1
|
Wang Y, Xue W, Lyu J, Yue M, Mao Z, Shen X, Wang X, Li Y, Li Q. Biotic Interactions Shape Soil Bacterial Beta Diversity Patterns along an Altitudinal Gradient during Invasion. Microorganisms 2024; 12:1972. [PMID: 39458281 PMCID: PMC11509125 DOI: 10.3390/microorganisms12101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Invasive plants have already been observed in the understory of mountain forests, which are often considered a safe shelter for most native plants. Microorganisms might be drivers of plant invasions. Nevertheless, the mechanisms determining variations in microbial community composition (beta diversity) during invasion along altitudinal gradients remain to be elucidated. Here, the elevational patterns and the driving ecological processes (e.g., environmental filtering, co-occurrence patterns, and community assembly processes) of soil bacterial beta diversity were compared between invasive and native plants on the Qinling Mountains. The species turnover dominated bacterial compositional dissimilarities in both invasive and native communities, and its contribution to total beta diversity decreased during invasion. Total soil bacterial dissimilarities and turnover exhibited significant binominal patterns over an altitudinal gradient, with a tipping point of 1413 m. Further analysis showed that the contributions of assembly processes decreased in parallel with an increase in contributions of co-occurrence patterns during the invasion process, indicating that species interdependence rather than niche partitioning is strongly correlated with the bacterial biogeography of invasive communities. Plant invasion affects the relative contributions of stochastic processes and co-occurrence interactions through the regulation of the physiochemical characteristics of soil, and ultimately determines compositional dissimilarities and the components of the bacterial community along altitudinal gradients.
Collapse
Affiliation(s)
- Yuchao Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an 710061, China
| | - Wenyan Xue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Jinlin Lyu
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Ming Yue
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
- Xi’an Ecological Monitoring and Restoration Engineering Technology Research Center, Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Xuejian Shen
- Forest Disease and Pest Control and Quarantine Station of Shangluo, Shangluo 726000, China
| | - Xue Wang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| | - Qian Li
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710061, China
| |
Collapse
|
2
|
Kang Y, Wu H, Zhang Y, Wu Q, Guan Q, Lu K, Lin Y. Differential distribution patterns and assembly processes of soil microbial communities under contrasting vegetation types at distinctive altitudes in the Changbai Mountain. Front Microbiol 2023; 14:1152818. [PMID: 37333641 PMCID: PMC10272400 DOI: 10.3389/fmicb.2023.1152818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 06/20/2023] Open
Abstract
Diversity patterns and community assembly of soil microorganisms are essential for understanding soil biodiversity and ecosystem processes. Investigating the impacts of environmental factors on microbial community assembly is crucial for comprehending the functions of microbial biodiversity and ecosystem processes. However, these issues remain insufficiently investigated in related studies despite their fundamental significance. The present study aimed to assess the diversity and assembly of soil bacterial and fungal communities to altitude and soil depth variations in mountain ecosystems by using 16S and ITS rRNA gene sequence analyses. In addition, the major roles of environmental factors in determining soil microbial communities and assembly processes were further investigated. The results showed a U-shaped pattern of the soil bacterial diversity at 0-10 cm soil depth along altitudes, reaching a minimum value at 1800 m, while the fungal diversity exhibited a monotonically decreasing trend with increasing altitude. At 10-20 cm soil depth, the soil bacterial diversity showed no apparent changes along altitudinal gradients, while the fungal Chao1 and phylogenetic diversity (PD) indices exhibited hump-shaped patterns with increasing altitude, reaching a maximum value at 1200 m. Soil bacterial and fungal communities were distinctively distributed with altitude at the same depth of soil, and the spatial turnover rates in fungi was greater than in bacteria. Mantel tests suggested soil physiochemical and climate variables significantly correlated with the β diversity of microbial community at two soil depths, suggesting both soil and climate heterogeneity contributed to the variation of bacterial and fungal community. Correspondingly, a novel phylogenetic null model analysis demonstrated that the community assembly of soil bacterial and fungal communities were dominated by deterministic and stochastic processes, respectively. The assembly processes of bacterial community were significantly related to the soil DOC and C:N ratio, while the fungal community assembly processes were significantly related to the soil C:N ratio. Our results provide a new perspective to assess the responses of soil microbial communities to variations with altitude and soil depth.
