1
|
Czatzkowska M, Rolbiecki D, Zaborowska M, Bernat K, Korzeniewska E, Harnisz M. The influence of combined treatment of municipal wastewater and landfill leachate on the spread of antibiotic resistance in the environment - A preliminary case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119053. [PMID: 37748295 DOI: 10.1016/j.jenvman.2023.119053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Environmentally-friendly management of landfill leachate (LL) poses a challenge, and LL is usually co-treated with municipal wastewater in wastewater treatment plants (WWTPs). The extent to which the co-treatment of LL and municipal wastewater influences the spread of antibiotic resistance (AR) in the environment has not been examined to date. Two WWTPs with similar wastewater composition and technology were studied. Landfill leachate was co-treated with wastewater in one of the studied WWTPs. Landfill leachate, untreated and treated wastewater from both WWTPs, and river water sampled upstream and downstream from the wastewater discharge point were analyzed. Physicochemical parameters, microbial diversity, and antibiotic resistance genes (ARGs) abundance were investigated to determine the impact of LL co-treatment on chemical and microbiological contamination in the environment. Landfill leachate increased pollutant concentrations in untreated wastewater and river water. Cotreatment of LL and wastewater could affect the abundance and diversity of microbial communities and the interactions between microbial species. Co-treatment also decreased the stability of microbial co-occurrence networks in the examined samples. The mexF gene was identified as a potential marker of environmental pollution with LL. This is the first study to explore the impact of LL on the occurrence of AR determinants in wastewater and rivers receiving effluents.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland.
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709, Olsztyn, Poland
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-709, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720, Olsztyn, Poland.
| |
Collapse
|
2
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Jiang H, Chen D, Zheng D, Xiao Z. Anaerobic mineralization of toluene by enriched soil-free consortia with solid-phase humin as a terminal electron acceptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120794. [PMID: 36460188 DOI: 10.1016/j.envpol.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic biodegradation of toluene proceeds very slowly owing to limited electron acceptors in contaminated aquifer. The liquid reagents traditionally used to enhance this process readily migrate away from the contaminated site, and continuous addition would cause secondary pollution. In our previous study, the reduced solid-phase humic substances (humin), which are redox active, were found to act as electron donors to promote the microbial reactions. Here, we provide new evidence that humin can promote the anaerobic biodegradation of toluene as a terminal electron acceptor. When inoculating nitrate-reducing (NR) and iron-reducing (IR) consortia with toluene degradation activities, the average toluene degradation rates reached 21.20 ± 1.18 μmol/(L·d) and 15.43 ± 0.41 μmol/(L·d) in the presence of a sediment humin (HMcj), and 94.69% ± 4.26% and 93.20% ± 3.73% of the electrons released from toluene oxidation to CO2 could be recovered by the reduction of HMcj, respectively. Spectroscopy analyses revealed that quinone moieties and nitrogen-containing moieties may be the electron-accepting groups of HMcj. Based on 16S rRNA sequencing, Cellulomonas spp. were the possible functional bacteria in the culture with NR consortium as the inoculum, while Azospira spp., Cellulomonas spp. and Bacillus spp. were the possible functional bacteria in the culture with IR consortium as the inoculum. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that toluene oxidation and extracellular electron transfer functions were more abundant in HMcj amended cultures, suggesting a possible enhancement mechanism by HMcj. Additionally, experiments using natural groundwater illustrated that toluene degradation was highly dependent on its concentration, HMcj dosage, pH, and salinity. The study of a column filled with HMcj-coated quartz sand demonstrated a desirable level of toluene degradation in a continuous-flow mode without the presence of other electron acceptors. This study provided an effective and green approach for the remediation of the toluene-contaminated groundwater.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
4
|
Abiriga D, Jenkins A, Klempe H. Microbial assembly and co-occurrence network in an aquifer under press perturbation. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Thousands of aquifers worldwide have been polluted by leachate from landfills and many more remained threatened. Microbial communities from these environments play a crucial role in mediating biodegradation and maintaining the biogeochemical cycles, but their co-occurrence and assembly mechanism have not been investigated.
Method
Here, we coupled network analysis with multivariate statistics to assess the relative importance of deterministic versus stochastic microbial assembly in an aquifer undergoing intrinsic remediation, using 16S metabarcoding data generated through Illumina MiSeq sequencing of the archaeal/bacterial V3–V4 hypervariable region.
