1
|
Zhu QZ, Yin X, Taubner H, Wendt J, Friedrich MW, Elvert M, Hinrichs KU, Middelburg JJ. Secondary production and priming reshape the organic matter composition in marine sediments. SCIENCE ADVANCES 2024; 10:eadm8096. [PMID: 38758798 PMCID: PMC11100564 DOI: 10.1126/sciadv.adm8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.
Collapse
Affiliation(s)
- Qing-Zeng Zhu
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Xiuran Yin
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Heidi Taubner
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Jenny Wendt
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W. Friedrich
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Jack J. Middelburg
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Yu T, Wu W, Liang W, Wang Y, Hou J, Chen Y, Elvert M, Hinrichs KU, Wang F. Anaerobic degradation of organic carbon supports uncultured microbial populations in estuarine sediments. MICROBIOME 2023; 11:81. [PMID: 37081504 PMCID: PMC10116835 DOI: 10.1186/s40168-023-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND A large proportion of prokaryotic microbes in marine sediments remains uncultured, hindering our understanding of their ecological functions and metabolic features. Recent environmental metagenomic studies suggested that many of these uncultured microbes contribute to the degradation of organic matter, accompanied by acetogenesis, but the supporting experimental evidence is limited. RESULTS Estuarine sediments were incubated with different types of organic matters under anaerobic conditions, and the increase of uncultured bacterial populations was monitored. We found that (1) lignin stimulated the increase of uncultured bacteria within the class Dehalococcoidia. Their ability to metabolize lignin was further supported by the presence of genes associated with a nearly complete degradation pathway of phenolic monomers in the Dehalococcoidia metagenome-assembled genomes (MAGs). (2) The addition of cellulose stimulated the increase of bacteria in the phylum Ca. Fermentibacterota and family Fibrobacterales, a high copy number of genes encoding extracellular endoglucanase or/and 1,4-beta-cellobiosidase for cellulose decomposition and multiple sugar transporters were present in their MAGs. (3) Uncultured lineages in the order Bacteroidales and the family Leptospiraceae were enriched by the addition of casein and oleic acid, respectively, a high copy number of genes encoding extracellular peptidases, and the complete β-oxidation pathway were found in those MAGs of Bacteroidales and Leptospiraceae, respectively. (4) The growth of unclassified bacteria of the order Clostridiales was found after the addition of both casein and cellulose. Their MAGs contained multiple copies of genes for extracellular peptidases and endoglucanase. Additionally, 13C-labeled acetate was produced in the incubations when 13C-labeled dissolved inorganic carbon was provided. CONCLUSIONS Our results provide new insights into the roles of microorganisms during organic carbon degradation in anaerobic estuarine sediments and suggest that these macro and single molecular organic carbons support the persistence and increase of uncultivated bacteria. Acetogenesis is an additional important microbial process alongside organic carbon degradation. Video Abstract.
Collapse
Affiliation(s)
- Tiantian Yu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weichao Wu
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359, Bremen, Germany
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenyue Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunru Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, 28359, Bremen, Germany
| | - Fengping Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Neubauer C, Kantnerová K, Lamothe A, Savarino J, Hilkert A, Juchelka D, Hinrichs KU, Elvert M, Heuer V, Elsner M, Bakkour R, Julien M, Öztoprak M, Schouten S, Hattori S, Dittmar T. Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:525-537. [PMID: 36971362 DOI: 10.1021/jasms.2c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.
Collapse
Affiliation(s)
- Cajetan Neubauer
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Kristýna Kantnerová
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Alexis Lamothe
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | - Joel Savarino
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | | | | | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Verena Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Martin Elsner
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Maxime Julien
- GFZ German Research Center for Geosciences, 14473 Potsdam, Germany
| | - Merve Öztoprak
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Zhu QZ, Wegener G, Hinrichs KU, Elvert M. Activity of Ancillary Heterotrophic Community Members in Anaerobic Methane-Oxidizing Cultures. Front Microbiol 2022; 13:912299. [PMID: 35722308 PMCID: PMC9201399 DOI: 10.3389/fmicb.2022.912299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria mediate the anaerobic oxidation of methane (AOM) in marine sediments. However, even sediment-free cultures contain a substantial number of additional microorganisms not directly related to AOM. To track the heterotrophic activity of these community members and their possible relationship with AOM, we amended meso- (37°C) and thermophilic (50°C) AOM cultures (dominated by ANME-1 archaea and their partner bacteria of the Seep-SRB2 clade or Candidatus Desulfofervidus auxilii) with L-leucine-3-13C (13C-leu). Various microbial lipids incorporated the labeled carbon from this amino acid, independent of the presence of methane as an energy source, specifically bacterial fatty acids, such as iso and anteiso-branched C15:0 and C17:0, as well as unsaturated C18:1ω9 and C18:1ω7. In natural methane-rich environments, these bacterial fatty acids are strongly 13C-depleted. We, therefore, suggest that those fatty acids are produced by ancillary bacteria that grow on 13C-depleted necromass or cell exudates/lysates of the AOM core communities. Candidates that likely benefit from AOM biomass are heterotrophic bacterial members of the Spirochetes and Anaerolineae—known to produce abundant branched fatty acids and present in all the AOM enrichment cultures. For archaeal lipids, we observed minor 13C-incorporation, but still suggesting some 13C-leu anabolism. Based on their relatively high abundance in the culture, the most probable archaeal candidates are Bathyarchaeota, Thermoplasmatales, and Lokiarchaeota. The identified heterotrophic bacterial and archaeal ancillary members are likely key players in organic carbon recycling in anoxic marine sediments.
