1
|
Joshi H, Khan A. Competition-driven phenotypic plasticity in Iron acquisition and aromatic utilization confers a fitness advantage to Pseudomonas putida in an Iron-limited rhizospheric environment. World J Microbiol Biotechnol 2024; 40:386. [PMID: 39565458 PMCID: PMC11579168 DOI: 10.1007/s11274-024-04192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Iron scarcity poses a critical challenge for rhizospheric bacteria like Pseudomonas putida in the competitive rhizosphere. Despite its dependence on iron for essential functions such as root colonization, motility, and aromatic compound utilization, P. putida exhibits limited capability for heterologous siderophore utilization and primarily relies on the secretion of a single siderophore, pyoverdine. This study investigates the mechanisms by which P. putida acquires iron in an iron-limited, aromatic-rich, rhizosphere-like environment. Our findings demonstrate that P. putida exhibits significant phenotypic plasticity, dynamically modulating pyoverdine secretion in response to competitive pressures and substrate availability. This adaptive strategy optimizes energy expenditure and iron acquisition, providing a competitive advantage. Comparative gene expression analysis supports these observations, revealing the molecular underpinnings of this plasticity. Enhanced pyoverdine production driven by competition compensates for the bacterium's limited siderophore repertoire and facilitates rapid aromatic compound utilization, conferring a distinct fitness advantage in iron-deprived conditions. This study elucidates the complex interplay between competition, iron uptake, and aromatic compound utilization that underpins the rhizospheric success of P. putida.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Atif Khan
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Shi H, Li W, Chen H, Meng Y, Wu H, Wang J, Shen S. Synthetic Microbial Community Members Interact to Metabolize Caproic Acid to Inhibit Potato Dry Rot Disease. Int J Mol Sci 2024; 25:4437. [PMID: 38674022 PMCID: PMC11050339 DOI: 10.3390/ijms25084437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Yao Meng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Huifang Wu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (H.S.); (W.L.); (H.C.); (Y.M.); (H.W.); (J.W.)
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining 810016, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining 810016, China
| |
Collapse
|
3
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|
4
|
Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. DIVERSITY 2023. [DOI: 10.3390/d15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plant growth-promoting bacteria (PGPB) enhance plant growth, as well as protect plants from several biotic and abiotic stresses through a variety of mechanisms. Therefore, the exploitation of PGPB in agriculture is feasible as it offers sustainable and eco-friendly approaches to maintaining soil health while increasing crop productivity. The vital key of PGPB application in agriculture is its effectiveness in colonizing plant roots and the phyllosphere, and in developing a protective umbrella through the formation of microcolonies and biofilms. Biofilms offer several benefits to PGPB, such as enhancing resistance to adverse environmental conditions, protecting against pathogens, improving the acquisition of nutrients released in the plant environment, and facilitating beneficial bacteria–plant interactions. Therefore, bacterial biofilms can successfully compete with other microorganisms found on plant surfaces. In addition, plant-associated PGPB biofilms are capable of protecting colonization sites, cycling nutrients, enhancing pathogen defenses, and increasing tolerance to abiotic stresses, thereby increasing agricultural productivity and crop yields. This review highlights the role of biofilms in bacterial colonization of plant surfaces and the strategies used by biofilm-forming PGPB. Moreover, the factors influencing PGPB biofilm formation at plant root and shoot interfaces are critically discussed. This will pave the role of PGPB biofilms in developing bacterial formulations and addressing the challenges related to their efficacy and competence in agriculture for sustainability.
Collapse
|
5
|
Volynchikova E, Kim KD. Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops. MYCOBIOLOGY 2022; 50:269-293. [PMID: 36404903 PMCID: PMC9645277 DOI: 10.1080/12298093.2022.2136333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 05/25/2023]
Abstract
Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Elena Volynchikova
- Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
7
|
Costa-Gutierrez SB, Adler C, Espinosa-Urgel M, de Cristóbal RE. Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Appl Microbiol Biotechnol 2022; 106:3351-3367. [PMID: 35488932 PMCID: PMC9151500 DOI: 10.1007/s00253-022-11881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Abstract Plant growth–promoting rhizobacteria (PGPR) are a group of microorganisms of utmost interest in agricultural biotechnology for their stimulatory and protective effects on plants. Among the various PGPR species, some Pseudomonas putida strains combine outstanding traits such as phytohormone synthesis, nutrient solubilization, adaptation to different stress conditions, and excellent root colonization ability. In this review, we summarize the state of the art and the most relevant findings related to P. putida and its close relatives as PGPR, and we have compiled a detailed list of P. putida sensu stricto, sensu lato, and close relative strains that have been studied for their plant growth–promoting characteristics. However, the mere in vitro analysis of these characteristics does not guarantee correct plant performance under in vivo or field conditions. Therefore, the importance of studying adhesion and survival in the rhizosphere, as well as responses to environmental factors, is emphasized. Although numerous strains of this species have shown good performance in field trials, their use in commercial products is still very limited. Thus, we also analyze the opportunities and challenges related to the formulation and application of bioproducts based on these bacteria. Key points •The mini-review updates the knowledge on Pseudomonas putida as a PGPR. • Some rhizosphere strains are able to improve plant growth under stress conditions. • The metabolic versatility of this species encourages the development of a bioproduct.
Collapse
Affiliation(s)
- Stefanie Bernardette Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano Y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Conrado Adler
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Ricardo Ezequiel de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina.
| |
Collapse
|
8
|
Kumar G, Lal S, Bhatt P, Ram RA, Bhattacherjee AK, Dikshit A, Rajan S. Mechanisms and kinetics for the degradation of paclobutrazol and biocontrol action of a novel Pseudomonas putida strain T7. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104846. [PMID: 33993964 DOI: 10.1016/j.pestbp.2021.104846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
The present study explores biodegradation kinetics and process optimization of plant growth retardant from triazole group paclobutrazol (PBZ; C15H20ClN3O mol. wt. 293.79 g mol-1) in a batch experiment. A gram-negative rod-shaped bacterium T7 was isolated from PBZ applied agricultural field by enrichment technique and characterized as Pseudomonas putida strain T7. Strain was tested for PBZ biodegradation and plant growth-promoting characteristics. Results revealed that strain T7 utilizes PBZ as a carbon and energy source and showing degradation up to 98.30% on the 15th day. First-order degradation kinetics and a linear model were well fitted and showing a maximum t1/2 value on 9th day. Biodegradation optimization by Box Behnken design (BBD) of Response surface methodology (RSM) showed maximum degradation at pH 7.0, 31 °C temperature, and 2 mL inoculum size (8 × 109 CFU mL-1). The bacterium was also able to solubilize Zn, K, and PO4 and produced a copious amount of IAA, HCN, and Ammonia. The biocontrol activity against plant pathogens like Fusarium oxysporum (MTCC-284), Colletotrichum gloeosporioides (MTCC 2190), Pythium aphanidermatum (MTCC - 1024), Tropical race-1 (TR -1), and Tropical race - 4 (TR-4) showed the great antagonistic effect. Hence, this strain can be employed as an effective bio-agent for eco-friendly cleanup strategies and pathogen suppressive agents in paclobutrazol contaminated soil.
Collapse
Affiliation(s)
- Govind Kumar
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India.
| | - Shatrohan Lal
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Pankaj Bhatt
- SCAU, Integrative Microbiology Research Centre SCAU, Guangzhou, China
| | - R A Ram
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - A K Bhattacherjee
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Abhay Dikshit
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Shailendra Rajan
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| |
Collapse
|