Results
Results show that both the aquifer-wide and localised community co-occurrences deviate from expectations under null models, indicating the predominance of deterministic processes in shaping the microbial communities. Further, the amount of variation in the microbial community explained by the measured environmental variables was 55.3%, which illustrates the importance of causal factors in forming the structure of microbial communities in the aquifer. Based on the network topology, several putative keystone taxa were identified which varied remarkably among the wells in terms of their number and composition. They included Nitrospira, Nitrosomonadaceae, Patulibacter, Legionella, uncharacterised Chloroflexi, Vicinamibacteriales, Neisseriaceae, Gemmatimonadaceae, and Steroidobacteraceae. The putative keystone taxa may be providing crucial functions in the aquifer ranging from nitrogen cycling by Nitrospira, Nitrosomonadaceae, and Steroidobacteraceae, to phosphorous bioaccumulation by Gemmatimonadaceae.
Conclusion
Collectively, the findings provide answers to fundamental ecological questions which improve our understanding of the microbial ecology of landfill leachate plumes, an ecosystem that remains understudied.
Collapse
|
5
|
Fenner K, Elsner M, Lueders T, McLachlan MS, Wackett LP, Zimmermann M, Drewes JE. Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence? ACS ES&T WATER 2021; 1:1541-1554. [PMID: 34278380 PMCID: PMC8276273 DOI: 10.1021/acsestwater.1c00025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 05/14/2023]
Abstract
Complex microbial communities in environmental systems play a key role in the detoxification of chemical contaminants by transforming them into less active metabolites or by complete mineralization. Biotransformation, i.e., transformation by microbes, is well understood for a number of priority pollutants, but a similar level of understanding is lacking for many emerging contaminants encountered at low concentrations and in complex mixtures across natural and engineered systems. Any advanced approaches aiming to reduce environmental exposure to such contaminants (e.g., novel engineered biological water treatment systems, design of readily degradable chemicals, or improved regulatory assessment strategies to determine contaminant persistence a priori) will depend on understanding the causal links among contaminant removal, the key driving agents of biotransformation at low concentrations (i.e., relevant microbes and their metabolic activities), and how their presence and activity depend on environmental conditions. In this Perspective, we present the current understanding and recent methodological advances that can help to identify such links, even in complex environmental microbiomes and for contaminants present at low concentrations in complex chemical mixtures. We discuss the ensuing insights into contaminant biotransformation across varying environments and conditions and ask how much closer we have come to designing improved approaches to reducing environmental exposure to contaminants.
Collapse
Affiliation(s)
- Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448 Bayreuth, Germany
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, 106 91 Stockholm, Sweden
| | - Lawrence P Wackett
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
Abiriga D, Jenkins A, Alfsnes K, Vestgarden LS, Klempe H. Spatiotemporal and seasonal dynamics in the microbial communities of a landfill-leachate contaminated aquifer. FEMS Microbiol Ecol 2021; 97:6302377. [PMID: 34137824 PMCID: PMC8247425 DOI: 10.1093/femsec/fiab086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The microbiome of an aquifer contaminated by landfill leachate and undergoing intrinsic remediation was characterised using 16S rRNA metabarcoding. The archaeal/bacterial V3-V4 hypervariable region of the 16S rRNA gene was sequenced using Illumina MiSeq, and multivariate statistics were applied to make inferences. Results indicate that the aquifer recharge and aquifer sediment samples harbour different microbial communities compared to the groundwater samples. While Proteobacteria dominated both the recharge and groundwater samples, Acidobacteria dominated the aquifer sediment. The most abundant genera detected from the contaminated aquifer were Polynucleobacter, Rhodoferax, Pedobacter, Brevundimonas, Pseudomonas, Undibacterium, Sulfurifustis, Janthinobacterium, Rhodanobacter, Methylobacter and Aquabacterium. The result also shows that the microbial communities of the groundwater varied spatially, seasonally and interannually, although the interannual variation was significant for only one of the wells. Variation partitioning analysis indicates that water chemistry and well distance are intercorrelated and they jointly accounted for most of the variation in microbial composition. This implies that the species composition and water chemistry characteristics have a similar spatial structuring, presumably caused by the landfill leachate plume. The study improves our understanding of the dynamics in subsurface microbial communities in space and time.