Collapse
Affiliation(s)
- Qing-Zeng Zhu
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Liu S, Longnecker K, Kujawinski EB, Vergin K, Bolaños LM, Giovannoni SJ, Parsons R, Opalk K, Halewood E, Hansell DA, Johnson R, Curry R, Carlson CA. Linkages Among Dissolved Organic Matter Export, Dissolved Metabolites, and Associated Microbial Community Structure Response in the Northwestern Sargasso Sea on a Seasonal Scale. Front Microbiol 2022; 13:833252. [PMID: 35350629 PMCID: PMC8957919 DOI: 10.3389/fmicb.2022.833252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016-2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e., more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Krista Longnecker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Kevin Vergin
- Microbial DNA Analytics, Phoenix, OR, United States
| | - Luis M. Bolaños
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Rachel Parsons
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Keri Opalk
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elisa Halewood
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Dennis A. Hansell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Ruth Curry
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Craig A. Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
7
|
Formation of ethane and propane via abiotic reductive conversion of acetic acid in hydrothermal sediments. Proc Natl Acad Sci U S A 2021; 118:2005219118. [PMID: 34782456 DOI: 10.1073/pnas.2005219118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
A mechanistic understanding of formation pathways of low-molecular-weight hydrocarbons is relevant for disciplines such as atmospheric chemistry, geology, and astrobiology. The patterns of stable carbon isotopic compositions (δ13C) of hydrocarbons are commonly used to distinguish biological, thermogenic, and abiotic sources. Here, we report unusual isotope patterns of nonmethane hydrocarbons in hydrothermally heated sediments of the Guaymas Basin; these nonmethane hydrocarbons are notably 13C-enriched relative to sedimentary organic matter and display an isotope pattern that is reversed relative to thermogenic hydrocarbons (i.e., δ13C ethane > δ13C propane > δ13C n-butane > δ13C n-pentane). We hypothesized that this pattern results from abiotic reductive conversion of volatile fatty acids, which were isotopically enriched due to prior equilibration of their carboxyl carbon with dissolved inorganic carbon. This hypothesis was tested by hydrous pyrolysis experiments with isotopically labeled substrates at 350 °C and 400 bar that demonstrated 1) the exchange of carboxyl carbon of C2 to C5 volatile fatty acids with 13C-bicarbonate and 2) the incorporation of 13C from 13C-2-acetic acid into ethane and propane. Collectively, our results reveal an abiotic formation pathway for nonmethane hydrocarbons, which may be sufficiently active in organic-rich, geothermally heated sediments and petroleum systems to affect isotopic compositions of nonmethane hydrocarbons.
Collapse
|
8
|
Stief P, Elvert M, Glud RN. Respiration by "marine snow" at high hydrostatic pressure: Insights from continuous oxygen measurements in a rotating pressure tank. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:2797-2809. [PMID: 34413544 PMCID: PMC8359982 DOI: 10.1002/lno.11791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/07/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023]
Abstract
It is generally anticipated that particulate organic carbon (POC) for most part is degraded by attached microorganisms during the descent of "marine snow" aggregates toward the deep sea. There is, however, increasing evidence that fresh aggregates can reach great depth and sustain relatively high biological activity in the deep sea. Using a novel high-pressure setup, we tested the hypothesis that increasing levels of hydrostatic pressure inhibit POC degradation in aggregates rapidly sinking to the ocean interior. Respiration activity, a proxy for POC degradation, was measured directly and continuously at up to 100 MPa (corresponding to 10 km water depth) in a rotating pressure tank that keeps the aggregates in a sinking mode. Model diatom-bacteria aggregates, cultures of the aggregate-forming diatom Skeletonema marinoi, and seawater microbial communities devoid of diatoms showed incomplete and complete inhibition of respiration activity when exposed to pressure levels of 10-50 and 60-100 MPa, respectively. This implies reduced POC degradation and hence enhanced POC export to hadal trenches through fast-sinking, pressure-exposed aggregates. Notably, continuous respiration measurements at ≥50 MPa revealed curved instead of linear oxygen time series whenever S. marinoi was present, which was not captured by discrete respiration measurements. These curvatures correspond to alternating phases of high and low respiration activity likely connected to pressure effects on unidentified metabolic processes in S. marinoi.
Collapse
Affiliation(s)
- Peter Stief
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marcus Elvert
- MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany
- Faculty of GeosciencesUniversity of BremenBremenGermany
| | - Ronnie N. Glud
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study (DIAS)University of Southern DenmarkOdenseDenmark
- Department of Ocean and Environmental SciencesTokyo University of Marine Science and TechnologyTokyoJapan
| |
Collapse
|