Collapse
Affiliation(s)
- Yujuan Kang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yifan Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Tourism and Geography Sciences, Jilin Normal University, Siping, China
| | - Qiong Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Tourism and Geography Sciences, Jilin Normal University, Siping, China
| | - Qiang Guan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Kangle Lu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yiling Lin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
3
|
Luo Y, Zhou M, Jin S, Wang Q, Yan D. Changes in phylogenetic structure and species composition of woody plant communities across an elevational gradient in the southern Taihang Mountains, China. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
4
|
Wang S, Jiao C, Zhao D, Zeng J, Xing P, Liu Y, Wu QL. Disentangling the assembly mechanisms of bacterial communities in a transition zone between the alpine steppe and alpine meadow ecosystems on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157446. [PMID: 35863578 DOI: 10.1016/j.scitotenv.2022.157446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Alpine meadows and alpine steppes are two major grassland types distributed on the Tibetan Plateau. Due in large part to the differences in hydrothermal and nutrient conditions following the thawing of lakeshore permafrost, alpine meadows and alpine steppes which are characterized by disparate above- and below-ground biomass, could emerge together in the grassland transition zone between meadows and steppes of the Tibetan Plateau. Bacterial communities are essential components of alpine grassland ecosystems and respond rapidly to environmental changes. Despite their ecological significance, it remains poorly elucidated whether and how the assembly patterns of bacterial communities differed between alpine meadows and alpine steppes. Here, to disentangle the assembly mechanisms of bacterial communities from alpine meadows and alpine steppes, we collected samples from three diverse habitats (i.e., sediments, rhizosphere soils and bulk soils) in both alpine meadow and steppe ecosystems on the Tibetan Plateau. Our results indicated that in both meadows and steppes, rhizosphere bacterial communities exhibited higher alpha-diversity but lower beta-diversity compared to the bacterial communities in sediments and bulk soils. However, the close relationships of bacterial communities between different habitats weakened from meadows to steppes. Null model analysis indicated that the importance of environmental selection shaping bacterial community assemblages in all habitats decreased from meadows to steppes, whereas the role of dispersal limitation showed an opposite pattern. Moreover, pH was the primary driver of phylogenetic turnover of bacterial communities in the steppes across all habitats, whereas the dominant drivers of phylogenetic turnover of bacterial communities in meadows varied with habitat types. Overall, our findings provide novel insights into understanding the differences in microbial communities between meadows and steppes in the grassland transition zone on the Tibetan Plateau.
Collapse
Affiliation(s)
- Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, China.; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Distinct Elevational Patterns and Their Linkages of Soil Bacteria and Plant Community in An Alpine Meadow of the Qinghai-Tibetan Plateau. Microorganisms 2022; 10:microorganisms10051049. [PMID: 35630491 PMCID: PMC9143282 DOI: 10.3390/microorganisms10051049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Soil microbes play important roles in determining plant community composition and terrestrial ecosystem functions, as well as the direction and extent of terrestrial ecosystem feedback to environmental changes. Understanding the distribution patterns of plant and soil microbiota along elevation gradients is necessary to shed light on important ecosystem functions. In this study, soil bacteria along an elevation gradient in an alpine meadow ecosystem of the Qinghai−Tibetan Plateau were investigated using Illumina sequencing and GeoChip technologies. The community structure of the soil bacteria and plants presented a continuous trend along the elevation gradient, and their alpha diversity displayed different distribution patterns; however, there were no linkages between them. Beta diversity of the soil bacteria and plants was significantly influenced by elevational distance changes (p < 0.05). Functional gene categories involved in nitrogen and phosphorus cycling had faster changes than those involved in carbon degradation, and functional genes involved in labile carbon degradation also had faster variations than those involved in recalcitrant carbon degradation with elevational changes. According to Pearson’s correlation, partial Mantel test analysis, and canonical correspondence analysis, soil pH and mean annual precipitation were important environmental variables in influencing soil bacterial diversity. Soil bacterial diversity and plant diversity had different distribution patterns along the elevation gradient.
