddy soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37737839 DOI: 10.1099/ijsem.0.006033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
A novel Gram-stain-negative, aerobic, motile and pleomorphic rod-shaped bacterial strain, designated COJ-58T, was isolated from rice paddy soil. Strain COJ-58T grew optimally at 20-30 °C, at pH 5.0-8.0 and with 0-1.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain COJ-58T forms a distinct lineage within the family Pleomorphomonadaceae, with highest similarity to Pleomorphomonas carboxyditropha SVCO-16T (95.9 %), Pleomorphomonas koreensis Y9T (95.8 %), Pleomorphomonas oryzae F-7T (95.7 %) and Pleomorphomonas diazotrophica R5-392T (95.6 %), respectively. The average nucleotide identity, digital DNA-DNA hybridization, average amino acid identity and percentage of conserved proteins values between the genomes of strain COJ-58T and its closely related taxa are ≤77.2 %, ≤21.6 %, ≤68.3 % and ≤61.3 %, respectively. The genome size of strain COJ-58T is 4.9 Mb and the genomic DNA G + C content is 63.7 mol%. The major fatty acids are C18 : 1 ω7c, C16 : 0 and summed feature 2 (C14 : 0 3-OH and/or iso-C16 : 1 I). The differential phenotypic and genotypic characteristics of strain COJ-58T indicate that it represents a novel genus and species, for which the name Oryzibacter oryziterrae gen. nov., sp. nov. is proposed, with strain COJ-58T (=KACC 22108T=JCM 34744T) as the type strain.
Collapse
Affiliation(s)
- Hyo-Jin Lee
- Institute of Microbial Ecology & Resources, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, Republic of Korea
- Department of Microbial Biotechnology, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, Republic of Korea
| | - Kyung-Sook Whang
- Institute of Microbial Ecology & Resources, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, Republic of Korea
- Department of Microbial Biotechnology, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Proença DN, Whitman WB, Shapiro N, Woyke T, Kyrpides NC, Morais PV. Faunimonas pinastri gen. nov., sp. nov., an endophyte from a pine tree of the family Pleomorphomonadaceae, class Alphaproteobacteria. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748409 DOI: 10.1099/ijsem.0.005623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial strain A52C2T was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A52C2T stained Gram-negative and formed rod-shaped cells that grew optimally at 30 °C and at pH 6.0-7.0. The G+C content of the DNA was 65.1 mol %. The respiratory quinone was ubiquinone 10, and the major fatty acids were cyclo-C19:0 ω8c and C18:0, representing 70.1 % of the total fatty acids. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain A52C2T in a distinct lineage within the order Hyphomicrobiales, family Pleomorphomonadaceae. The 16S rRNA gene sequence similarities of A52C2T to that of Mongoliimonas terrestris and Oharaeibacter diazotrophicus were 93.15 and 93.2 %, respectively. The draft genome sequence of strain A52C2T comprises 4 196 045 bases with a 195-fold mapped coverage of the genome. The assembled genome consists of 43 contigs of more than 1 000 bp (N50 contig size was 209 720 bp). The genome encodes 4033 putative coding sequences. The phylogenetic, phenotypic and chemotaxonomic data showed that strain A52C2T (=UCCCB 130T=CECT 8949T=LMG 29042T) represents the type of a novel species and genus, for which we propose the name Faunimonas pinastri gen. nov., sp. nov.
Collapse
Affiliation(s)
- Diogo N Proença
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - William B Whitman
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602-2605, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
Duan H, He P, Shao L, Lü F. Functional genome-centric view of the CO-driven anaerobic microbiome. THE ISME JOURNAL 2021; 15:2906-2919. [PMID: 33911204 PMCID: PMC8443622 DOI: 10.1038/s41396-021-00983-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
CO is a promising substrate for producing biochemicals and biofuels through mixed microbial cultures, where carboxydotrophs play a crucial role. The previous investigations of mixed microbial cultures focused primarily on overall community structures, but under-characterized taxa and intricate microbial interactions have not yet been precisely explicated. Here, we undertook DNA-SIP based metagenomics to profile the anaerobic CO-driven microbiomes under 95 and 35% CO atmospheres. The time-series analysis of the isotope-labeled amplicon sequencing revealed the essential roles of Firmicutes and Proteobacteria under high and low CO pressure, respectively, and Methanobacterium was the predominant archaeal genus. The functional enrichment analysis based on the isotope-labeled metagenomes suggested that the microbial cultures under high CO pressure had greater potential in expressing carboxylate metabolism and citrate cycle pathway. The genome-centric metagenomics reconstructed 24 discovered and 24 under-characterized metagenome-assembled genomes (MAGs), covering more than 94% of the metagenomic reads. The metabolic reconstruction of the MAGs described their potential functions in the CO-driven microbiomes. Some under-characterized taxa might be versatile in multiple processes; for example, under-characterized Rhodoplanes sp. and Desulfitobacterium_A sp. could encode the complete enzymes in CO oxidation and carboxylate production, improving functional redundancy. Finally, we proposed the putative microbial interactions in the conversion of CO to carboxylates and methane.
