1
|
Ma M, Xue H, Zhu X, Wang L, Niu L, Luo J, Cui J, Gao X. Symbiotic microbial population composition of Apolygus lucorum under temperature and pesticide pressures. Front Microbiol 2024; 15:1485708. [PMID: 39703707 PMCID: PMC11656308 DOI: 10.3389/fmicb.2024.1485708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Insect population control using pesticides faces new challenges as global temperatures change. Symbiotic bacteria of insects play a key role in insect resistance to pesticides, and these symbiotic bacteria themselves are sensitive to the effects of temperature changes. Apolygus lucorum, a sucking pest, survives in a wide range of temperatures (15°C-35°C), and is presently controlled predominantly using the pesticide imidacloprid. Here, we investigated the effects of temperature and imidacloprid on A. lucorum microbial population composition using 16S rRNA sequencing. We found that the application of imidacloprid in high-temperature environments led to an increase in the species diversity of bacteria in the body of A. lucorum. High temperatures may disrupt the symbiotic relationship between certain bacteria and A. lucorum, such as Cedecea neteri. High temperatures led to a decrease in the abundance of Cedecea neteri. Agathobaculum butyriciproducens, Advenella migardefenensis, and Akkermansia muciniphila were very sensitive to temperature and were strongly affected by temperature changes. Microorganisms that were greatly affected by the concentration of imidacloprid in the community include Aeromonas caviae and Akkermansia muciniphila. The aim of this study is to reveal the dynamics and diversity of symbiotic bacteria of A. lucorum treated with imidacloprid at a range of temperatures. These results provide insight into new strategies for pest control in a changing climate.
Collapse
Affiliation(s)
- Mengxin Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Xue
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangzhen Zhu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
3
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
4
|
Wang X, Wang H, Su X, Zhang J, Bai J, Zeng J, Li H. Dynamic changes of gut bacterial communities present in larvae of Anoplophora glabripennies collected at different developmental stages. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21978. [PMID: 36377756 DOI: 10.1002/arch.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The Asian long-horned beetle, Anoplophora glabripennies (Motschulsky), is a destructive wood-boring pest that is capable of killing healthy trees. Gut bacteria in the larvae of the wood-boring pest is essential for the fitness of hosts. However, little is known about the structure of the intestinal microbiome of A. glabripennies during larval development. Here, we used Illumina MiSeq high-throughput sequencing technology to analyze the larval intestinal bacterial communities of A. glabripennies at the stages of newly hatched larvae, 1st instar larvae and 4th instar larvae. Significant differences were found in larval gut microbial community structure at different larvae developmental stages. Different dominant genus was detected during larval development. Acinetobacter were dominant in the newly hatched larvae, Enterobacter and Raoultella in the 1st instar larvae, and Enterococcus and Gibbsiella in the 4th instar larvae. The microbial richness in the newly hatched larvae was higher than those in the 1st and 4th instar larvae. Many important functions of the intestinal microbiome were predicted, for example, fermentation and chemoheterotrophy functions that may play an important role in insect growth and development was detected in the bacteria at all tested stages. However, some specific functions are found to be associated with different development stages. Our study provides a theoretical basis for investigating the function of the intestinal symbiosis bacteria of A. glabripennies.
Collapse
Affiliation(s)
- XueFei Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - HuaLing Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - XiaoYu Su
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - Jie Zhang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JiaWei Bai
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JianYong Zeng
- College of Forestry, Hebei Agricultural University, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei, China
| | - HuiPing Li
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| |
Collapse
|
5
|
Li Y, Zhao D, Wu H, Ji Y, Liu Z, Guo X, Guo W, Bi Y. Bt GS57 Interaction With Gut Microbiota Accelerates Spodoptera exigua Mortality. Front Microbiol 2022; 13:835227. [PMID: 35401496 PMCID: PMC8989089 DOI: 10.3389/fmicb.2022.835227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
The Beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae, Spodoptera) is an important global polyphagous pest. Pathogen infection could destroy the intestinal microbial homeostasis of insects, leading to the death of the host. However, the effect of the host intestinal microbial community on the insecticidal effect of Bacillus thuringiensis is rarely studied. In this study, the genome characteristics of Bt GS57 and the diversity and functions of the gut bacteria in S. exigua are investigated using crystal morphology, biological activity, and Illumina HiSeq high-throughput sequencing. The total size of the Bt GS57 genome is 6.17 Mbp with an average G + C content of 35.66%. Furthermore, the Bt GS57 genome contains six cry genes: cry1Ca, cry1Da, cry2Ab, cry9Ea, cry1Ia, and cry1Aa, and a vegetative insecticidal protein gene vip3Aa. The Bt GS57 strain can produce biconical crystals, mainly expressing 70 kDa and 130 kDa crystal proteins. The LC50 value of the Bt GS57 strain against the S. exigua larvae was 0.339 mg mL–1. Physiological and biochemical reactions showed that Bt GS57 belongs to B.t. var. thuringiensis. In addition, we found that B. thuringiensis can cause a dynamic change in the gut microbiota of S. exigua, with a significant reduction in bacterial diversity and a substantial increase in bacterial load. In turn, loss of gut microbiota significantly decreased the B. thuringiensis susceptibility of S. exigua larvae. Our findings reveal the vital contribution of the gut microbiota in B. thuringiensis-killing activity, providing new insights into the mechanisms of B. thuringiensis pathogenesis in insects.
Collapse
Affiliation(s)
- Yazi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yujie Ji
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaorui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaochang Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Wei Guo,
| | - Yang Bi
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
6
|
Kang WN, Jin L, Fu KY, Guo WC, Li GQ. A switch of microbial flora coupled with ontogenetic niche shift in Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21782. [PMID: 33724519 DOI: 10.1002/arch.21782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.
Collapse
Affiliation(s)
- Wei-Nan Kang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|