Collapse
|
6
|
Zhang B, Xue K, Zhou S, Wang K, Liu W, Xu C, Cui L, Li L, Ran Q, Wang Z, Hu R, Hao Y, Cui X, Wang Y. Environmental selection overturns the decay relationship of soil prokaryotic community over geographic distance across grassland biotas. eLife 2022; 11:70164. [PMID: 35073255 PMCID: PMC8828049 DOI: 10.7554/elife.70164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
Though being fundamental to global diversity distribution, little is known about the geographic pattern of soil microorganisms across different biotas on a large scale. Here, we investigated soil prokaryotic communities from Chinese northern grasslands on a scale up to 4000 km in both alpine and temperate biotas. Prokaryotic similarities increased over geographic distance after tipping points of 1760–1920 km, generating a significant U-shape pattern. Such pattern was likely due to decreased disparities in environmental heterogeneity over geographic distance when across biotas, supported by three lines of evidences: (1) prokaryotic similarities still decreased with the environmental distance, (2) environmental selection dominated prokaryotic assembly, and (3) short-term environmental heterogeneity followed the U-shape pattern spatially, especially attributed to dissolved nutrients. In sum, these results demonstrate that environmental selection overwhelmed the geographic ‘distance’ effect when across biotas, overturning the previously well-accepted geographic pattern for microbes on a large scale.
Collapse
Affiliation(s)
- Biao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Kui Wang
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Wenjing Liu
- College of Resources and Environment, University of Chinese Academy of Sciences
| | - Cong Xu
- Aerospace Information Research Institute, University of Chinese Academy of Sciences
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Linfeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences
| | - Qinwei Ran
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Zongsong Wang
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Ronghai Hu
- College of Resources and Environment, University of Chinese Academy of Sciences
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences
| | - Xiaoyong Cui
- Key Laboratory of Adaptation and Evolution of Plateau Biota, University of Chinese Academy of Sciences
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences
| |
Collapse
|
7
|
Zhang P, Luan M, Li X, Lian Z, Zhao X. The distribution of soil fungal communities along an altitudinal gradient in an alpine meadow. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Elevation Gradient Altered Soil C, N, and P Stoichiometry of Pinus taiwanensis Forest on Daiyun Mountain. FORESTS 2019. [DOI: 10.3390/f10121089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Researches focused on soil carbon (C), nitrogen (N), and phosphorus (P) content and the stoichiometry characteristics along elevation gradients are important for effective management of forest ecosystems. Taking the soil of different elevations from 900 to 1700 m on Daiyun Mountain as the object, the elevation distribution of total C, N, and P in soil and their stoichiometry characteristics were studied. Also, the driving factors resulting in the spatial heterogeneity of soil stoichiometry are presented. The results show the following: (1) The average soil C and N content was 53.03 g·kg−1 and 3.82 g·kg−1, respectively. The content of C and N at high elevation was higher than that of at low elevation. Soil phosphorus fluctuated with elevation. (2) With increasing elevation, soil C:N ratio increased initially to 17.40 at elevation between 900–1000 m, and then decreased to 12.02 at elevation 1600 m. The changing trends of C:P and N:P were similar, and they all fluctuated with elevation. (3) Elevation, soil bulk density, and soil temperature were the main factors influencing the variation of soil C, N, and C:N. Soil pH and slope position were the driving factors for soil P, C:P, and N:P. The soil is rich in C and N, and has less total phosphorus on Daiyun Mountain. Raising the level of phosphate fertilizer appropriately can help to improve soil fertility and promote plant growth as well. In light of this information, in the near future, it will be necessary to conduct separation management of C, N, and P with regular monitoring systems to maintain favorable conditions for soil.
Collapse
|
9
|
Chu H, Zhu YG. Editorial: China Soil Microbiome thematic issue. FEMS Microbiol Ecol 2019; 95:5613420. [PMID: 31689345 DOI: 10.1093/femsec/fiz170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|