1
|
Skinner JP, Palar S, Allen C, Raderstorf A, Blake P, Morán Reyes A, Berg RN, Muse C, Robles A, Hamdan N, Chu MY, Delgado AG. Acetylene Tunes Microbial Growth During Aerobic Cometabolism of Trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6274-6283. [PMID: 38531380 PMCID: PMC11008246 DOI: 10.1021/acs.est.3c08068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.
Collapse
Affiliation(s)
- Justin P. Skinner
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Skye Palar
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Channing Allen
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Alia Raderstorf
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Presley Blake
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Arantza Morán Reyes
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Instituto
de Energías Renovables, Universidad
Nacional Autónoma de México, Xochicalco s/n, Azteca, Temixco, Morelos 62588, Mexico
| | - Riley N. Berg
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Christopher Muse
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Aide Robles
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Nasser Hamdan
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Min-Ying Chu
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Wells M, Kim M, Akob DM, Basu P, Stolz JF. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Microbiol Spectr 2023; 11:e0414522. [PMID: 36951557 PMCID: PMC10100899 DOI: 10.1128/spectrum.04145-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
The dimethyl sulfoxide reductase (or MopB) family is a diverse assemblage of enzymes found throughout Bacteria and Archaea. Many of these enzymes are believed to have been present in the last universal common ancestor (LUCA) of all cellular lineages. However, gaps in knowledge remain about how MopB enzymes evolved and how this diversification of functions impacted global biogeochemical cycles through geologic time. In this study, we perform maximum likelihood phylogenetic analyses on manually curated comparative genomic and metagenomic data sets containing over 47,000 distinct MopB homologs. We demonstrate that these enzymes constitute a catalytically and mechanistically diverse superfamily defined not by the molybdopterin- or tungstopterin-containing [molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)] cofactor but rather by the structural fold that binds it in the protein. Our results suggest that major metabolic innovations were the result of the loss of the metal cofactor or the gain or loss of protein domains. Phylogenetic analyses also demonstrated that formate oxidation and CO2 reduction were the ancestral functions of the superfamily, traits that have been vertically inherited from the LUCA. Nearly all of the other families, which drive all other biogeochemical cycles mediated by this superfamily, originated in the bacterial domain. Thus, organisms from Bacteria have been the key drivers of catalytic and biogeochemical innovations within the superfamily. The relative ordination of MopB families and their associated catalytic activities emphasize fundamental mechanisms of evolution in this superfamily. Furthermore, it underscores the importance of prokaryotic adaptability in response to the transition from an anoxic to an oxidized atmosphere. IMPORTANCE The MopB superfamily constitutes a repertoire of metalloenzymes that are central to enduring mysteries in microbiology, from the origin of life and how microorganisms and biogeochemical cycles have coevolved over deep time to how anaerobic life adapted to increasing concentrations of O2 during the transition from an anoxic to an oxic world. Our work emphasizes that phylogenetic analyses can reveal how domain gain or loss events, the acquisition of novel partner subunits, and the loss of metal cofactors can stimulate novel radiations of enzymes that dramatically increase the catalytic versatility of superfamilies. We also contend that the superfamily concept in protein evolution can uncover surprising kinships between enzymes that have remarkably different catalytic and physiological functions.
Collapse
Affiliation(s)
- Michael Wells
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Minjae Kim
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Denise M. Akob
- United States Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - John F. Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Acetylenotrophic and Diazotrophic
Bradyrhizobium
sp. Strain I71 from TCE-Contaminated Soils. Appl Environ Microbiol 2022; 88:e0121922. [PMID: 36286524 PMCID: PMC9680620 DOI: 10.1128/aem.01219-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of
Bradyrhizobium
strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of
Bradyrhizobium
are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen.
Collapse
|
4
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Sutton JM, Bushman TJ, Akob DM, Fierst JL. Complete Genome Sequence of Rhodococcus opacus Strain MoAcy1 (DSM 44186), an Aerobic Acetylenotroph Isolated from Soil. Microbiol Resour Announc 2022; 11:e0081421. [PMID: 34989600 PMCID: PMC8759407 DOI: 10.1128/mra.00814-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
We report the genome of Rhodococcus opacus strain MoAcy1 (DSM 44186), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%.
Collapse
Affiliation(s)
- John M. Sutton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Timothy J. Bushman
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- U.S. Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Janna L. Fierst
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
7
|
Oremland RS. Got acetylene: a personal research retrospective. FEMS MICROBES 2021; 2:xtab009. [PMID: 37334230 PMCID: PMC10117869 DOI: 10.1093/femsmc/xtab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/28/2021] [Indexed: 07/20/2023] Open
Abstract
In research, sometimes sheer happenstance and serendipity make for an unexpected discovery. Once revealed and if interesting enough, such a finding and its follow-up investigations can lead to advances by others that leave its originators 'scooped' and mulling about what next to do with their unpublished data, specifically what journals could it still be published in and be perceived as original. This is what occurred with us nearly 40 years ago with regard to our follow-up observations of acetylene fermentation and led us to concoct a 'cock-and-bull' story. We hypothesized about a plausible role for acetylene metabolism in the primordial biogeochemistry of Earth and the possibility of acetylene serving as a key life-sustaining substrate for alien microbes dwelling in the orbs of the outer solar system. With the passage of time, advances were made in whole-genome sequencing coupled with major in silico progress in bioinformatics. In parallel came the results of explorations of the outer solar system (i.e. the Cassini mission to Saturn and its moons). It now appears that these somewhat harebrained ideas of ours, arisen at first out of a sense of desperation, actually ring true in fact, and particularly well in song: 'Tell a tale of cock and bull, Of convincing detail full Tale tremendous, Heav'n defend us! What a tale of cock and bull!' From 'The Yeoman of the Guard' by Gilbert & Sullivan.