Collapse
Affiliation(s)
- Daniel Abiriga
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, NO-3800, Bø, Norway
| | - Andrew Jenkins
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, NO-3800, Bø, Norway
| | - Kristian Alfsnes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Live Semb Vestgarden
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, NO-3800, Bø, Norway
| | - Harald Klempe
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, NO-3800, Bø, Norway
| |
Collapse
|
7
|
Ali MA, Gould M. Untapped potentials of hazardous nanoarchitectural biopolymers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124740. [PMID: 33476911 DOI: 10.1016/j.jhazmat.2020.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The First Industrial Revolution began when manual labour transitioned to machines. Fossil fuels and steam eventually replaced wood and water as an energy source used predominantly for the mechanized production of textiles and iron. The emergence of the required numerous enormous factories gave rise to smoke pollution due to the immense growth in coal consumption. The manufactured gas industry produced highly toxic effluent that was released into sewers and rivers polluting the water. Many pieces of legislation were introduced to overcome this issue, but with varying degrees of effectiveness. Alongside our growth in world population, the problems that we had with waste remained, but together with our increase in number the waste produced has also increased additionally. The immense volume of waste materials generated from human activity and the potentially detrimental effects on the environment and on public health have awakened in ourselves a critical need to embrace current scientific methods for the safe disposal of wastes. We are informed daily that our food waste must be better utilized to ensure enough food is available to feed the world's growing population in a sustainable way (Thyberg and Tonjes, 2016). Some things are easy, like waste food and cellulose products can be turned into compost, but how do we recycle sheep's wool? Or shrimp shells? Despite the fact that both these substances are hazardous, and have caused environmental and economic impact from being incinerated; but we anticipate that those substances may have the potential to convert into added value applications.We have been working in this area for over 15 years, working towards managing them and seeking their added value applications. We take the biological products, process (reconstitute) and engineer them into added value products such as functional and nanostructure materials including edible films, foams and composites including medical devices useful in the human body. Anything that we can ingest, should not cause an immune response in the human system. Natural biomacromolecules display the inherent ability to perform very specific chemical, mechanical or structural roles. Specifically, protein- and polysaccharide-based biomaterials have come to light as the most promising candidates for many biomedical applications due their biomimetic and nanostructured arrangements, their multi-functional features, and their capability to function as matrices that are capable of facilitating cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- M Azam Ali
- Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Maree Gould
- Department of Food Science, Centre for Bioengineering and Nanomedicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
8
|
Okurowska K, Karunakaran E, Al-Farttoosy A, Couto N, Pandhal J. Adapting the algal microbiome for growth on domestic landfill leachate. BIORESOURCE TECHNOLOGY 2021; 319:124246. [PMID: 33254468 DOI: 10.1016/j.biortech.2020.124246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
We aimed to improve algal growth rate on leachate by optimising the algal microbiome. An algal-bacterial consortium was enriched from landfill leachate and subjected to 24 months of adaptive laboratory evolution, increasing the growth rate of the dominant algal strain, Chlorella vulgaris, almost three-fold to 0.2 d-1. A dramatic reduction in nitrate production suggested a shift in biological utilisation of ammoniacal-N, supported by molecular 16S rRNA taxonomic analyses, where Nitrosomonas numbers were not detected in the adapted consortium. A PICRUSt approach predicted metagenomic functional content and revealed a high number of sequences belonging to bioremediation pathways, including degradation of aromatic compounds, benzoate and naphthalene, as well as pathways known to be involved in algal-bacterial symbiosis. This study enhances our understanding of beneficial mechanisms in algal-bacterial associations in complex effluents, and ultimately enables the bottom-up design of optimised algal microbiomes for exploitation within industry.
