1
|
Li H, Zhou H, Fan L, Meng L, Zhao Y, Zhao L, Wang B. Glutamicibacter nicotianae AT6: A new strain for the efficient biodegradation of tilmicosin. J Environ Sci (China) 2024; 142:182-192. [PMID: 38527883 DOI: 10.1016/j.jes.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 03/27/2024]
Abstract
The degradation of tilmicosin (TLM), a semi-synthetic 16-membered macrolide antibiotic, has been receiving increasing attention. Conventionally, there are three tilmicosin degradation methods, and among them microbial degradation is considered the best due to its high efficiency, eco-friendliness, and low cost. Coincidently, we found a new strain, Glutamicibacter nicotianae sp. AT6, capable of degrading high-concentration TLM at 100 mg/L with a 97% removal efficiency. The role of tryptone was as well investigated, and the results revealed that the loading of tryptone had a significant influence on TLM removals. The toxicity assessment indicated that strain AT6 could efficiently convert TLM into less-toxic substances. Based on the identified intermediates, the degradation of TLM by AT6 processing through two distinct pathways was then proposed.
Collapse
Affiliation(s)
- Huijuan Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Zhou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Liling Fan
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Long Meng
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lanmei Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; College of Chemistry and Chemical Engineering, Heze University, Heze 274015, China.
| |
Collapse
|
2
|
Bodle KB, Mueller RC, Pernat MR, Kirkland CM. Treatment performance and microbial community structure in an aerobic granular sludge sequencing batch reactor amended with diclofenac, erythromycin, and gemfibrozil. FRONTIERS IN MICROBIOMES 2023; 2:1242895. [PMID: 38076031 PMCID: PMC10705044 DOI: 10.3389/frmbi.2023.1242895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
This study characterizes the effects of three commonly detected pharmaceuticals-diclofenac, erythromycin, and gemfibrozil-on aerobic granular sludge. Approximately 150 μg/L of each pharmaceutical was fed in the influent to a sequencing batch reactor for 80 days, and the performance of the test reactor was compared with that of a control reactor. Wastewater treatment efficacy in the test reactor dropped by approximately 30-40%, and ammonia oxidation was particularly inhibited. The relative abundance of active Rhodocyclaceae, Nitrosomonadaceae, and Nitrospiraceae families declined throughout exposure, likely explaining reductions in wastewater treatment performance. Pharmaceuticals were temporarily removed in the first 12 days of the test via both sorption and degradation; both removal processes declined sharply thereafter. This study demonstrates that aerobic granular sludge may successfully remove pharmaceuticals in the short term, but long-term tests are necessary to confirm if pharmaceutical removal is sustainable.
Collapse
Affiliation(s)
- Kylie B. Bodle
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Rebecca C. Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- United States Department of Agriculture (USDA) Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Madeline R. Pernat
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Catherine M. Kirkland
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Ren J, Xu C, Shen Y, Li C, Dong L, Huhe T, Zhi J, Wang C, Jiang X, Niu D. Environmental factors induced macrolide resistance genes in composts consisting of erythromycin fermentation residue, cattle manure, and maize straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65119-65128. [PMID: 37079236 DOI: 10.1007/s11356-023-27087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
With the growing concerns about antibiotic resistance, it is more and more important to prevent the environmental pollution caused by antibiotic fermentation residues. In this study, composted erythromycin fermentation residue (EFR) with the mixture of cattle manure and maize straw at ratios of 0:10 (CK), 1:10 (T1), and 3:10 (T2) explores the effects on physicochemical characteristics, mobile genetic elements (MGEs), and antibiotic resistance genes (ARGs). Results reflected that the addition of EFR reduced the carbon/nitrogen ratio of each compost and improved the piles' temperature, which promoted the composting process. However, the contents of Na+, SO42-, and erythromycin were also significantly increased. After 30 days of composting, the degradation rates of erythromycin in CK, T1, and T2 were 72.7%, 20.3%, and 37.1%, respectively. Meanwhile, the total positive rates for 26 detected ARGs in T1 and T2 were 65.4%, whereas that of CK was only 23.1%. Further analysis revealed that ARGs responsible for ribosomal protection, such as ermF, ermT, and erm(35), dominated the composts of T1 and T2, and most were correlated with IS613, electrical conductivity (EC), nitrogen, and Zn2+. Above all, adding EFR helps to improve the nutritional value of composts, but the risks in soil salinization and ARG enrichment caused by high EC and erythromycin content should be further investigated and eliminated.
Collapse
Affiliation(s)
- Jianjun Ren
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Chuanbao Xu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Fermentation Residues, Yili Chuanning Biotechnology Co., Ltd, Yili, 835007, China
| | - Chunyu Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Fermentation Residues, Yili Chuanning Biotechnology Co., Ltd, Yili, 835007, China
| | - Taoli Huhe
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Junqiang Zhi
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Chongqing Wang
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Sciences, De Gou Ma Jia Yuan, Qixingguan District, Bijie, 551700, China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
5
|
Mehta T, Meena M, Nagda A. Bioactive compounds of Curvularia species as a source of various biological activities and biotechnological applications. Front Microbiol 2022; 13:1069095. [PMID: 36569099 PMCID: PMC9777749 DOI: 10.3389/fmicb.2022.1069095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Many filamentous fungi are known to produce several secondary metabolites or bioactive compounds during their growth and reproduction with sort of various biological activities. Genus Curvularia (Pleosporaceae) is a dematiaceous filamentous fungus that exhibits a facultative pathogenic and endophytic lifestyle. It contains ~213 species among which Curvularia lunata, C. geniculata, C. clavata, C. pallescens, and C. andropogonis are well-known. Among them, C. lunata is a major pathogenic species of various economical important crops especially cereals of tropical regions while other species like C. geniculata is of endophytic nature with numerous bioactive compounds. Curvularia species contain several diverse groups of secondary metabolites including alkaloids, terpenes, polyketides, and quinones. Which possess various biological activities including anti-cancer, anti-inflammatory, anti-microbial, anti-oxidant, and phytotoxicity. Several genes and gene factors are involved to carry and regulate the expression of these activities which are influenced by environmental signals. Some species of Curvularia also show negative impacts on humans and animals. Apart from their negative effects, there are some beneficial implications like production of enzymes of industrial value, bioherbicides, and source of nanoparticles is reported. Many researchers are working on these aspects all over the world but there is no review in literature which provides significant understanding about these all aspects. Thus, this review will provide significant information about secondary metabolic diversity, their biological activities and biotechnological implications of Curvularia species.
Collapse
|