1
|
Kundo NK, Kitada K. Is fruits granola beneficial for blood pressure management? Hypertens Res 2025; 48:439-441. [PMID: 39516369 DOI: 10.1038/s41440-024-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan.
| |
Collapse
|
2
|
Muzzatti MJ, Harrison SJ, McColville ER, Brittain CT, Brzezinski H, Manivannan S, Stabile CC, MacMillan HA, Bertram SM. Applying nutritional ecology to optimize diets of crickets raised for food and feed. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241710. [PMID: 39635150 PMCID: PMC11614541 DOI: 10.1098/rsos.241710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Increasing yield is a primary goal of mass insect rearing for food and feed, and diet impacts insect life-history traits that affect yield, such as survival, development time and body size. However, experiments rarely test the nutritional requirements of insects from hatch to adulthood, and so little is known about how the full developmental macronutrient intake impacts the survival, growth and adult body size of mass-reared insects. Here, we applied the nutritional geometry framework and reared individual tropical house crickets (Gryllodes sigillatus) from hatch to adulthood on a wide range of protein : carbohydrate diets. We measured weekly food consumption, survival, development time to adulthood and adult body size and mass, and calculated a yield metric to extrapolate our individual-level results and predict how diet influences yield at the mass-rearing level. Yield was maximized on a 3P : 1C diet, as crickets fed this diet were most likely to develop into adults and grew maximum mass and body size. When provided with a choice between diets, crickets selected a relatively balanced 1.05P : 1C diet throughout development, but males consumed 17% more protein than females. Our results represent a crucial first step towards determining the optimal standard feed formulation required to maximize cricket farming yield.
Collapse
Affiliation(s)
| | - Sarah J. Harrison
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | | | - Caelyn T. Brittain
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | - Hunter Brzezinski
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | - Sujitha Manivannan
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | | | - Heath A. MacMillan
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| | - Susan M. Bertram
- Department of Biology, Carleton University, Ottawa, OntarioK1S 5B6, Canada
| |
Collapse
|
3
|
Kwon W, Lee KP. Macronutrient regulation in nymphs of the two-spotted cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104684. [PMID: 39074715 DOI: 10.1016/j.jinsphys.2024.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Crickets have been extensively studied in recent insect nutritional research, but it remains largely unexplored how they balance the intake of multiple nutrients. Here, we used the nutritional geometry framework to examine the behavioural and physiological regulation of dietary protein and carbohydrate in nymphs of the two-spotted cricket, Gryllus bimaculatus (Orthoptera: Gryllidae). Growth, intake, utilization efficiencies, and body composition were measured from the eighth instar nymphs that received either food pairs or single foods with differing protein and carbohydrate content. When food choices were available, crickets preferentially selected a carbohydrate-biased protein:carbohydrate (P:C) ratio of 1:1.74. During this nutrient selection, carbohydrate intake was more tightly regulated than protein intake. When confined to nutritionally imbalanced foods, crickets adopted a nutrient balancing strategy that maximized the nutrient intake regardless of the nutrient imbalance, reflecting their omnivorous feeding habit. Intake was significantly reduced when crickets were confined to the most carbohydrate-biased food (P:C = 1:5). When nutrients were ingested in excess of the requirements, the post-ingestive utilization efficiencies of these nutrients were down-regulated, thereby buffering the impacts of nutrient imbalances on body nutrient composition. Crickets reared on the most carbohydrate-biased food (P:C = 1:5) suffered delayed development and reduced growth. Our data provide the most accurate description of nutrient regulation in G. bimaculatus and lay the foundation for further nutritional research in this omnivorous insect.
Collapse
Affiliation(s)
- Woomin Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
McNamara KB, Dungan AM, Blackall LL, Simmons LW. Microbial biomarkers as indicators of sperm viability in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240734. [PMID: 39309259 PMCID: PMC11416813 DOI: 10.1098/rsos.240734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Our understanding of microbial variation in male reproductive tissues is poorly understood, both regarding how it varies spatially across different tissues and its ability to affect male sperm and semen quality. To redress this gap, we explored the relationship between male sperm viability and male gut and reproductive tract microbiomes in the Pacific field cricket, Teleogryllus oceanicus. We selected cohorts of males within our populations with the highest and lowest natural sperm viability and characterized the bacterial microbiota present in the gut, testes, seminal vesicle, accessory glands and the spermatophore (ejaculate) using 16S ribosomal RNA gene metabarcoding. We identified bacterial taxa corresponding to sperm viability, highlighting for the first time an association between the host's microbial communities and male competitive fertilization success. We also found significant spatial variation in bacterial community structure of reproductive tissue types. Our data demonstrate the importance of considering the microbial diversity of both the host gut and reproductive tract when investigating male fertility in wildlife and potentially human clinical settings.
Collapse
Affiliation(s)
- Kathryn B. McNamara
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Ashley M. Dungan
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
5
|
Zhao J, Lu W, Huang S, Le Maho Y, Habold C, Zhang Z. Impacts of Dietary Protein and Niacin Deficiency on Reproduction Performance, Body Growth, and Gut Microbiota of Female Hamsters (Tscherskia triton) and Their Offspring. Microbiol Spectr 2022; 10:e0015722. [PMID: 36318010 PMCID: PMC9784777 DOI: 10.1128/spectrum.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Food resources are vital for animals to survive, and gut microbiota play an essential role in transferring nutritional materials into functional metabolites for hosts. Although the fact that diet affects host microbiota is well known, its impacts on offspring remain unclear. In this study, we assessed the effects of low-protein and niacin-deficient diets on reproduction performance, body growth, and gut microbiota of greater long-tailed hamsters (Tscherskia triton) under laboratory conditions. We found that maternal low-protein diet (not niacin deficiency) had a significant negative effect on reproduction performance of female hamsters (longer mating latency with males and smaller litter size) and body growth (lower body weight) of both female hamsters and their offspring. Both protein- and niacin-deficient diets showed significant maternal effects on the microbial community in the offspring. A maternal low-protein diet (not niacin deficiency) significantly reduced the abundance of major bacterial taxa producing short-chain fatty acids, increased the abundance of probiotic taxa, and altered microbial function in the offspring. The negative effects of maternal nutritional deficiency on gut microbiota are more pronounced in the protein group than the niacin group and in offspring more than in female hamsters. Our results suggest that a low-protein diet could alter gut microbiota in animals, which may result in negative impacts on their fitness. It is necessary to conduct further analysis to reveal the roles of nutrition, as well as its interaction with gut microbes, in affecting fitness of greater long-tailed hamsters under field conditions. IMPORTANCE Gut microbes are known to be essential for hosts to digest food and absorb nutrients. Currently, it is still unclear how maternal nutrient deficiency affects the fitness of animals by its effect on gut microbes. Here, we evaluated the effects of protein- and niacin-deficient diets on mating behavior, reproduction, body growth, and gut microbiota of both mothers and offspring of the greater long-tailed hamster (Tscherskia triton) under laboratory conditions. We found that a low-protein diet significantly reduced maternal reproduction performance and body growth of both mothers and their offspring. Both protein and niacin deficiencies showed significant maternal effects on the microbial community of the offspring. Our results hint that nutritional deficiency may be a potential factor in causing the observed sustained population decline of the greater long-tailed hamsters due to intensified monoculture in the North China Plain, and this needs further field investigation.
Collapse
Affiliation(s)
- Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, People’s Republic of China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
- Scientific Centre of Monaco, Monaco Principality, Monaco
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|