Collapse
Affiliation(s)
- Katarzyna Okurowska
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Alaa Al-Farttoosy
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Narciso Couto
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
9
|
Dhiman N, Jasrotia T, Sharma P, Negi S, Chaudhary S, Kumar R, Mahnashi MH, Umar A, Kumar R. Immobilization interaction between xenobiotic and Bjerkandera adusta for the biodegradation of atrazine. CHEMOSPHERE 2020; 257:127060. [PMID: 32505945 DOI: 10.1016/j.chemosphere.2020.127060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present work is to evaluate the ability of 'fungi' for the biodegradation of recalcitrant xenobiotic compound, 'Atrazine' in batch liquid cultures. Different parameters like pH (2.0-8.0) temperature (16-32 °C), biomass (1-5 g), and concentration (25-100 ppm) were optimized for the efficient degradation of atrazine. The decomposition behavior of atrazine is analyzed with the help of Fourier Transform Infrared (FTIR) spectroscopy. Herein, we have reported that the Bjerkandera adusta possess high removal efficiency of the xenobiotic compound (atrazine) up to 92%. The fungal strain investigated could prove to be a valuable active pesticide degrading micro-organism, with high detoxification values. These results are useful for improved understanding and prediction of the behavior and fate of B. adusta in the bio-purification of wastewater contaminated with xenobiotics. Thus providing a new and green approach for the remediation of toxicants without altering the environmental components.
Collapse
Affiliation(s)
- Nikita Dhiman
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Teenu Jasrotia
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Priyanka Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sushma Negi
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), 133207, Haryana, India
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Meyer-Dombard DR, Bogner JE, Malas J. A Review of Landfill Microbiology and Ecology: A Call for Modernization With 'Next Generation' Technology. Front Microbiol 2020; 11:1127. [PMID: 32582086 PMCID: PMC7283466 DOI: 10.3389/fmicb.2020.01127] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered and monitored sanitary landfills have been widespread in the United States since the passage of the Clean Water Act (1972) with additional controls under RCRA Subtitle D (1991) and the Clean Air Act Amendments (1996). Concurrently, many common perceptions regarding landfill biogeochemical and microbiological processes and estimated rates of gas production also date from 2 to 4 decades ago. Herein, we summarize the recent application of modern microbiological tools as well as recent metadata analysis using California, USEPA and international data to outline an evolving view of landfill biogeochemical/microbiological processes and rates. We focus on United States landfills because these are uniformly subject to stringent national and state requirements for design, operations, monitoring, and reporting. From a microbiological perspective, because anoxic conditions and methanogenesis are rapidly established after daily burial of waste and application of cover soil, the >1000 United States landfills with thicknesses up to >100 m form a large ubiquitous group of dispersed 'dark' ecosystems dominated by anaerobic microbial decomposition pathways for food, garden waste, and paper substrates. We review past findings of landfill ecosystem processes, and reflect on the potential impact that application of modern sequencing technologies (e.g., high throughput platforms) could have on this area of research. Moreover, due to the ever evolving composition of landfilled waste reflecting transient societal practices, we also consider unusual microbial processes known or suspected to occur in landfill settings, and posit areas of research that will be needed in coming decades. With growing concerns about greenhouse gas emissions and controls, the increase of chemicals of emerging concern in the waste stream, and the potential resource that waste streams represent, application of modernized molecular and microbiological methods to landfill ecosystem research is of paramount importance.
Collapse
Affiliation(s)
- D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
11
|
Physiological Profiling and Functional Diversity of Groundwater Microbial Communities in a Municipal Solid Waste Landfill Area. WATER 2019. [DOI: 10.3390/w11122624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disposal of municipal solid wastes in landfills represents a major threat for aquifer environments at the global scale. The aim of this study was to explore how groundwater geochemical characteristics can influence the microbial community functioning and the potential degradation patterns of selected organic substrates in response to different levels of landfill-induced alterations. Groundwaters collected from a landfill area were monitored by assessing major physical-chemical parameters and the microbiological contamination levels (total coliforms and fecal indicators—Colilert-18). The aquatic microbial community was further characterized by flow cytometry and Biolog EcoPlatesTM assay. Three groundwater conditions (i.e., pristine, mixed, and altered) were identified according to their distinct geochemical profiles. The altered groundwaters showed relatively higher values of organic matter concentration and total cell counts, along with the presence of fecal indicator bacteria, in comparison to samples from pristine and mixed conditions. The kinetic profiles of the Biolog substrate degradation showed that the microbial community thriving in altered conditions was relatively more efficient in metabolizing a larger number of organic substrates, including those with complex molecular structures. We concluded that the assessment of physiological profiling and functional diversity at the microbial community level could represent a supportive tool to understand the potential consequences of the organic contamination of impacted aquifers, thus complementing the current strategies for groundwater management.