Collapse
Affiliation(s)
- Ronald S Oremland
- Corresponding author: US Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA. E-mail:
| |
Collapse
|
8
|
Liao RZ, Zhang JX, Lin Z, Siegbahn PE. Antiferromagnetically coupled [Fe8S9] cluster catalyzed acetylene reduction in a nitrogenase-like enzyme DCCPCh: Insights from QM/MM calculations. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Baesman SM, Sutton JM, Fierst JL, Akob DM, Oremland RS. Syntrophotalea acetylenivorans sp. nov., a diazotrophic, acetylenotrophic anaerobe isolated from intertidal sediments. Int J Syst Evol Microbiol 2021; 71. [PMID: 33570486 DOI: 10.1099/ijsem.0.004698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93T was capable of acetylenotrophic and diazotrophic growth, grew at 22-37 °C, pH 6.3-8.5 and in the presence of 10-45 g l-1 NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93T represented a member of the genus Syntrophotalea with highest 16S rRNA gene sequence similarities to Syntrophotalea acetylenica DSM 3246T (96.6 %), Syntrophotalea carbinolica DSM 2380T (96.5 %), and Syntrophotalea venetiana DSM 2394T (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93T had low genome-wide average nucleotide identity (81-87.5 %) and <70 % digital DNA-DNA hybridization value with other members of the genus Syntrophotalea. The phylogenetic position of SFB93T within the family Syntrophotaleaceae and as a novel member of the genus Syntrophotalea was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T (=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.
Collapse
Affiliation(s)
- Shaun M Baesman
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California, USA
| | - John M Sutton
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Janna L Fierst
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Denise M Akob
- U.S. Geological Survey, 12201 Sunrise Valley Dr., MS 954 Reston, Virginia, USA
| | - Ronald S Oremland
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California, USA
| |
Collapse
|
10
|
Gushgari-Doyle S, Oremland RS, Keren R, Baesman SM, Akob DM, Banfield JF, Alvarez-Cohen L. Acetylene-Fueled Trichloroethene Reductive Dechlorination in a Groundwater Enrichment Culture. mBio 2021; 12:e02724-20. [PMID: 33531396 PMCID: PMC7858054 DOI: 10.1128/mbio.02724-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023] Open
Abstract
In aquifers, acetylene (C2H2) is a product of abiotic degradation of trichloroethene (TCE) catalyzed by in situ minerals. C2H2 can, in turn, inhibit multiple microbial processes including TCE dechlorination and metabolisms that commonly support dechlorination, in addition to supporting the growth of acetylenotrophic microorganisms. Previously, C2H2 was shown to support TCE reductive dechlorination in synthetic, laboratory-constructed cocultures containing the acetylenotroph Pelobacter sp. strain SFB93 and Dehalococcoides mccartyi strain 195 or strain BAV1. In this study, we demonstrate TCE and perchloroethene (PCE) reductive dechlorination by a microbial community enriched from contaminated groundwater and amended with C2H2 as the sole electron donor and organic carbon source. The metagenome of the stable, enriched community was analyzed to elucidate putative community functions. A novel anaerobic acetylenotroph in the phylum Actinobacteria was identified using metagenomic analysis. These results demonstrate that the coupling of acetylenotrophy and reductive dechlorination can occur in the environment with native bacteria and broaden our understanding of biotransformation at contaminated sites containing both TCE and C2H2IMPORTANCE Understanding the complex metabolisms of microbial communities in contaminated groundwaters is a challenge. PCE and TCE are among the most common groundwater contaminants in the United States that, when exposed to certain minerals, exhibit a unique abiotic degradation pathway in which C2H2 is a product. C2H2 can act as both an inhibitor of TCE dechlorination and of supporting metabolisms and an energy source for acetylenotrophic bacteria. Here, we combine laboratory microcosm studies with computational approaches to enrich and characterize an environmental microbial community that couples two uncommon metabolisms, demonstrating unique metabolic interactions only yet reported in synthetic, laboratory-constructed settings. Using this comprehensive approach, we have identified the first reported anaerobic acetylenotroph in the phylum Actinobacteria, demonstrating the yet-undescribed diversity of this metabolism that is widely considered to be uncommon.
Collapse
Affiliation(s)
- Sara Gushgari-Doyle
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| | | | - Ray Keren
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
| | | | | | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
11
|
A Possible Primordial Acetyleno/Carboxydotrophic Core Metabolism. Life (Basel) 2020; 10:life10040035. [PMID: 32272667 PMCID: PMC7235995 DOI: 10.3390/life10040035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/04/2022] Open
Abstract
Carbon fixation, in addition to the evolution of metabolism, is a main requirement for the evolution of life. Here, we report a one-pot carbon fixation of acetylene (C2H2) and carbon monoxide (CO) by aqueous nickel sulfide (NiS) under hydrothermal (>100 °C) conditions. A slurry of precipitated NiS converts acetylene and carbon monoxide into a set of C2–4-products that are surprisingly representative for C2–4-segments of all four central CO2-fixation cycles of the domains Bacteria and Archaea, whereby some of the products engage in the same interconversions, as seen in the central CO2-fixation cycles. The results suggest a primordial, chemically predetermined, non-cyclic acetyleno/carboxydotrophic core metabolism. This metabolism is based on aqueous organo–metal chemistry, from which the extant central CO2-fixation cycles based on thioester chemistry would have evolved by piecemeal modifications.
Collapse
|