Collapse
Affiliation(s)
- Haowen Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
6
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Omae K, Fukuyama Y, Yasuda H, Mise K, Yoshida T, Sako Y. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan. Arch Microbiol 2019; 201:969-982. [PMID: 31030239 PMCID: PMC6687684 DOI: 10.1007/s00203-019-01661-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
In hydrothermal environments, carbon monoxide (CO) utilisation by thermophilic hydrogenogenic carboxydotrophs may play an important role in microbial ecology by reducing toxic levels of CO and providing H2 for fuelling microbial communities. We evaluated thermophilic hydrogenogenic carboxydotrophs by microbial community analysis. First, we analysed the correlation between carbon monoxide dehydrogenase (CODH)–energy-converting hydrogenase (ECH) gene cluster and taxonomic affiliation by surveying an increasing genomic database. We identified 71 genome-encoded CODH–ECH gene clusters, including 46 whose owners were not reported as hydrogenogenic carboxydotrophs. We identified 13 phylotypes showing > 98.7% identity with these taxa as potential hydrogenogenic carboxydotrophs in hot springs. Of these, Firmicutes phylotypes such as Parageobacillus, Carboxydocella, Caldanaerobacter, and Carboxydothermus were found in different environmental conditions and distinct microbial communities. The relative abundance of the potential thermophilic hydrogenogenic carboxydotrophs was low. Most of them did not show any symbiotic networks with other microbes, implying that their metabolic activities might be low.
Collapse
Affiliation(s)
- Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Hisato Yasuda
- Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kenta Mise
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8503, Japan.
| |
Collapse
|
8
|
Felföldi T, Márton Z, Szabó A, Mentes A, Bóka K, Márialigeti K, Máthé I, Koncz M, Schumann P, Tóth E. Siculibacillus lacustris gen. nov., sp. nov., a new rosette-forming bacterium isolated from a freshwater crater lake (Lake St. Ana, Romania). Int J Syst Evol Microbiol 2019; 69:1731-1736. [PMID: 30950779 DOI: 10.1099/ijsem.0.003385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new aerobic alphaproteobacterium, strain SA-279T, was isolated from a water sample of a crater lake. The 16S rRNA gene sequence analysis revealed that strain SA-279T formed a distinct lineage within the family Ancalomicrobiaceae and shared the highest pairwise similarity values with Pinisolibacterravus E9T (96.4 %) and Ancalomicrobiumadetum NBRC 102456T (94.2 %). Cells of strain SA-279T were rod-shaped, motile, oxidase and catalase positive, and capable of forming rosettes. Its predominant fatty acids were C18 : 1ω7c (69.0 %) and C16 : 1ω7c (22.7 %), the major respiratory quinone was Q-10, and the main polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, an unidentified aminophospholipid and an unidentified lipid. The G+C content of the genomic DNA of strain SA-279T was 69.2 mol%. On the basis of the phenotypic, chemotaxonomic and molecular data, strain SA-279T is considered to represent a new genus and species within the family Ancalomicrobiaceae, for which the name Siculibacillus lacustris gen. nov., sp. nov. is proposed. The type strain is SA-279T (=DSM 29840T=JCM 31761T).
Collapse
Affiliation(s)
- Tamás Felföldi
- 2Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania.,1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Zsuzsanna Márton
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Attila Szabó
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Anikó Mentes
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Károly Bóka
- 3Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Károly Márialigeti
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - István Máthé
- 2Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Mihály Koncz
- 2Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania.,†Present address: Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Peter Schumann
- 4Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Erika Tóth
- 1Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
9
|
Oren A, Garrity GM. Proposal to modify Rules 27 and 30(3)(b) of the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2018; 68:3951-3953. [PMID: 30307385 DOI: 10.1099/ijsem.0.003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We propose to modify Rules 27 and 30(3)(b) of the International Code of Nomenclature of Prokaryotes so that the formal description of new taxa (the 'protologue') will include a statement about the nomenclatural type, so that this information will be linked to the name of the taxon, the derivation (etymology) of the name, and the properties of the taxon.
Collapse
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
10
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:2707-2709. [DOI: 10.1099/ijsem.0.002945] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|