1
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
2
|
Tossounian MA, Baczynska M, Dalton W, Peak-Chew SY, Undzenas K, Korza G, Filonenko V, Skehel M, Setlow P, Gout I. Bacillus subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress. Antioxidants (Basel) 2023; 12:antiox12040938. [PMID: 37107313 PMCID: PMC10136147 DOI: 10.3390/antiox12040938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%). Studies have shown that protein CoAlation is a widespread post-translational modification which modulates the activity and conformation of the modified proteins. The induction of protein CoAlation by oxidative stress was found to be rapidly reversed after the removal of oxidizing agents from the medium of cultured cells. In this study, we developed an enzyme-linked immunosorbent assay (ELISA)-based deCoAlation assay to detect deCoAlation activity from Bacillus subtilis and Bacillus megaterium lysates. We then used a combination of ELISA-based assay and purification strategies to show that deCoAlation is an enzyme-driven mechanism. Using mass-spectrometry and deCoAlation assays, we identified B. subtilis YtpP (thioredoxin-like protein) and thioredoxin A (TrxA) as enzymes that can remove CoA from different substrates. With mutagenesis studies, we identified YtpP and TrxA catalytic cysteine residues and proposed a possible deCoAlation mechanism for CoAlated methionine sulfoxide reducatse A (MsrA) and peroxiredoxin 5 (PRDX5) proteins, which results in the release of both CoA and the reduced form of MsrA or PRDX5. Overall, this paper reveals the deCoAlation activity of YtpP and TrxA and opens doors to future studies on the CoA-mediated redox regulation of CoAlated proteins under various cellular stress conditions.
Collapse
Affiliation(s)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kipras Undzenas
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| |
Collapse
|
3
|
Filonenko V, Gout I. Discovery and functional characterisation of protein CoAlation and the antioxidant function of coenzyme A. BBA ADVANCES 2023; 3:100075. [PMID: 37082257 PMCID: PMC10074942 DOI: 10.1016/j.bbadva.2023.100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living cells which plays critical role in cellular metabolism, the regulation of gene expression and the biosynthesis of major cellular constituents. Recently, CoA was found to function as a major antioxidant in both prokaryotic and eukaryotic cells. This unconventional function of CoA is mediated by a novel post-translational modification, termed protein CoAlation. This review will highlight the history of this discovery, current knowledge, and future directions on studying molecular mechanisms of protein CoAlation and whether the antioxidant function of CoA is associated with pathologies, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Corresponding authors.
| | - Ivan Gout
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Corresponding authors.
| |
Collapse
|
4
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
5
|
Staphylococcus aureus Small RNAs Possess Dephospho-CoA 5′-Caps, but No CoAlation Marks. Noncoding RNA 2022; 8:ncrna8040046. [PMID: 35893229 PMCID: PMC9326634 DOI: 10.3390/ncrna8040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Novel features of coenzyme A (CoA) and its precursor, 3′-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5′-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification (‘CoAlation’), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an ‘RNA CoAlation’, we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.
Collapse
|
6
|
Yu BYK, Tossounian MA, Hristov SD, Lawrence R, Arora P, Tsuchiya Y, Peak-Chew SY, Filonenko V, Oxenford S, Angell R, Gouge J, Skehel M, Gout I. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol 2021; 44:101978. [PMID: 33903070 PMCID: PMC8212152 DOI: 10.1016/j.redox.2021.101978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
The metastasis suppressor protein NME1 is an evolutionarily conserved and multifunctional enzyme that plays an important role in suppressing the invasion and metastasis of tumour cells. The nucleoside diphosphate kinase (NDPK) activity of NME1 is well recognized in balancing the intracellular pools of nucleotide diphosphates and triphosphates to regulate cytoskeletal rearrangement and cell motility, endocytosis, intracellular trafficking, and metastasis. In addition, NME1 was found to function as a protein-histidine kinase, 3′-5′ exonuclease and geranyl/farnesyl pyrophosphate kinase. These diverse cellular functions are regulated at the level of expression, post-translational modifications, and regulatory interactions. The NDPK activity of NME1 has been shown to be inhibited in vitro and in vivo under oxidative stress, and the inhibitory effect mediated via redox-sensitive cysteine residues. In this study, affinity purification followed by mass spectrometric analysis revealed NME1 to be a major coenzyme A (CoA) binding protein in cultured cells and rat tissues. NME1 is also found covalently modified by CoA (CoAlation) at Cys109 in the CoAlome analysis of HEK293/Pank1β cells treated with the disulfide-stress inducer, diamide. Further analysis showed that recombinant NME1 is efficiently CoAlated in vitro and in cellular response to oxidising agents and metabolic stress. In vitro CoAlation of recombinant wild type NME1, but not the C109A mutant, results in the inhibition of its NDPK activity. Moreover, CoA also functions as a competitive inhibitor of the NME1 NDPK activity by binding non-covalently to the nucleotide binding site. Taken together, our data reveal metastasis suppressor protein NME1 as a novel binding partner of the key metabolic regulator CoA, which inhibits its nucleoside diphosphate kinase activity via non-covalent and covalent interactions. NME1 is a major CoA-binding protein. CoA can bind NME1 through covalent and non-covalent interactions. NME1 CoAlation is induced by oxidative and metabolic stress in mammalian cells. CoA inhibits the NDPK activity of NME1 in vitro.
Collapse
Affiliation(s)
- Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ryan Lawrence
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Pallavi Arora
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Sally Oxenford
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Richard Angell
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, United Kingdom
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|