Collapse
|
12
|
Groundwater Autochthonous Microbial Communities as Tracers of Anthropogenic Pressure Impacts: Example from a Municipal Waste Treatment Plant (Latium, Italy). WATER 2019. [DOI: 10.3390/w11091933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The groundwater behavior at a municipal solid waste disposal dump, located in Central Italy, was studied using a multi-parameter monitoring over 1 year consisting of 4 seasonal samples. The hydrological and hydrogeological dynamics of water circulation, microbiological parameters (microbial abundance and cell viability of the autochthonous microbial community), dissolved organic carbon, and several contaminants were evaluated and related to the geological structures in both two and three dimensions and used for geostatistical analysis in order to obtain 3D maps. Close relationships between geological heterogeneity, water circulation, pollutant diffusion, dissolved organic carbon, and cell viability were revealed. The highest cell viability values were found with dissolved organic carbon (DOC) values ≤0.5 mg/L; above this value, DOC negatively affected the microbial community. The highest DOC values were detected in groundwater at some sampling points within the site indicating its probable origin from the waste disposal dump. Although legislation limits for the parameters measured were not exceeded (except for a contaminant in one piezometer), the 1-year multi-parameter monitoring approach made it possible to depict both the dynamics and the complexity of the groundwater flux and, with “non-legislative parameters” such as microbial cell viability and DOC, identify the points with the highest vulnerability and their origin. This approach is useful for identifying the most vulnerable sites in a groundwater body.
Collapse
|
13
|
Sonthiphand P, Ruangroengkulrith S, Mhuantong W, Charoensawan V, Chotpantarat S, Boonkaewwan S. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26765-26781. [PMID: 31300992 DOI: 10.1007/s11356-019-05905-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Microbial communities in groundwater are diverse and each may respond differently to environmental change. The goal of this study was to investigate the diversity, abundance, and dynamics of microbial communities in impacted groundwater and correlate them to the corresponding land use and groundwater geochemistry, using an Illumina MiSeq platform targeting the V3 and V4 regions of the 16S rRNA gene. The resulting MiSeq sequencing revealed the co-occurrence patterns of both abundant and rare microbial taxa within an impacted groundwater basin. Proteobacteria were the most common groundwater-associated bacterial phylum, mainly composed of the classes Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The phyla detected at less abundances were the Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, OD1, and Nitrospirae. The members of detected groundwater microorganisms involved in natural biogeochemical processes such as nitrification, anammox, methane oxidation, sulfate reduction, and arsenic transformation. Some of the detected microorganisms were able to perform anaerobic degradation of organic pollutants. The resulting PCA indicates that major land usage within the sampling area seemed to be significantly linked to the groundwater microbial distributions. The distinct microbial pattern was observed in the groundwater collected from a landfill area. This study suggests that the combinations of anthropogenic and natural effects possibly led to a unique pattern of microbial diversity across different locations at the impacted groundwater basin.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Satika Boonkaewwan
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Impact of the Biological Cotreatment of the Kalina Pond Leachate on Laboratory Sequencing Batch Reactor Operation and Activated Sludge Quality. WATER 2019. [DOI: 10.3390/w11081539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hauling landfill leachate to offsite urban wastewater treatment plants is a way to achieve pollutant removal. However, the implementation of biological methods for the treatment of landfill leachate can be extremely challenging. This study aims to investigate the effect of blending wastewater with 3.5% and 5.5% of the industrial leachate from the Kalina pond (KPL) on the performance of sequencing batch reactor (SBR) and capacity of activated sludge microorganisms. The results showed that the removal efficiency of the chemical oxygen demand declined in the contaminated SBR from 100% to 69% and, subsequently, to 41% after the cotreatment with 3.5% and 5.5% of the pollutant. In parallel, the activities of the dehydrogenases and nonspecific esterases declined by 58% and 39%, and 79% and 81% after 32 days of the exposure of the SBR to 3.5% and 5.5% of the leachate, respectively. Furthermore, the presence of the KPL in the sewage affected the sludge microorganisms through a reduction in their functional capacity as well as a decrease in the percentages of the marker fatty acids for different microbial groups. A multifactorial analysis of the parameters relevant for the wastewater treatment process confirmed unambiguously the negative impact of the leachate on the operation, activity, and structure of the activated sludge.
Collapse
|
15
|
Stott M, Lueders T. Editorial: Deep life, kia ora! FEMS Microbiol Ecol 2018; 94:5101342. [DOI: 10.1093/femsec/fiy176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Matthew Stott
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|