1
|
Zhang T, Xiao Y, Wang H, Zhu J, Lu W, Zhang H, Chen W. Construction and characterization of stable multi-species biofilms formed by nine core gut bacteria on wheat fiber. Food Funct 2024; 15:8674-8688. [PMID: 39082112 DOI: 10.1039/d4fo01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Microbial aggregation mainly occurs on the intestinal epithelium, mucosal layer and undigested food particles in the gastrointestinal tract (GIT). Undigested food particles are usually insoluble dietary fiber (IDF), which can be easily obtained through daily diet, but there are few studies investigating whether the gut bacteria adhering to undigested food particles can form multi-species biofilms. In this study, we prepared mono- and multi-species biofilms using 18 core gut bacteria via a dynamic fermentation method, and it was found that multi-species composed of nine core gut bacteria (M9) showed the best biofilm formation ability. Cell counts of the nine bacteria in multi-species biofilms were 9.36, 11.85, 10.17, 9.93, 12.88, 11.39, 10.089, 9.06, and 13.21 Log10 CFU mL-1. M9 was tightly connected and regularly stacked on wheat fiber and had larger particle sizes than mono-species biofilms. M9 retained biofilm formation ability under pH and bile salt stresses. A human feces invasion experiment demonstrated that M9 can stably adhere to wheat fiber under the interference of complex gut bacteria, and the M9 multi-species biofilm had positions that can be filled by various gut bacteria. Metabolome results indicated that the M9 multi-species biofilm had more metabolic productions and more complex interspecies interactions than mono-species biofilms. This study provides a dynamic fermentation method to prepare multi-species biofilms on wheat fiber in vitro. It will also offer a research basis for clarifying whether gut bacteria can utilize IDF to form biofilm structures in vivo and the possible interspecific interactions and physiological functions of bacteria in biofilms.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Le VVH, León-Quezada RI, Biggs PJ, Rakonjac J. A large chromosomal inversion affects antimicrobial sensitivity of Escherichia coli to sodium deoxycholate. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35960647 DOI: 10.1099/mic.0.001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resistance to antimicrobials is normally caused by mutations in the drug targets or genes involved in antimicrobial activation or expulsion. Here we show that an Escherichia coli strain, named DOC14, selected for increased resistance to the bile salt sodium deoxycholate, has no mutations in any ORF, but instead has a 2.1 Mb chromosomal inversion. The breakpoints of the inversion are two inverted copies of an IS5 element. Besides lowering deoxycholate susceptibility, the IS5-mediated chromosomal inversion in the DOC14 mutant was found to increase bacterial survival upon exposure to ampicillin and vancomycin, and sensitize the cell to ciprofloxacin and meropenem, but does not affect bacterial growth or cell morphology in a rich medium in the absence of antibacterial molecules. Overall, our findings support the notion that a large chromosomal inversion can benefit bacterial cells under certain conditions, contributing to genetic variability available for selection during evolution. The DOC14 mutant paired with its isogenic parental strain form a useful model as bacterial ancestors in evolution experiments to study how a large chromosomal inversion influences the evolutionary trajectory in response to various environmental stressors.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,Present address: Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | | | - Patrick J Biggs
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Yang X, Shu R, Hou L, Ren P, Lu X, Huang Z, Zhong Z, Wang H. mcr-1-Mediated In Vitro Inhibition of Plasmid Transfer Is Reversed by the Intestinal Environment. Antibiotics (Basel) 2022; 11:antibiotics11070875. [PMID: 35884129 PMCID: PMC9311533 DOI: 10.3390/antibiotics11070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2022] Open
Abstract
Colistin is regarded as an antibiotic of last resort against multidrug-resistant Gram-negative bacteria, including Klebsiella pneumoniae and Escherichia coli. Colistin resistance is acquired by microorganisms via chromosome-mediated mutations or plasmid-mediated mobile colistin resistance (mcr) gene, in which the transfer of mcr is the predominant factor underlying the spread of colistin resistance. However, the factors that are responsible for the spread of the mcr gene are still unclear. In this study, we observed that mcr-1 inhibited the transfer of the pHNSHP45 backbone in liquid mating. Similar inhibitory effect of mcr-1.6 and chromosomal mutant ΔmgrB suggested that colistin resistance, acquired from either plasmid or chromosomal mutation, hindered the transfer of colistin resistance-related plasmid in vitro. Dual plasmid system further proved that co-existing plasmid transfer was reduced too. However, this inhibitory effect was reversed in vivo. Some factors in the gut, including bile salt and anaerobic conditions, could increase the transfer frequency of the mcr-1-containing plasmid. Our results demonstrated the potential risk for the spread of colistin resistance in the intestine, provide a scientific basis against the transmission of colistin resistance threat.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Rundong Shu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Leqi Hou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Panpan Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China;
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China; (X.Y.); (R.S.); (L.H.); (P.R.); (Z.H.); (Z.Z.)
- Correspondence: ; Tel.: +86-25-84396645
| |
Collapse
|